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We present an experimental and numerical study of hydrodynamic and magnetohydrodynamic free
shear layers and their stability. We first examine the experimental measurement of globally unstable
hydrodynamic shear layers in the presence of rotation and their range of instability. These are
compared to numerical simulations, which are used to explain the modification of the shear layer, and
thus the critical Rossby number for stability. Magnetic fields are then applied to these scenarios and
globally unstable magnetohydrodynamic shear layers generated. These too are compared to numerical
simulations showing behavior consistent with the hydrodynamic case and previously reported
measurements. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3702006]

I. INTRODUCTION

A shear layer is a layer of flowing fluid which possesses a
velocity field gradient in a direction orthogonal to the flow.
Such layers are common in fluid flow near boundaries, where
the fluid must typically reach zero velocity at the bounding wall.
A shear layer is called “free” when it exists in the absence of a
boundary. Such layers generally exist when discontinuities in
the boundary conditions of a flow are subject to some manner of
stabilizing force, such as the Coriolis or Lorentz force. This sta-
bilization allows the discontinuity to penetrate into the bulk of
the fluid as a shear layer. Such layers may exist naturally in geo-
physical1,2 or stellar systems.3,4

Hydrodynamic free shear layers were first discussed the-
oretically by Proudman5 and Stewartson,6 who examined
systems of fluid under rapid rotation subject to a boundary
discontinuity that was only slightly differentially rotating,
allowing the discontinuity in the flow to be treated linearly.
The prediction of the thickness of such shear layers, which
became known as Stewartson layers, and their scaling with
Ekman number, E ¼ !=ða2X2Þ, where ! is the fluid’s kine-
matic viscosity, a is a length scale, and X2 is the global rota-
tion rate, was a triumph of the theoretical analysis of such
flows. These predictions were later confirmed both experi-
mentally7,8 and numerically.9,10

Not surprisingly, if there is enough free energy in the
shear layer, the layer will become unstable to a Kelvin-
Helmholtz-type instability, sometimes called a barotropic
instability. This has been observed by a number of experi-
mental groups in cylindrical hydrodynamic studies.7,11–14

The instability manifests itself as a set of two-dimensional
eddies which roll up in the r $ h plane, where we are using
the standard cylindrical coordinates ðr; h; zÞ. The azimuthal
mode number of the instability depends on a number of fac-
tors, especially the differential speed across the boundary

discontinuity which generates the shear layer and the amount
of global rotation. These are parameterized by the Rossby
number, Ro ¼ DX=X2, where DX ¼ X1 $ X2 is the angular
speed difference across the boundary discontinuity, and the
Ekman number E, defined above. When both Ro and E are
small enough, the shear layer tends to be stable, but when
the Rossby number gets too large the layer destabilizes, with
the scaling of the critical Rossby number depending upon
the geometry of the system,15 a result also observed in nu-
merical simulations of spherical Couette flow.16–19

In contrast to the much-larger corpus of work on hydro-
dynamic free shear layers, relatively little work has been done
studying their magnetohydrodynamic (MHD) analogy: free
shear layers which are generated by the Lorentz force instead
of the Coriolis force. Just as the Coriolis force causes rotating
flows to become independent of the ordinate along the axis of
rotation, so too can magnetic fields cause flows of electrically
conducting fluid to become independent of the ordinate paral-
lel to the direction of the applied field. Such free shear layers,
now known as Shercliff layers,19 have been studied both
experimentally,20–22 and numerically.19,23–25 Like their hydro-
dynamic cousins, these shear layers are unstable to a Kelvin-
Helmholtz-type instability when the amount of shear becomes
large relative to the restoring force.

Unlike the hydrodynamic case, where there have been
theoretical analyses of small differential rotation of the
boundary discontinuity,6 there have been no analytical stud-
ies examining the role of magnetic field in shear-layer stabi-
lization in the absence of global rotation. This is due to the
fact that without only a small amount of differential rotation
the Navier-Stokes equation remains strongly nonlinear de-
spite the magnetic field, and thus analytically intractable. We
must, consequently, turn to numerical simulations to make
progress on this topic.

In this paper, we extend a previous study of free MHD
shear layers by Roach and collaborators22 to examine the effect
of global rotation on the stability of such layers in the regime
of large Rossby number, Ro % Oð1Þ. We also examine the
suppression of these shear layers by secondary circulation.
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Two tools are used in this study: the Princeton MRI experi-
ment and 2D numerical simulations; these are presented in
Sec. II. In Sec. III, we show how the large-Rossby number
limit eventually results in the absence of a globally unstable
hydrodynamic shear layer. Numerical simulations are used to
elucidate these results. These now-locally unstable shear layers
can be made globally unstable using a magnetic field; meas-
urements demonstrating this are presented in Sec. IV. We con-
clude with a discussion of these results and avenues for further
study.

II. TOOLS FOR STUDYING SHEAR LAYERS AND
THEIR STABILITY

In this work we use two tools to examine the roles of
global rotation and magnetic field on the generation of free
shear layers and their stability. These are the Princeton mag-
netorotational instability (MRI) experiment and 2D numeri-
cal simulations of the experiment performed using the
ZEUS-MP code.

A. Princeton MRI experiment

The Princeton MRI experiment is a Taylor-Couette appa-
ratus which uses the gallium eutectic GaInSn as its working
fluid.26 A schematic of the experiment is presented in Figure
1. To suppress the secondary circulation which develops due
to the Ekman layers at the top and bottom of the experiment,
the endcaps which vertically contain the fluid are split into
two independently rotating rings, giving the experiment four

rotation rates: those of the inner cylinder, inner ring, outer
ring, and outer cylinder. The differential rotation at the inner
ring-outer ring junction breaks up the secondary circulation,
resulting in less-turbulent flow. Axial magnetic fields are
applied to the experiment by a set of six external magnetic
field coils, giving an applied field of up to 0.45 Tesla. Parame-
ters for the experiment are given in Table I.

The velocity field of the experiment is measured using
an ultrasonic Doppler velocimetry (UDV) system.27 Ultra-
sonic transducers are mounted to the outer cylinder at the
midplane of the experiment and just above the lower endcap
rings. The transducers are oriented tangential to the inner
cylinder, allowing the azimuthal velocity to be measured.
Transducers are placed at two azimuthal locations at the
midplane, allowing information about the azimuthal mode
structure of the destabilized free shear layers to be gathered.
Signals from the transducers are passed through a slip-ring to
move the signal to the laboratory frame.

For the experiments used in this study, the inner-
cylinder and inner-ring rotation rates were identical, and the
outer-ring and outer-cylinder rotation rates were also
matched. This resulted in only two rotation rates for these
experiments, with the discontinuity in rotation rate occurring
at the inner ring-outer ring junction. This velocity field dis-
continuity generated the shear layers which are the subject of
this study. These rotation rates are listed with the notation
(X1;X2) in this paper, corresponding to (inner speed, outer
speed) in revolutions per minute.

B. Axisymmetric simulations

Numerical simulations can be a useful tool for exploring
experimentally inaccessible regimes, as well as determining
the dynamics of areas of the experiment which are difficult to
diagnose. For this study, we use the ZEUS-MP 2.0 code,28 to
which viscosity and resistivity have been added.29 The code
solves the Navier-Stokes and magnetic induction equations in
multiple geometries, in this case cylindrical. The code is time-
explicit, compressible, and three-dimensional, though axisym-
metry is enforced for this study, and an incompressible limit is
taken. The boundary conditions on the flow are no-slip on the
various rotating surfaces. The magnetic field at the boundaries
is matched to the external vacuum solution.30 Applied mag-
netic fields are generated using external current distributions
which closely resemble those of the experiment. Further details
of the implementation of the code to simulate this experiment
have been given previously.31

FIG. 1. Schematic of the Princeton MRI experiment. Note the differentially
rotatable top and bottom endcap rings, which can generate a discontinuity in
the azimuthal-flow boundary condition.

TABLE I. Experimental parameters of the Princeton MRI experiment.

Height h 0.279 m

Inner-cylinder radius r1 0.071 m

Outer-cylinder radius r2 0.203 m

Ring-junction radius r0 0.137 m

Radial gap A 0.132 m

Density q 6360 kg/m3

Kinematic viscosity ! 3.0& 10$7 m2/s

Magnetic diffusivity g 0.257 m2/s

Axial magnetic field B 0–0.45 T
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All simulations used in this study were performed with a
resolution of 256 radial and 512 vertical points. A kinematic
viscosity 300 times that of the experimental working fluid was
used, as well as an electrical conductivity 3 times too high,
resulting in a magnetic Prandtl number of Pm ¼ !=g ¼ 10$3.
The list of simulations used in this paper, with their associated
dimensionless parameters, is given in Table II.

III. SUPPRESSION OF THE HYDRODYNAMIC SHEAR
LAYER

As discussed above, hydrodynamic free shear layers can
form in rotating systems in the presence of a discontinuity in
the velocity field boundary condition. The Princeton MRI
experiment, with its independently rotating endcap rings, has
such a boundary discontinuity, and consequently, we expect
such shear layers to form. Since it has been demonstrated
experimentally,7,11–14,32 numerically,16–19,25 and analyti-
cally15,33 that such free shear layers destabilize when the
amount of shear becomes sufficient, we also expect the shear
layers in the experiment to be unstable. The transition of the
hydrodynamic shear layer to instability has been found15 to
occur at a critical Rossby number of Rocrit % E3=4 in a cylin-
drical geometry. This relationship has been roughly con-
firmed by experiment.7,14,32 For the Princeton MRI
experiment Rocrit % 10$5; unfortunately such a small amount
of differential rotation is beyond the technical capabilities of
this apparatus, and thus the stable regime, where Ro < Rocrit,
has never been observed.

Nonetheless, experimental evidence for a destabilized
hydrodynamic shear layer in the Princeton MRI experiment
has been observed. This is presented in Figure 2, which
shows the azimuthal flow at a radial location as a function of
time, for the speeds (270, 100) rpm. The two timeseries are
from two UDV transducers which are offset azimuthally by
90', indicating that the instability likely has saturated as an
m¼ 1 mode, where m is the azimuthal mode number, since
the two timeseries are 90' out of phase. This is consistent
with previous reports, which show that higher-Rossby num-
ber regimes, such as in this study, result in lower azimuthal
mode numbers in the instability’s saturated state.7,14 The
spatial structure of the mode, as swept out by a chord of
UDV measurements over one oscillation period, is presented
in Figure 3. The spiral structure previously observed in this
apparatus, due to a magnetic field-induced free-shear-layer

instability, is reproduced,22 strongly suggesting that this is
the purely hydrodynamic version of the free-shear-layer
instability. Consistent with other results,22 the instability is
observed to be global, filling the volume of the apparatus,
vertically independent (as far as can be measured), and
rotates at a frequency of about 30% of the average of the
rotation speeds, frot % 0:3ðDX=2Þ, in the rotating frame. The
destabilized mode is a robust feature of the experiment, con-
sistently observed over a range of Ekman numbers.

There is a limit to the range of Rossby numbers over
which the hydrodynamic free-shear-layer instability is
observed. In Figure 4, we present an example of a measured
azimuthal velocity timeseries which is just above the critical
Rossby number for stabilization of the instability. As can be
seen, the instability is driven during the spin-up phase of the
experiment, but as the mean flow becomes established, the
instability is eventually stabilized. The measured value of X1

which stabilizes the global shear-layer instability, for a given
value of X2, is presented in Figure 5. The curve corresponds
to a value of Ro¼ 2.35, which interestingly is a constant for
the range of rotation rates examined, though admittedly this

TABLE II. Parameters of the simulations used in this work.

X1 [rev/min] X2 [rev/min] B [G] E Ro K

350 100 0.0 5.6& 10$4 2.5 0.0

400 100 0.0 5.6& 10$4 3.0 0.0

400 100 800.0 5.6& 10$4 3.0 0.25

400 100 1600.0 5.6& 10$4 3.0 1.0

400 100 3580.0 5.6& 10$4 3.0 5.0

400 100 5060.0 5.6& 10$4 3.0 10.0

175 50 0.0 1.1& 10$3 2.5 0.0

200 50 0.0 1.1& 10$3 3.0 0.0

1750 500 0.0 1.1& 10$4 2.5 0.0

2000 500 0.0 1.1& 10$4 3.0 0.0

FIG. 2. Azimuthal velocity at r¼ 18.2 cm versus time, measured at the mid-
plane at h ¼ 0 (solid) and at z¼ 3 cm at h ¼ p=4 (dotted), for (270, 100) rpm,
no applied field.

FIG. 3. Spatial structure of the measured azimuthal flow over one period of
oscillation, at the midplane, with the axisymmetric background removed, for
(270, 100) rpm, no applied field.
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corresponds to a small range of Ekman number,
3:7& 10$6 ( E ( 6:1& 10$7.

No theoretical or experimental discussion has been
given to the topic of the suppression of the hydrodynamic
free-shear-layer instability by increasing Ro far above
Rocrit % E3=4. This is not surprising, given that once
Ro % Oð1Þ, the assumption that the nonlinearities of the sys-
tem are unimportant is no longer valid, making analytic
treatment of the problem difficult. To address this issue we
turn to numerical simulations, an example of which is pre-
sented in Figure 6. This displays a snapshot of the contours
of both the poloidal stream function and the shear, which we
define here as q ¼ ðr=XÞ@X=@r, where X ¼ vh=r and vh is
the azimuthal flow, for the case of (350, 100) rpm with no
applied field, which corresponds to Ro¼ 2.5. As can be seen,
a clear hydrodynamic free shear layer is formed just outside
the inner ring-outer ring junction and penetrates into the bulk
of the fluid. Poloidal circulation cells form on either side of
the shear layer. As the Rossby number is increased, the shear
layer no longer extends vertically into the center of the fluid,
but rather is pushed outward radially by the secondary circu-
lation. This is shown in Figure 7, which presents the case of
(400, 100) rpm with no applied field, Ro¼ 3.0.

As the shear layer in the simulations penetrates into the
bulk of the fluid, we would expect that, if these were 3D sim-
ulations, the layer would become globally Kelvin-Helmholtz
unstable, generating the oscillating signals in the azimuthal

flow which are measured in the experiment. One can
hypothesize that, as the Rossby number is increased and the
shear layer is pushed radially outward, the shear layer would
not become globally unstable such that the bulk of the fluid
is also destabilized, but rather would be merely locally unsta-
ble, generating turbulence near the endcaps. This explains
the lack of large-scale oscillations in the experiment for
Ro ) 2:35, and as such the behavior of the shear layers in
the simulations as the Rossby number is increased is consist-
ent with experimental measurements. The question remains
of how the shear layers which do not penetrate all the way to
the midplane of the experiment generate a vertically inde-
pendent mode throughout the bulk of the fluid. We will
revisit this question in Sec. V.

IV. MAGNETIZED SHEAR LAYER DESTABILIZATION

If we now restrict our experimental studies to the regime
where Ro¼ 2.35, thus ensuring that the system has a hydrody-
namic shear layer which is not globally unstable, we can
examine the role that an applied magnetic field plays in gener-
ating a magnetized free shear layer. A representative times-
eries of such a case is displayed in Figure 8, which presents
the azimuthal flow versus time for speeds of (670, 200) rpm

FIG. 4. Azimuthal velocity at r¼ 18.2 cm versus time, measured at the mid-
plane, for (335, 100) rpm, no applied field.

FIG. 5. Value of X1 which suppresses the global free-shear-layer instability
versus X2. The linear trend corresponds to Ro¼ 2.35.

FIG. 6. Snapshot of a numerical simulation of the experiment, for (350,
100) rpm, no applied field. Left: Shear, q ¼ ðr=XÞ @X=@r, versus radius and
height. Note the shear layer extending vertically from the ring junction.
Right: Contours of the poloidal stream function versus radius and height.
Contours range from $22 to 22 cm2/s, in steps of 2. The vertical lines in
both figures indicate the location of the inner ring-outer ring junction.

FIG. 7. Numerical simulation of (400, 100) rpm, no applied field. The plot-
ting convention is the same as in Figure 6.
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and an applied field of 3440 G. Initially, before the field is
applied, there is no evidence of shear layer instability. How-
ever, when the field is applied the instability grows and satu-
rates, much like the measurements reported by Roach et al.22

When the field is removed the flow returns to its initial state.
The cause of the emergence of the instability is likely

the re-establishment of the globally unstable shear layer, and
the cause of the re-establishment of the shear layer is the
Lorentz force due to the applied magnetic field. Again, we
can turn to simulations to illustrate this phenomenon. In Fig-
ure 9 is presented, the same rotation rates as in Figure 7,
(400, 100) rpm, but now with an applied field of 800 G. This
field strength is considered weak since the Elsasser number,
K ¼ B2=ðl0qgDXÞ, a measure of the ratio of the Lorentz and
Coriolis forces, is less than one. In this case, the shear layer
is only mildly affected by the Lorentz force, with the shear
layer still strongly pushed radially outward. We expect that
this shear layer, like its hydrodynamic cousin, is merely
locally unstable. As the field strength is increased, as in
Figures 10–12, the secondary circulation is suppressed,
allowing the shear layer to become more and more parallel
to the applied field. Again, we would expect that this layer
would become unstable to a global hydrodynamic Kelvin-
Helmholtz instability, destabilizing the bulk flow as observed
in the experiment. In these cases, the magnetic field plays
the role that the Coriolis force plays in the establishment of
free shear layers in the hydrodynamic case.

As implied by the simulation results, there is a minimum
value of magnetic field required for the shear layer to
become globally unstable, roughly corresponding to the field
needed to suppress the secondary circulation enough to allow
the shear layer to couple to the bulk of the fluid. This transi-
tion has been mapped out experimentally, and its instability
space is presented in Figure 13, for runs with Ro¼ 2.35. The
instability demonstrates the same dependence on Elsasser
number as reported previously,22 namely K ¼ 1, though in
this case, it is the differential speed at the inner ring-outer
ring junction which is used in the denominator of the
Elsasser number. It should be noted that in the report by
Roach et al. X2 ¼ 0 for most of the study, and thus DX ¼ X1

and the Elsasser number was defined equivalently as here.
Revisiting Figures 9 (K ¼ 0:25) and 10 (K ¼ 1:0), we can
see the effect of the magnetic field on the shear layer more
directly, again noting that the shear layer curves into the fluid
volume when K ¼ 1.

V. DISCUSSION AND CONCLUSION

A minimum critical Rossby number is required to sup-
press the global instability of the hydrodynamic free shear
layer. In Figure 5, experimental data are presented which
suggests that this Rossby number is a constant, Ro¼ 2.35,
though admittedly over a range of Ekman number of only
one order of magnitude. However, the simulations do not
confirm this behavior exactly: we hypothesize that the

FIG. 8. Azimuthal velocity at r¼ 18.2 cm versus time, measured at the mid-
plane, for (670, 200) rpm, 3440 G. The magnetic field turns on at t¼ 10 s.

FIG. 9. Numerical simulation of (400, 100) rpm, 800 G (K ¼ 0:25). The
plotting convention is the same as in Figure 6.

FIG. 10. Numerical simulation of (400, 100) rpm, 1600 G (K ¼ 1:0). The
plotting convention is the same as in Figure 6.

FIG. 11. Numerical simulation of (400, 100) rpm, 3580 G (K ¼ 5:0). The
plotting convention is the same as in Figure 6.

056502-5 Spence et al. Phys. Plasmas 19, 056502 (2012)



Ro¼ 2.5 case (Figure 6) is globally unstable, due to its erect
shear layer, while Ro¼ 3.0 (Figure 7) is only locally unsta-
ble, since the shear layer is pushed radially outward. This
Rossby number dependence on the orientation of the shear
layer has also been produced by simulations at other speeds,
with X2 ¼ 50 and X2 ¼ 500. If these simulations are a faith-
ful representation of the experiment then this suggests that
the critical Rossby number is not a constant with respect to
Ekman number. If this is the case, then the dependence on
Ekman number must be extremely weak, with Ro¼ 2.35
when E % 10$6 in the experiment and 2:5 < Ro < 3:0 when
E % 10$4 as in the simulations. This very slight change in
critical Rossby number might be better explained either by
imperfections in the simulation’s representation of the
experiment, perhaps slight differences in geometry or per-
haps is a result of three-dimensional effects which are not
captured by the simulation. Experimental and numerical
studies of this topic are ongoing.

An outstanding question is that of the value of the critical
Rossby number itself: why Ro¼ 2.35? Clearly as the Rossby
number is increased significantly above unity, the inertial
forces due to the secondary circulation become at least as im-
portant as the forces due to rotation. As well, the centrifugal
force due to the faster rotation rate of the inner parts tends to
push the faster flow, and thus the shear layer, into the outer

portion of the fluid domain. Clearly these effects are depend-
ent on the fluid being used, in particular the fluid’s density,
and the geometry of the system involved. This is consistent
with a report by Rabaud and Couder,11 who indicate that their
apparatus still displays global instability when Ro > 4:0 (see
their Figure 5), while using a very different working fluid (air)
and experimental aspect ratio (h=r0 ¼ 0:05$ 0:4). This is
also consistent with results by Edlund, who reports a critical
Rossby number of Ro % 2:0, for an experiment using water in
an aspect ratio similar to that of the Princeton MRI experi-
ment. The Rossby number’s geometric and fluid dependence
will be a topic of future study.

One interesting result of this study is the persistent feature
of the K ¼ 1 stability criteria for the MHD free-shear layer.
One might have expected that the global rotation, which brings
with it the stabilizing effect of the Coriolis force, would have
caused the stability line to be modified, with less magnetic
field needed to re-establish the shear layer, especially since the
data in Figure 13 are for the marginally globally stable case
Ro¼ 2.35. Perhaps, the lack of change of criteria is not surpris-
ing when one considers the fact that the measurements pre-
sented here are at a large Rossby number, in the regime where
the secondary flow is as important as rotation. In that case, one
might expect that the Lorentz force would be more important
than Coriolis in suppressing poloidal circulation, and the
effects of global rotation would be minimal, as observed. One
might also wonder why the Elsasser number is dependent on
DX instead of the global rotation rate, X2. The simulations
indicate that the magnitude of the current induced in the area
of the ring junction is proportional to the shear in that region
and thus proportional to DX. Since it is the induced current
interacting with the background applied field that generates the
Lorentz force, it follows that it is DX that is the important
speed to consider in the determination of the relative strength
of the applied field.

In the simulation results presented in Figure 6, the hydro-
dynamic shear layer penetrates almost a quarter of the way
into the bulk of the fluid. However, there is an azimuthally ori-
ented UDV transducer placed 3 centimeters above the lower
endcap rings in the experiment, and no such shear layer is
observed, though evidence of a hydrodynamic shear layer has
been observed when the transducer is tilted such that it can
measure about 1 centimeter above the endcap rings. Why are
the shear layers in the simulations observed deep in the fluid,
while in the hydrodynamic experiments they are not? The
most likely explanation lies in the viscosity used in the simula-
tions, which is 300 times larger than in the experiment. Such a
large viscosity acts as a stabilizing force on the shear layer,
allowing it to penetrate farther into the fluid. Nonetheless, de-
spite its low viscosity, one would expect that the shear layer
would be stable farther into the fluid if the experiment could
be run at lower Ekman number, increasing the relative strength
of the Coriolis force, and Rossby numbers which are below the
initial transition to global instability. This effect is observed in
the experiment when run with strong relative magnetic fields,
meaning at large Elsasser number. In these cases, and as
observed in the simulation presented in Figure 12, the shear
layer is sufficiently stabilized by the Lorentz force that it can
be directly measured at the midplane of the experiment. This

FIG. 12. Numerical simulation of (400, 100) rpm, 11310 G (K ¼ 50:0). The
plotting convention is the same as in Figure 6.

FIG. 13. Experimental shear-layer global-instability space. Dots indicate
instability, “x”s indicate stability. The area of the dots is proportional to the
power in the oscillations, normalized by ðDXÞ2. All runs were performed
with Ro¼ 2.35. The instability space is separated by the K ¼ 1 line, where
the Elsasser number is defined here as K ¼ B2=ðl0qgDXÞ.
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has not yet been observed in cases with global rotation, as pre-
sented in this work, though it has been measured in cases
where the outer ring and outer cylinder are stationary.22

The 2D numerical simulations presented here indicate
that if there is any discontinuity in the velocity field bound-
ary condition a shear layer forms no matter the value of the
Rossby or Elsasser numbers. The main question which has
been the theme of this paper is: under what conditions does
this shear layer generate a globally unstable mode which
results in the observations made in the experiment, and under
what conditions does it merely decompose into local turbu-
lence? In the case of hydrodynamic shear layers, it seems
plausible that the effect of increasing the Rossby number is
to cause inertia to push the shear layer into the wall, prevent-
ing the layer from, through the Coriolis force, causing the
whole fluid volume to become globally unstable. In the case
of MHD shear layers, the effect of the applied magnetic field
is to suppress the secondary circulation, allowing the glob-
ally stable shear layer to pull away from the wall and,
through the Lorentz or Coriolis forces, or both, cause a
global instability to ensue. Unfortunately, this remains
merely a plausible hypothesis, as this cannot be confirmed
with the 2D simulations used here. A fully 3D simulation is
needed to resolve this issue and is currently being pursued.

In summary, we have presented a study of the role of
global rotation on the formation and stability of hydrody-
namic and magnetohydrodynamic shear layers. We have
demonstrated that there is a critical Rossby number above
which hydrodynamic free shear layers are suppressed and
cease to be globally unstable, a failure explained by simula-
tions to be one of the shear layer being pushed outward by
secondary circulation. Experimental measurements indicate
that these suppressed shear layers can be re-established as
globally unstable by an applied field. Simulations have
shown the cause of the re-establishment of the instability to
be the straightening of the shear layer due to the suppression
of the poloidal circulation by the field.
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