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Introduction

• Understanding the plasma-wall interaction is 
critical in laboratory and industrial plasmas

• Large area plasmas pose difficult modeling, 
simulation and experimental problems.

• Surface Waves and Landau Resonant Heating can 
be exploited to generate plasmas with desirable 
properties:

• Uniformity, low temperature, enhanced reactions
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Mechanisms and Properties
• Plasma Non-Uniformity

• Capacitive sheaths, “Inductive” bulk (from e- inertia)
• Waves propagate near or below ωpe
• Strongest fields near plasma sheaths

• (Mostly) Longitudinal Waves 
• Waves exchange energy between e- inertia and electric field
• Waves of interest have slow group velocities, vgr ~ vth, and 

slow phase velocities, vph << c (usually)
• Compression of plasma: thermal effects - Bohm-Gross 

dispersion and Tonks-Dattner modes

• Wave-Particle Interactions
• Wave fields suitable for trapping particles moving 

synchronously with the wave; Landau damping
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• Models the effects of space charge sheaths
– Assume stationary uniform ions
– Electrons are trapped in center of the plasma
– Invoking quasi-neutrality, the bulk electron density is 

the same as the ion density
• Electron depleted sheaths at walls are ubiquitous 

in unmagnetized low temperature plasmas
– Electrons mobility is far greater than ion mobility

• What is the relationship between the applied 
voltage and the device current?
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Physical
Viewpoint

• From Poisson’s equation, the electric field in the 
bulk (Ep) is constant in space
– Ignoring thermal effects, e-’s move as a rigid slab
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Circuit
Viewpoint
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What We Learned

• A bounded plasma slab has a natural oscillation 
frequency for sloshing motion
– Series resonance: ωsr=ωpe(2s/L)1/2

• Near the series resonance the Z(ω) is resistive
• Treating the plasma as a stationary dielectric 

medium implicitly accounts for e- motion
– Calculations are easier from the circuit point-of-view 

but physical point-of-view has more insight
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A Simple Model
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Mode Structure

• Treat as a dielectric 
loaded waveguide
– Cold homogeneous 

bulk plasma
– Vacuum sheaths
– Longitudinal waves 

are TM polarized
– Look for slow 

waves
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Asymptotes
Anti-symmetric Symmetric
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A Better Model
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Cold Plasma Dielectric e- Pressure Non-Uniformity

• Warm Non-Uniform Plasma Model
– Linearized fluid theory. Uniform temperature. Ideal 

equation of state. Stationary ions. Model is expressed as 
a dielectric operator above.

– Model first used to explain Tonks-Dattner resonances 
by Parker, Nickel and Gould (1964).

– Captures thermal effects but not wave-particle effects.
– Prior works were electrostatic and only could solve for 

plasmas a few tens of Debye lengths long
– The thermal terms avoid singularities where the wave 

frequency matches local plasma frequency
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Modeling 
Results

• This profile is 
used for the 
results to 
follow

• Profile was 
obtained from 
an XPDP1 
simulation of 
Tonks-Dattner
resonances
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Anti-symmetric 
Results 

• Cutoffs are Tonks-
Dattner resonances
– Agree within 5%
– Series resonance 

wave very accurate
• “Knee” in the 

electromagnetic 
dispersion

• Bohm-Gross modes
– Heavily Landau 

damped in the sim but 
not in the model
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Closeup of 
“Knee”

• Only anti-
symmetric modes 
exhibit this 
behavior

• Electromagnetic 
cutoffs are at poles 
in slab impedance

• Electrostatic 
cutoffs are at zeros
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Discussion
• “Knee” was unexpected

• Mathematically, knee is necessary to keep the magnetic field 
finite when no surface charges are added to the walls by 
plasma or external circuits (hence cutoffs at device Z poles).

• Electrostatic model has no magnetic field, so there is no knee.
• Electromagnetic model distinguishes between natural modes 

and modes driven by an external circuit (driven modes act 
similar to electrostatic model).

• Theoretically, due to how charge continuity enforced.
• Wave modes become TEM-like near knee. 

• 1st Principles PIC Simulations confirm the “Knee”
• 2d3v EM-PIC simulation of ~1 meter of plasma loaded parallel 

plate waveguide (tens of million of particles for tens of 
thousands of steps on home comp 6 yrs ago)

• FDTD-EM solver that eliminates mesh Courant condition and 
damps transverse radiation PIC noise without altering charge 
conservation properties developed (~150X faster) 

• Cache optimal PIC techniques also developed (~1.5-2X faster)
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ES 
Simulation
• Series 

resonant 
surface 
wave and 
Tonks-
Dattner
surface 
waves 
visible
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EM 
Simulation
• Knee 

clearly 
visible

• Simulation 
would not 
be feasible 
without 
implicit 
FDTD EM 
solver
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Resonant 
Discharge

• Unique Heating 
Mechanisms 
Observed in 
Simulations of 
Discharges 
Sustained at Cutoff 
of the Series 
Resonant Surface 
Wave Mode
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Phase Space Bunching
• Mode potential interacts with the DC potential to 

form bunches of electrons.
• Half an RF cycle later, bunches are accelerated out 

of the sheaths
• What other heating mechanisms could surface 

waves exploit …

DC Potential
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RF Potential
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x

Potential
Snapshot
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Landau Damping Overview

• Predicts that for monotonically decreasing 
EEDFs, a slow longitudinal wave will be 
damped from wave-particle interaction
– Particles moving just below (accelerated) the 

wave phase velocity gain (lose) energy.
– In linear stage, damping is exponential
– In non-linear stage, particles trapped in wave 

potential wells phase mix (interesting …)
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Landau Heating -
Driven Traveling Wave

v

f
Initial

• If a wave is applied such that 
it does not damp, a non-
thermal quasi-equilibrium will 
be established

• Saturated state reached after 
several Landau bounce times
– Bounce time:
– Plateau width:

• Thermal equilibrium usually 
not reached in effectively 
collisionless systems.
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Landau Heating –
Driven Standing Wave

• A standing wave consists of two oppositely directed 
traveling waves; each wave creates a (smaller) plateau

• No thermal equilibrium; the applied wave potential is time 
varying in all frames

• Reactions driven by electrons in the tail of the distribution 
function will have the reaction rate modified

• Landau Resonant Heating: If driven wave is resonant with 
natural plasma waves, plateau can be enhanced

v

f
δδ σσ

Enhanced
reaction
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Bohm-Gross
LRH Sim

• Plasma properties
– n0 = 0.745 x 1011 cm3

– Te = 2eV

• Interaction Point
– v = 3vth (E = 9Te)

• Wave properties
– fwave = 3.00GHz
– λwave = 0.588mm
– Vapplied = 0.2V
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Before and 
After

• Nearly 100X 
enhancement 
of hot electron 
population at 
some energies

• Plateaus are 
much wider 
than the 
applied 0.2V
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Electron 
Heating

• Plateaus 
form and 
heating 
saturates in 
several 
hundred 
plasma 
oscillation 
times.
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Demonstration with Series 
Resonant Surface Wave

• Series Resonant Surface Wave is ideal wave to use 
for Landau Resonant Heating in a practical device
– Easy to excite with antennas / slow wave structures as 

its fields are edge concentrated
– Mode cutoff is not dependent on thermal effects

• Goal: Enhance electron-impact ionization over a 
comparable non-LRH discharge
– Background Gas: Argon (p = 3 mTorr, Eiz = 15.76 eV)
– Plasma density: ~ 1010 / cm3, width 3 cm
– Initial electron temperature: 2eV (λde = 105 µm)
– Target phase velocity: vph = (2Eiz/me)½ = 2.35 x 106 m/s
– Electrode: f = 315 MHz, λ = 0.75 cm, Vapplied = 10V



10/10/2005 K. Bowers 30

Device and Simulation Model

• 2d3v PIC-MCC simulation
– Monte-Carlo collision package for atomic physics

• Non-LRH simulation operates structure at 0o

phase difference between teeth (that is, a parallel 
plate capacitive discharge).

• LRH simulation operates structure at 180o phase 
difference between teeth.

V

V

V

V
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Results
• Non-LRH 

simulation 
quickly 
extinguishes 
due to lack of 
ionization

• LRH 
simulation 
heats rapidly 
and is 
sustained
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Conclusions
• Natural electromagnetic surface waves exhibit 

new phenomenology at long wavelengths (“knee”)
• Landau Resonant Heating permits the 

manipulation of the particle velocity space 
distribution functions.

• Surface waves may be used in conjunction with 
Landau Resonant Heating to manipulate the 
electron velocity space distribution function in 
order to modify electron reaction rates
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