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Abstract—The electron energies in typical gas discharge plasmas do not exceed significantly the first 
ionization potential. This being the case, the momentum relaxation in collisions with neutrals is 
significantly faster than the energy relaxation due to collisions. It follows that the main part of the 
electron distribution function (EDF) is isotropic. So the interaction of an electron with an electric field 
is predominantly stochastic random walk process and can be described by a diffusion coefficient in 
energy Dε . Both collisional and stochastic heating mechanisms can be incorporated in it.  
By the proper choice of variables, the electron Boltzmann equation can be reduced to the standard 
diffusion one, both in space and in energy. This approach is very efficient in solution of the problems 
of the electron kinetics in bounded non-uniform plasmas.  
Some paradoxical effects, such as the formation of a cold electron population in discharges with 
peripheral energy input, and non monotonic radial profiles of the excitation rates, are explained within 
this framework.  
The expressions for Dε  in different discharges are presented.  
The history of the EDF non-locality concept is discussed for stationary gas discharges. 
 
Index Terms—keywords: transport in plasmas, electron kinetics, gas discharge. 

1. Introduction. 
The characteristic electron energies in stationary gas discharges with weakly ionized 
plasmas, generated by electron impact ionization, are fixed by the plasma 
maintenance condition at a level of several eV .  The reason lies in the fact that for the 
stationary discharge maintenance during the charged particle lifetime precisely one 
ionization event occurs. In unmagnetized plasma the lifetime is controlled by slow ion 
motion; so during the lifetime every electron undergoes considerable number of 
collisions. Since the EDF reproduces the average electron history, it follows that the 
EDF tail with kinetic energies  above the ionization energy w iε  contains relatively 
small fraction of the total electron population. In atomic gases, as a rule, it holds for 
the energies 1w ε> ,  too, where 1 iε ε :  the excitation energy of the first atomic level. 
So the electrons with energies by several  exceeding  are usually practically 
absent. In this energy range the elastic collisions cross-section 1-2 orders of 
magnitude exceeds the excitation ones. It implies that the EDF anisotropy is small: the 
momentum relaxation is considerably faster than the energy relaxation. In the simplest 
and the most familiar case, when both these processes are due to the elastic collisions, 
the ratio of the relaxation frequencies is extremely small and equals to . 

At the EDF tail this ratio is ( )  is small, too. Here, ν  is the 

(transport) collision frequency of the elastic collisions, and  is the inelastic 
collision frequency.  

eV 1ε

( )2m Mδ= /
1 2~ 10 10 1ν ν∗ − −/ − << ,

ν∗

It implies that the EDF in this energy range is close to isotropic, and the traditional 
two-term approximation (6) is valid.  
This fact remains valid in the free-flight regime, Rλ,  too, because the majority of the 
electrons are trapped by the ambipolar electric field, and during its lifetime an 
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electron undergoes many elastic collisions.  
In most practically important cases the energy input occurs by relatively small 
increments (in respect to the characteristic EDF energy scale), too. So the typical 
scenario of EDF formation can be outlined as follows. An electron starts with a low 
energy 1w ε<< ,  and gains energy by small increments from the applied 
electromagnetic field. If these small energy kicks are uncorrelated, this process cal be 
treated as a random walk along the energy axis, i.e., as a diffusion with a diffusion 
coefficient  Dε . The EDF body 1w ε< ,  is formed by competition of this diffusion in 
energy and of energy loss in collisions. Since the elastic losses occur practically 
continuously, they can be described by a downward-directed convective velocity in 
energy  

 Vε wδν= − .  (1) 
In the molecular gases the electronic energy levels are of the order of iε ,  and the 
energies of the vibrational and rotational levels are more than order of magnitude 
lower. So the collision integral for excitation of these levels can be reduced to the 
Fokker-Planck form and approximated as action of an effective retarding force (1). 
For the EDF calculation these quasielastic collisions can be described by introducing  
the parameter ( )eff wδ .  It is to be noted that using for the EDF calculation the 

parameter effδ ,  defined from the total electron energy balance, can result in erroneous 
results.  
The flux density along w is 

0
0.

dfD V
dwε ε εΓ = − + f  

The zero flux εΓ  corresponds to the Druyveteyn-Davydov’s isotropic EDF 

( ) ( )
( )0

'
exp ' .

'

w V w
f w A dw

D w
ε

ε

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
∫  

The characteristic energy scale (and the average energy ε ) of such an EDF, which 
takes place at low energy input level, can be estimated as the diffusive displacement 
against the convective velocity (1): 
 D Vε εε = / .  (2) 

Such EDFs correspond to the situation when the energy balance is controlled by the 
elastic collisions. They are traditionally used as a benchmark in the electron kinetics 
of discharges. They were thoroughly investigated by Druyvesteyn [1], Allis [2] and 
Davydov [3]; a detailed review can be found in [4].  
As inealstic collisions result in considerably faster energy loss, than elastic ones, the 
characteristic frequencies usually satisfy  
 δν ν ∗<< .  
So the EDF tail, 1w ε> ,  decreases considerably faster as energy increases, than the 
EDF body; its energy scale in most cases of interest is 

 1 iT Dε ν ε ε ε∗ ∗= / << , , .
 (3) 

In other words, an electron undergoes an inelastic collision practically at the same 
moment as it gains enough energy from the field; it corresponds to the widely known 
black (absorbing) wall approximation of diffusion theory. In this case 1 iε ε ε< , ,  the 
main EDF part at 1w ε<  is determined by elastic collisions. The influence of the 



inelastic collisions on the EDF "body", 1w ε< ,  is small. It is considerable on the EDF 
tail only in close vicinity of the threshold 1ε .  The EDF "body" at 1w ε< ,  and the 
diffusive electron flux (along the energy axis!) εΓ  in the zeroth in 1T ε∗⎛ ⎞

⎜ ⎟
⎝ ⎠

/  
approximation, can be found by imposing the boundary condition  

 ( )0 1 0f w ε= = .
 (4) 

For the existence of the Druyvesteyn-Davydov’s EDFs in EDF body 1w ε< , it is 
necessary that the average energy given by the expression (2), is to be lower than the 
threshold of inelastic collisions 1ε .  In this case it decreases exponentially in the 

interval 1ε ε⎡ ⎤
⎢ ⎥
⎣ ⎦
, .  As the EDF tail decreases exponentially with a steeper slope (3), the 

probability of an electron to reach the ionization energy iε  is extremely small. It is 
proportional to product of exponentially small probability to gain energy 1ε , 
multipled to the exponentially small probability to overcome the interval [ 1, iε ε ]. On 
the other hand, the lifetime of the charged particles decreases at low and medium 
pressure, and in order to maintain a stationary plasma a rather high energy input is 
necessary. It means that at low values of ( )pR  the energy losses in the elastic 
collisions become negligible and the energy balance becomes controlled by inelastic 
collisions. The EDF in this case is analogous to a "pipe-line": electrons after an 
inelastic collision are continuously heated due to the diffusion in energy up to the 
moment when they reach the threshold energy 1ε .  This boundary ( )pR  lies for the  

noble gases,  in the interval  The corresponding values for molecular 
gases are  an order of magnitude lower than for noble gases.  

( )1 10 Torr cm− .

The concept of electron diffusion in energy turns out to be highly efficient for the 
analysis of gas discharge plasmas, especially at low and medium pressures.  

2. The kinetic equation. 
The electron Boltzmann equation (for simplicity, without taking into account a 
magnetic field) is of the form:  
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col

( ) ( )

[ ( ) ( )] 0el inel
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β
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The two-term EDF expansion is  
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where ( )θ ϕ,  are  angles in the velocity space,  are the first-order (vectorial) 

spherical harmonics. The equation for the vectorial EDF part 

kY

( )1f r t, ,v  is 

 ( ) 01
0 0ff ef

t m
ν∂∂

1f+ ⋅∇ − ⋅ + = ,
∂ ∂

v E v
v

 (7) 



where  is the electron-neutral transport collision frequency. Here,  we have used 
the expression 

( )vν

 1St f f1ν⎛ ⎞
⎜ ⎟
⎝ ⎠

= .  (8) 

The self-consistent electric field ( )r t,E  in the vast majority of the discharge 

situations can be subdivided into two components. One of them is generated by the 
plasma inhomogeniety. Roughly speaking, this part of the electric field maintains the 
plasma quasineutrality. Because  the plasma density profile is controlled by slow 
(with respect to the EDF formation characteristic times)  generation-recombination 
processes, this part of the electric field  variation is slow and it can be described by 
the electrostatic potential ( )r tϕ , .  In stationary discharges this field is time-

independent: 

 ( ) ( ) ( )r t r r tϕ, = −∇ + , .E E  (9) 

Introducing the total electron energy  
 2 2m e w eε ϕ ϕ= / − = − ,v  (10) 
equation (7) takes the form 

 ( ) 01
0 ( ) 0ff f e f

t ε ν
ε

∂∂
1+ ⋅∇ − ⋅ + = ,

∂ ∂
v E v  (11) 

where ε∇  is the gradient to be calculated at fixed ε . On the other hand, if the 

frequencies ω  of RF or microwave fields ( )r t, ,E  which maintain a discharge, 

exceed the energy relaxation frequency 1
ετ
− ,  the isotropic EDF part (0 )f r t, ,v  is too 

inertial to follow the heating field variation and the kinetic equation can be averaged 
over the fast field oscillations. Substituting (11) and the standard expression for the 
zeroth collision integral spherical harmonic to (5) and performing the averaging over 
the fast oscillations, we obtain an equation for the EDF 0f :  

 
( )0 0

0 0

0 0 0

1 1( ) ( ( ( ) ( ) ))

( ) [ ( ) ( ) 1 ( ) ( )]inel
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k

f fD w f D r w t V w f
t

St f N w f r t w w f r t

ε ε ε εε ε
σ ε ε σ ε ε ε

∂ ∂

k

∂
− + ∇ ⋅ ∇ + , , + =
∂ ∂ ∂

= , , − + / + ,∑

v v
v v

v + , .
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where ( )k wσ  is the excitation cross-section of the k − th atomic level, the diffusion 
coefficient in space 
 2 3D ν= / ,v  (13) 

and Dε  is the diffusion coefficient in energy. For example, for a monochromatic 
uniform oscillatory field with amplitude 0E ω  we have 

 
2 2 2

0
2 26( )

e EDε
ω ν

ω ν
= .

+
v

 (14) 

 As a result, the Boltzmann equation is reduced to the physically transparent form of a 
2D diffusion equation in space and energy. The flux density along the energy axis is 

 0
0( ) ( )fD r w t V w fε ε εε

⎛ ⎞
⎜
⎜
⎜ ⎟
⎝ ⎠

∂
Γ = − , , + ,

∂
⎟
⎟  (15) 

and the differential spatial flux (i.e., the flux density of electrons with energyε  per 



unit energy range) 

 
3

0( ) ( )
( )

r fεε
ν

.rεΦ , = − ∇ ,
v
v

 (16) 

 In low-pressure discharges the electron energy balance is typically controlled by the 
inelastic collisions. So we neglect the second term in the right-hand side of (15).  
The expression (14) for the diffusion coefficient in energy can be interpreted as 
follows. As the EDF is almost isotropic, the directed electron velocity ∆v  is small. It 
satisfies 

 ( )0 expdm eE i t m
dt ω ω ν∆

= − − ∆
v v.  

After a collision this velocity component is transformed into the chaotic velocity. So 
this equation can be interpreted as if every collision results in a directed velocity kick 

( )
0eE

m i
ω

ν ω
∆ = .

−
v  

The energy kick is 
 cosmvε θ∆ = ∆v ,  
where θ  is the scattering angle. So (14) can be interpreted in a standard form of the 
average product of squared random walk step to the step frequency  

 
2 2 2

2 0
2 2

( )
6
e ED ω

ε
νε ν

ω ν⎛
⎜ ⎟
⎝ ⎠

⎞
= ∆ =

+
v

,  (17) 

the factor 1/6 resulting from averaging over RF oscillations and over 2cos θ .  

3. DC positive column. 
In the case of cylindrical longitudinally homogeneous positive column it is more 
convenient to include in the total energy (10) only the radial potential  and to 
define the diffusion coefficient in energy as 

( )rϕ ,

 
( )2 2 2 2

,
3 3

e EDε

ε ν λ ν∆
= =  (18) 

where  is the longitudinal field, λ is an electron mean free path. The solution of the 
problem of the trapped electrons in a DC positive column was formulated first by 
Bernstein and Holstein in 1954 in [5], but remained unnoticed for two decades to be 
rediscovered in [6].  

E

If the column radius R  is small with respect to the energy relaxation length, the 
distribution function must have the form 0 ( )f ε  with small coordinate-dependent 
corrections responsible for the origin of spatial differential fluxes (16). Since electron 
displacement occurs faster than energy relaxation, the spatial fluxes are practically 
independent of each other at different ε  and they cannot be described in terms of the 
conventional fluid approach; at different ε  values they can even be oppositely 
directed [7]. The dominant spatial terms in equation (5) can be eliminated by 
averaging over the available region. So equations (5), (12) can be reduced to the 
conventional 1D form by replacing the kinetic energy  with the total energy w ε.  A 
procedure for solving (5) for this case was proposed in [5,6]. 
Within the traditional local approach, which is valid at large R , the simplification of 
the kinetic equation has been achieved by neglecting  terms resulting from spatial 



nonuniformity in (5). This is certainly not permitted for low pressure for which a 
rather simple method which relies on three main ideas exists. 
(i)   It is assumed that the whole electron kinetics within discharge plasma is 
described by a unique EDF of the total electron energy.  
(ii) This EDF of the total energy can be derived from a spatially averaged kinetic 
equation, which is a one-dimensional ordinary differential equation, no matter how 
many spatial dimensions are considered!  
(iii) The spatially resolved EDF of the kinetic energy and coordinate is obtained  by a 
cutting procedure from the EDF of the total energy. This ‘generalized Boltzmann 
relation’ for a non-Maxwellian EDF was described in [8].  
Collisions, heating and transport result in a small coordinate-dependent 
correction (0) (1)

0 0f f⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠>> :  

 
(0) (1)

0 0 0( ) ( ) ( )f r f f rε ε ε, = + , .  (19) 
The main simplification within the nonlocal approach is made by the spatial averaging 
of the kinetic equation over the part of the discharge cross section accessible to 
electrons with a certain total energy (see Fig. 1). An arbitrary average quantity G  is 
then defined by  

 0

1( ) ( )
acV

G G r
V

ε ε dV= , .∫
 (20) 

Here  represents the total discharge volume. The accessible volume  is defined 
by  

0V acV

 ( )e rε ϕ≥ − .  (21) 
The  boundary  (21) is thus given by acV acS ( ) 0acw S = . The diffusion term in equation 
(12) can be shown to cancel by applying the Gaussian law:  
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0 0
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ν ν
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V

r r r
n

v vf dV f dS  (22) 

The second integral vanishes, since the kinetic energy and the velocity are zero at the 
 boundary. Thus the integrand, which represents the spatial flux of electrons, 

vanishes at the available region boundary. With this result, neglecting the energy loss 
in the quasielastic collisions and accounting for (20), the averaged kinetic equation 
(12) becomes  

acS

 
( )(0)

01 2 (0) 1 2 (0)
0( ) ( ) ( ) ( ) ( )ineldfd w D V f w St w f

d dε ε

ε
0ε ε ε

ε ε
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− + =⎜ ⎟
⎝ ⎠

ε/ ⋅ . (23) 

In the right-hand side, the following terms are included:  
 

( )1 2 (0) 1 2 (0) 1 2 (0)
0 0( ) ( ) ( ) ( ) ( ) ( )inel

k k k
k

w St w f w w f w w f0 kε ν ε ν ε ε/ / ∗ / ∗⋅ = − ⋅ − + ⋅ +∑ ε  (24) 

with  

 

1 2 1 2

0 ( )

1( ) ( ) [ ( )]
k

k k
w r

w w w r w r dV
V ε

ν ν/ ∗ / ∗

≥

= .∫
 

The last averaging is performed over the region where the -th excitation is possible. 
This region is marked as the ‘excitation region’ in Fig. 1  

k

It should be stressed again that the averaging (23), (24) of the kinetic equation (12) is 
nothing other than the mathematical formulation of the physical fact that spatial 



diffusion is a much faster process than diffusion in the energy space. Thus, the energy 
gained from the electric field is redistributed over the whole accessible cross section 
via rapid spatial motion. This, however, means that every point of the cross section 
contributes to the formation of the total energy EDF, which is equivalent to the 
averaging procedure employed.  
 

 
Fig. 1.  Energetic conditions for trapped electrons. The accessible region for the trapped electrons in ( )rε ,  

plane is bounded by ( )e rε ϕ≥ − . In the dashed part ( )r r ε∗<  they have 1w ε> , and are capable to 

undergo the inelastic collisions with excitation of neutrals. The turning point ( )r ε∗  is defined as 

. The arrows correspond to the differential fluxes. ( )e rε ϕ ∗= −

 
In the low-pressure discharges contribution of the elastic collisions to the electron 
energy balance is, as a rule, negligible, and the second term in the left-hand side of 
(23) can be omitted. It corresponds to the "pipeline" EDF, which transports electrons 
via the diffusion in energy to the EDF tail, where the inelastic collisions occur. At 

1ε ε<  in the absorbing wall  approximation the pipeline EDF is of the 
form 

( ( ) )ν ε∗ →∞

 
( ) 1(0)

0 1 2 ( )
df

w D

ε

ε
ε

εε
ε

′

/
= .∫

 (25) 
The boundary between the EDF tail and the body in the non-local case corresponds to 
the total energy 1ε ε=  (Fig. 1). The steep decrease of the EDF starts at 1ε ε≥  instead 
of 1w ε≥  in the local case. It seems paradoxical that on the plasma periphery (see 
Fig. 1) the EDF decreases due to inelastic collisions in the regions of the phase space 
where these collisions do not occur, namely at 1w ε<  with 1ε ε> . The reason is that 
at these ε  values the inelastic collisions occur mainly in the central region and the 
small correction term (1)

0 ( )f rε,  corresponds to an inward flux of particles and energy. 



Since the available area expands with ε, the differential flux at 1ε ε<  is outward 
directed. On the other hand, the electrons with weε ϕ>  can escape to a vessel wall 
( wϕ  is the wall potential). It means that the differential flux of these electrons at the 
plasma periphery is to be outward-directed, too. The divergence of all these fluxes in 
low-pressure discharges is considerable even though (1)

0f  is a small correction.  
It is obvious that this complex pattern cannot be described in terms of the fluid 
approach of a small ambipolar outward-directed particle flux. This situation cannot be 
improved by accounting of the thermal diffusion. 
An attempt to describe the electron energy flux results in similar paradoxes. 
Neglecting the net particle flux of the trapped electrons, the energy flux in the fluid 
approximation is due only to thermal conductivity. Since there is no particle flux for 
trapped electrons, the energy flux in this approximation is due only to thermal 
conductivity. The local "electron temperature" profile  is determined by the EDF 
body at 

( )eT x

1.ε ε<  So the  gradient, which is responsible for the energy flux, 
depends on the 

( )eT x
( )wν  and ( )rϕ  functions. This may result in a physically 

meaningless conclusion about an outward energy flux.  
It is surely one of the most interesting aspects of the nonlocal approach that the 
spatially resolved EDF of kinetic energy can be found from the EDF of the total 
energy. At first glance, it seems paradoxical that spatially resolved information should 
be gained from a spatially averaged kinetic equation. However, if the single EDF of 
the total energy has been found, the kinetic energy EDF at every position can be 
calculated unambiguously via the ambipolar space charge potential. With a simple 
back-substitution, one obtains the kinetic energy EDF  

 
(0)

0 0( ) [ ( )]f w r f w e rε ϕ, = = − .  (26) 
The physical interpretation of equation ((26)) is simple (cf. Fig. 2).  
 

  
 Fig. 2. Scheme for finding the EDF of kinetic energy (0 )

0 (f w r),  from the EDF of total energy (0 )

0 ( )f ε  and 

the ambipolar potential ( )rϕ . 



At any position , the space charge potential r ( )rϕ  determines the minimum total 
energy needed for an electron to reach this position. Electrons with a lower total 
energy are confined to regions of lower potential energy. The total energy EDF is thus 
cut off at ( )e rε ϕ< − , and only the part with ( )e rε ϕ≥ −  forms the EDF of the kinetic 
energy at r . This relation represents, in a sense, a generalized Boltzmann relation [8] 
for a non-Maxwellian EDF. For the electron density we have 

 

( )
( )

( ) ( )03 2

4 2
e

e r

n r e r f d
m ϕ

π ε ϕ ε
∞

/
−

ε= + .∫
 (27) 

In the case of a Maxwellian EDF the expression (27) corresponds to the traditional 
Boltzmann relation.  
The simplifications of modeling the electron kinetics in the nonlocal approach are 
enormous. Regardless of the number of spatial dimensions which are included in an 
electron kinetic model, the EDF is determined by a one-dimensional ordinary 
differential equation. This kind of equation can be solved by various efficient and 
well-tested algorithms. Of course, the number of spatial dimensions is still included in 
the definition of the averaged coefficients of this differential equation. Nevertheless, 
the computation of multidimensional integrals can be performed much more 
effectively than the solution of a partial differential equation.  
It should be mentioned that much evidence has been found for the validity of the 
nonlocal approach. The first experimental demonstration was given by Wiesemann in 
1969 in Ref.[9], but unfortunately this finding has not been widely recognized. A 
convincing demonstration of the nonlocality of the EDF was reported by Godyak and 
Piejak [10] in a capacitive RF discharge and by Kortshagen [11] in a surface wave 
plasma.  
The applicability of the non-local approach at the EDF tail is restricted by:  

 ,DL λ λλ
ν

∗ ∗
∗=  (28) 

where  is the vessel size, L
*

,λ λ  are the mean free paths with respect to the elastic 
and inelastic collisions. It should be emphasized that if the energy input in the non-
local situation above is eccentric such that the coefficient Dε  varies with the 
coordinate, the equation (23) for 0 ( )f ε  contains only the averaged values of Dε . Even 
if the energy input is strongly asymmetrical, the resulting plasma density distribution 
will remain symmetric with respect to the vessel center. The self-consistent ion 
(plasma) density profile and the potential profile are symmetric with a maximum at 
the vessel center, whereas the asymmetry in the energy input Dε  can manifest itself 
only as a small shift of the resulting profiles, of the order of the non-locality 
violation).  
There are many situations, in which the oscillatory heating field has a sharp localized 
maximum, so the energy gain by an electron occurs in the form of occasional energy 
kicks during its passage through this zone. The most common is the case of stochastic 
electron heating in capacitively and inductively coupled RF (CCP and ICP) 
discharges [20], [24]. It is possible also to derive a simple expression for the diffusion 
coefficient in energy for the non-local EDF.  
The non-local EDF 0 ( )f ε  is defined by the space-averaged diffusion coefficient in 

energy 1 2 ( )w Dε ε
/  with Dε  defined by (14), (17), (18). The averaging is performed 

according to (20). For a cylindrical DC positive column of radius R , homogeneous 



along the axis, we have   z −

 ( )
1 ( )

21 2
2

0

2( ) 3
r

zw D eE rdr
a

ε

ε ε λ ν/ = / ,∫  (29) 

where 1( )r ε  satisfies ( )1( )e rϕ ε− ε= .  The expression (29) can be interpreted as the 

product of the averaged squared energy kick  ( )cose Eε λ ϑ∆ =  by the kick 
frequency ν . It follows that the contribution of this mechanism to the averaged 
diffusion coefficient 1 2 ( )w Dε ε

/  equals the product of the average squared kick in 
energy, which an electron gains from the field and the frequency of electron 
interaction with the field localization region.  
One of the first experimental observations of the EDF nonlocality [9] is presented in 
Fig.3. The second derivatives of the probe current, which are proportional to the 
isotropic part of the EDF 0f , for the non-local case, coincide with each other 
everywhere in the discharge volume.  

 
Fig. 3. The second derivatives of the probe current in different points of the discharge gap [9]. Discharge in 
Xe  at  and . The coincidence of the left parts of the curves corresponds to the EDF 

dependence on the full energy 
0 1Torr. , 2mAI =

ε . 



  

Fig. 4. The dependence ( )z zE B  in  at Ne 1I R mA cm/ = / [12]. The  numbers at the curves are the ( )  
values: 1, 1.3, 2.0, 2.1, 3, 3.0, 4, 7.3. 

Rp

 
Convincing evidence of the EDF nonlocality in a positive column can be seen in 
Fig.4. Here the dependence of the self consistent longitudinal electric field  as a 
function of the externally applied magnetic field 

zE

zB is shown [12]. Since the electric 
field  is determined by the discharge maintenance condition, it rises as the charged 
particle lifetime decreases. As a magnetic field suppresses the transversal charged 
particle transport and increases the lifetime, the falling branch of the 

zE

( )z zE B  
dependence seems quite natural. As the ambipolar lifetime decreases with zB ,  the 
lower ionization rate becomes necessary for the plasma stationary maintenance. It 
demands the lower field , which creates the EDF with lower electron fraction in the 
EDF tail. Far more surprising was the ascending branch of  the 

zE
( )z zE B  dependence. It 

was observed at rather weak magnetic field, when the plasma lifetime, which was 
controlled by ions, remained practically unaffected by zB . The estimates show that 
the maxima of the ( )z zE B  dependences corresponded to the transition from the local 
to the nonlocal EDF. As in the nonlocal case the EDF depends from the total energy 



(10), the steep EDF decrease starts at 1ε ε> .  At the plasma periphery it corresponds 
to the kinetic energy ( )1w e rε ϕ> − ,  which is considerably lower than 1ε .  So the 
excitation and ionization processes are substantionally suppressed at the plasma 
periphery. It follows that the plasma generation rate is more strongly peaked at the 
plasma center, than the plasma density profile. In other words, the average distance 
between the generation place and the tube wall, where the charged particles 
recombine, decreases as the transition from the nonlocal to the local case occurs. It 
means that the average lifetime decreases, too. So, the necessary for stationary 
discharge maintenance  value increases with zE zB .  In the self-consistent simulations 
[13] this concept was clearly demonstrated. 
 
Convincing manifestations of EDF nonlocality can be found among phenomena of 
plasma luminosity. The transition from the local to the nonlocal EDFs can be seen in 
behavior of discharge luminosity with pressure reduction in discharges with 
peripheral energy input. At high pressure, when the EDF is local, the luminosity is 
maximal at the peripheral region, where the energy input is maximal. In CCP , for 
example, Joule heating is maximal in the peripheral region, since the electron 
conductivity current, which is practically equal to the total current, is uniform in a 
plasma, and the plasma density is low here. In ICP the skin-effect leads to a similar 
result. On the other hand, since the nonlocal EDF depends on the total energy ε,  and 
the ambipolar potential  is maximal at the vessel center, the fraction of the fast 
electrons, and the discharge luminosity, shift to the discharge center. This effect was 
observed in [14].  

( )rϕ

An interesting exception from the rule that at low pressure the luminosity is to be 
maximal at the plasma center, can be seen in a spherical discharge vessel for which 
R λ>  [15]. In this case the isotropic EDF 0f  depends on two variables: the total 
energy ε,  and the angular momentum µ.  In the vessel center only the electrons with 
small µ  are present. On the other hand, these electrons with small µ  fall to the vessel 
wall almost normally. So the electrons with fleε ϕ> ,  where flϕ  is the floating 
potential of dielectric wall, can escape to it, and are to be practically absent. As a 
result, the radiation of the lines with upper level energies exceeding fleϕ  from a 
central discharge region is to be strongly suppressed.  
At higher pressure the EDF depends only from the total energy ε,  and the excitation 
rates become maximal at the discharge center, independently from the vessel form. 
Since the energy relaxation time at the EDF tail, 

1
ν

−∗⎛ ⎞
⎜ ⎟
⎝ ⎠

,  is considerably shorter, than 
the relaxation time of the EDF body, the with the pressure rise the non-locality 
condition is violated first at the EDF tail, and the EDF 0f  here becomes coordinate- 
and ε-dependent. As a result, in the intermediate pressure range, when the EDF tail is 
local, and the EDF body is nonlocal, the excitation rates profiles become non-
monotonic [16], see Fig.5.  



 
 Fig. 5. Spatial profiles [16] of the excitation rate for  and 5 3zE V cm p Tor= / , = r 3
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Fig. 6. Sketch of the parameters profiles in a EFC discharge [15]. 



4. RFC discharges. 
The electric field in RFC discharges in the usual parameter range is a potential one 
and can be subdivided into several strikingly distinct parts. The central part of a 
discharge is filled by quasineutral plasma. The electric field here consists of a 
(quasi)stationary ambipolar part with a potential component ( )rϕ ,  responsible for 
trapping electrons in the discharge center, and of an oscillatory RF component 

 which maintains the RF electron current. The strong electric field in the ion 
space charge region consists of stationary and of RF components, too. As the 
thickness of the transition layer between the plasma and the space charge regions is 
thin - of the order of the Debye radius - it can be treated as infinitely thin (with respect 
to the sheath thickness 

( )E r t, ,%

shL  in Fig.6) oscillating surface [17], which reflects electrons. 
If these reflections can be treated as statistically independent, they result in stochastic 
electron kicks and in electron diffusion in energy - as the supplementary electron 
heating mechanism, called stochastic electron heating, which replaces the traditional 
Joule collisional heating at low pressures [18]. We would restrict here by the simple 
model. In detail this problem was discussed in [19, 21].  
If a discharge gap  exceeds the electron mean free path L λ,  an energy kick, which an 
electron receives in a collision with the moving reflecting potential wall of the space 
charge field, will obviously be transformed into the chaotic energy due to a collision 
with a neutral molecule. If L λ<< ,  the subsequent kicks can be considered as 
statistically independent, if the Chirikov’s criterion [20] is fulfilled 

 2

Lω π∆
> ,
v

v
 (30) 

where  is the velocity kick, ∆v ω  is the driving frequency, or collisions are frequent 

enough 
1/ 2( / )L

L
ων ∆

>
v v , see Ref. 19. The kick ∆v  is equal to the directed electron 

velocity at the plasma-space charge interface, which is small with respect to the 
chaotic electron velocity, if (6) is fulfilled. So if condition (30) holds, stochastic 
heating can be described as diffusion in energy, too. Analogously to (17), the 
expression for the stochastic diffusion coefficient in energy can be written as 
 ( ) ( ) 2( )stochDε ε ε= ∆ Ω ,

)
 

where (ε θΩ ,  is the bounce frequency of an electron with total energy ε.  The 
averaging is to be performed over the RF period and over the electron velocity angles.  
If a discharge width  is small with respect to the energy relaxation length L ελ  (28), 
and both the applied field and the electron bounce frequencies are higher than the 
inverse energy relaxation time, the EDF form, according to (23), depends only on 
averaged in space and time function of the total energy ( )1 2w Dε ε/ .  This function 
can be interpreted as a sum of squares of the energy kicks, which occur per second 
over the whole available for an electron with energy ε  volume. So the EDF satisfies 
the averaged kinetic equation (23) with replacement of 1 2 ( )w Dε ε

/ , (29) for sum of 
two terms: collisional 
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Here  - the plasma-space charge interface velocity [17], ( )V t ( )L tε,  - the boundary 

of the available area, ( )θ ε  - the phase during which an electron with energy ε  can 

reach this interface, ( ) ( )( )2x e x mε ε φ, = − /v . Here the simple model expression 

(17) for collDε  was used. Of course, the general definition of an energy kick remains 
rather delicate problem; for more detail see [20].  
The scenario of the electron heating in a RFC discharge is presented in Fig.6 [22, 23]. 
Since the electron density profile is bell-shaped, Fig.6a, the RF field  which heats 
electrons, is minimal at the gap center, and maximal in the RF sheath, Fig.6c. As the 
ambipolar potential 

,E%

( )xΦ ,  Fig.6b, traps the electrons with low ε  in the central 

region, where the field  is minimal, the regions with high  are unavailable for 
these electrons, and the averaged value of 

E% E%
1 2 ( )w Dε ε
/ ,  which, according to (25), 

determines the EDF slope, is minimal for them, Fig.6d. This effect explains the EDF 
formation, which contains a considerable population of the slow electrons, Fig.6e, in 
discharges with a peripheral energy input [15], as it was observed in [10]. In Ref. [23] 
it was shown that the transition to the discharge mode with abundant slow electrons 
can proceed abruptly analogously to a thermal explosion. It is to be noted that both the 
stochastic and the collisional mechanisms, which are both maximal at the discharge 
periphery, contribute to this phenomenon. So to distinguish between them from 
experimental data remains a rather complicated problem. It needs detailed calculation 
and knowledge of power balance. 
The collisionless stochastic electron heating in low pressure inductively coupled 
discharges was discussed in detail in [24].  
The similar phenomena arise in the vicinity of the resonance region in a microwave 
field [25], [27].  

5. Cathode region of a DC discharge. 
The complex self-consistent nonlocal phenomena in a cathode region of a DC glow 
discharge are traditionally classified phenomenologically by its visual properties. So 
the cathode region is subdivided into the cathode dark space, negative glow, and 
Faraday dark space, which contacts with a homogeneous or stratified positive column. 
Nevertheless, the optical plasma characteristics result from a rather complicated self-
consistent sequence of processes, and in order to clarify the underlying physics it 
seems more convenient to choose as fundamental the electrodynamic and kinetic 
plasma parameters [26].  
First of all, the cathode region consists of quasineutral plasma domain, and of the 
cathode ion space charge sheath. At the cathode surface, 0x = ,  a current is 
transported mainly by ions; the electron ( )ej  and the ion ( )ij  current densities satisfy 

 ( ) ( )0 0e ij jγ= ,  

where 1γ <<  is the electron-ion secondary emission coefficient. The electric field in 
the sheath is rather strong (Fig.7a); the electrons, emitted by the cathode surface or 
born in the sheath, are accelerated rapidly by this strong field, and the EDF of these 



fast electrons is nonlocal. It is determined not by the local ( )E p/  value, but by the 
upstream potential profile. The current of these fast electrons increases exponentially 
in the sheath, and is maximal at the plasma-sheath interface. The fast electrons 
penetrate to the plasma region and produce the nonlocal ionization there. Electrons 
born close to this interface, where the field decreases, have small range, and are 
stopped fast; the electrons, which were born close to the cathode surface, penetrate 
deeper. So the current of the fast electrons, which produce ionization and excitation 
(the curve El1 in the Fig. 7d), is maximal at the plasma-sheath interface. It means that 
the luminosity is maximal here, too (Fig.7c). Note, that this paradigm totally 
contradicts to the traditional local approach, which predicts zero ionization and 
excitation rates at this interface. The length of the negative glow is determined by the 
range of the most energetic electrons which were emitted by cathode. So the negative 
glow consists of two distinct regions - of the space charge part, and of the plasma part, 
luminosity (and the ionization rate) being maximal at the boundary between them. In 
other words, a considerable part of the ionization occurs in the plasma.  
 

 
 Fig. 7. Sketch of the parameters profiles in a DC cathode fall [26]; the upper curve in Fig. 7a satisfies 

2 1( ( ))e zε ϕ ε ε= − + . 



The traditional Townsend’s condition of stationary discharge maintenance states that 
the multiplication of a cathode-emitted electron, which equals to the number of ions 
born by it, is to be equal to ( ) 1γ − .  In other words, the ions, generated both in the space 
charge and in the plasma sections of the negative glow, are to be returned to the 
cathode. The ions from the sheath section of the negative glow are easily transported 
to the cathode by the strong field in the sheath. In the plasma part the only mechanism 
which is able to deliver the plasma-born ions to the cathode is the feeble mechanism 
of ambipolar diffusion. It means a large plasma density gradient and a plasma density 
peak arises in the plasma part of the negative glow, with density in it far (more, than 
order of magnitude) exceeding the density value in the positive column (Fig.7b). On 
the other hand, the electron diffusive current towards the anode far exceeds the total 
current, and a potential profile arises, which suppresses the electron diffusion towards 
the anode. So the potential well for electrons is formed (Fig.7a), and the electrons can 
be separated into three groups with clearly defined boundaries between them. The 
first of them consists of the fast electrons, which are emitted by the cathode, or 
generated in the sheath; their energies far exceed the characteristic atomic excitation 
and ionization energies. The second group consists of the trapped electrons. The 
electrons trapped in the potential well do not participate in a current transport. Since 
the Joule heating of these electrons is absent, they have a Maxwell-Boltzmann 
distribution with an electron temperature of the order of the room temperature. Their 
full energy lies between the potential minimum and maximum (Fig.7a). The third 
electron group consists of the intermediate electrons, with the energy ε,  which 
exceeds the potential maximum (Fig.7a), and is slightly (by the potential well depth) 
lower, than the first excitation energy 1ε .  Since in the Faraday dark space only the 
trapped and the intermediate electrons are present, the intermediate electrons are 
transporting the electron current here. Neglecting the energy loss in the elastic 
collisions, their EDF at 0δ →  can be written analogously to (25), as 

 ( ) ( ) 2 ( )( )
0 1 2 ( )

zint

z

dxf
w D x

ε
ε ε

ε

′

/ ′= Φ
,∫  

From the Fig.7a it is seen that in the Faraday dark space the excitation rate is totally 
absent, because the electrons with the full energy more than by 1ε  exceeding the 
potential well bottom, are absent here.  

6. Conclusions. 
 
The concept of the electron diffusion coefficient in energy turns out to be very useful 
and efficient in various problems of gas discharge plasma kinetics.Using it, the 
physical meaning of numerous important and interesting problems can be made more 
transparent and clear. 
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