
  2 

Copyright © [2006] IEEE.   Reprinted from  

(Special Issue on Nonlocal, Collisionless Electron Transport in Plasmas - June 2006). 

  

This material is posted here with permission of the IEEE.  Internal or 
personal use of this material is permitted.  However, permission to 
reprint/republish this material for advertising or promotional purposes 
or for creating new collective works for resale or redistribution must 
be obtained from the IEEE by writing to pubs-permissions@ieee.org. 

  

By choosing to view this document, you agree to all provisions of the 

copyright laws protecting it. 



Special Issue of the IEEE Transactions on Plasma Science 
 

Copyright © [2006] IEEE.   Reprinted from Special Issue on Nonlocal, Collisionless 
Electron Transport in Plasmas - June 2006. 

1

  
Abstract—We review the state-of-the-art for the simulation of 

electron kinetics in gas discharges based on the numerical 
solution of the Boltzmann equation. The reduction of the 6D 
Boltzmann equation to a 4D Fokker-Planck equation using two-
term spherical harmonics expansion enables efficient and 
accurate simulation of the electron distribution function in 
collisional gas discharge plasmas. We illustrate this approach in 
application to inductively coupled plasmas, capacitively coupled 
plasmas, and direct current glow discharges. The incorporation 
of the magnetic field effect into this model is outlined. We also 
describe recent efforts towards simulating collisionless effect in 
gas discharge plasma based on Vlasov solvers and outline our 
views on future development of the numerical models for gas 
discharge simulations. 
 

Index Terms—Electron kinetics, Boltzmann, Fokker Planck, 
Vlasov equations, Inductively Coupled Plasma, Capacivively 
Coupled Plasma, Positive Column, Striations  

I. INTRODUCTION 
as discharge plasma represents an extremely non-
equilibrium system where electron mean energy 

(temperature) exceeds gas temperature by two orders of 
magnitude. The electron distribution function (EDF) is formed 
as a result of electron heating by electromagnetic fields and 
collisions with neutral atoms, it deviates from an equilibrium 
(Maxwellian) distribution in most cases. Solution of the 
Boltzmann kinetic equation for electrons becomes crucial for 
accurate simulation of the plasma since many phenomena 
cannot be properly understood without kinetic analysis 1,2. 
Fortunately, substantial simplification of the electron 
Boltzmann equation is possible due to a large disparity of 
electron and atom masses. Due to this mass disparity, the 
electron energy relaxation in elastic collisions with atoms 
occurs much slower than momentum relaxation. As a result, 
the EDF is weakly anisotropic in velocity space and can be 
presented as a sum of a large isotropic part 0f  and a small 

addition 1f .  
Furthermore, three different cases can be distinguished. In 
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the case of large pL and small E/p (where p is the gas 
pressure, L is the characteristic scale of the plasma, and E is 
the electric field), the spatial gradients are small and both 0f  

and 1f  are determined by local values of the electric field, 
electron density, and plasma composition. The electrons can 
be described by continuum (fluid) equations with transport 
coefficients derived from the local (non-Maxwellian) EDF. A 
typical example of such plasmas is dielectric barrier 
discharges (DBD) and other atmospheric pressure plasma 
sources described in a recent review 3.  The local Boltzmann 
solvers are being used more frequently to obtain electron 
transport coefficients and reaction rates for fluid models 4 5. 

The second case corresponds to a collisional plasma where 
L is much larger than electron mean free path λ  but is 
comparable to electron energy relaxation length ελ . The latter 

can exceed λ  by orders of magnitude due to small ratio of the 
electron to atom masses. In this non-local regime, the isotropic 
part of the EDF, 0f , at a given point depends not only on the 
electric fields at this point but also by plasma properties in the 
vicinity of the point of the size ελ  (a memory effect). The 

anisotropic part 1f  is a local function of the field (local 
electrodynamics). In this collision-dominated regime, the 
plasma cannot be described by hydrodynamics, and a number 
of interesting phenomena caused by non-local electron 
kinetics take place 6. The most typical example is ionization 
waves (striations) in the positive column of direct current 
(DC) glow discharges important for fluorescent lamps and gas 
lasers. 

With further decrease of pL, the electron mean free path 
becomes comparable or larger than the characteristic size of 
the plasma. In this nearly collisionless regime, the anisotropic 
part 1f  at a point is determined not only by the local value of 
the electric field at this point, but also by the profile of the 
electric field in the vicinity of the point of size λ  along the 
electron trajectory. As a result, the local relationship between 
the current density and the electric field (Ohm’s law) becomes 
invalid. This is the area where gas discharge physics meets 
fusion plasma physics which is traditionally focused on 
collisionless phenomena and hot plasma effects 7. Plasma 
reactors used for modern semiconductor manufacturing 
frequently operate in this regime 8.  
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The importance of electron kinetics in gas discharges has 
been recognized and emphasized in a number of review 
papers 9,10. Over the last decade, considerable progress has 
been achieved in simulations of electron kinetics and self-
consistent modeling of gas discharges 11,12,13. In this paper, we 
review recent progress in the numerical solution of the 
electron Boltzmann equation and outline future directions for 
scientific research and development of software tools for 
computer aided engineering of plasma devices and processes. 
We focus our attention on deterministic methods of solving 
the Boltzmann equation, and only briefly mention statistical 
particle simulation methods reviewed in 14,15. 

II. BASIC EQUATIONS 

A. Boltzmann Equation and its Derivatives 
The Boltzmann transport equation (BTE) describes the 
evolution of a particle distribution function ( , , )f tr v  in a 
six-dimensional phase space 16 
 

( ) ( )f f f I
t

∂
+ ∇ ⋅ +∇ ⋅ =

∂ r vv a     (1) 

 
Here r is a position vector in physical space, v is the velocity 
vector, a is the acceleration vector and t is time. The right 
hand side of Eq. (1) contains an integral operator in velocity 
space describing binary collisions among particles. Integrating 

( , , )f tr v  over velocity space gives particle density, 
( , )n tr .  
For weakly ionized plasmas, electron collisions with 

neutrals usually dominate over collisions among charged 
particles.. Due to disparity of electron/atom mass 
( / 1m M � ), the Boltzmann collision integral for elastic 
collisions of electrons with heavy neutrals can be written in 
the so-called Lorentz-gas form 17, 18 
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where Ω  is the velocity angle on a unit sphere 2S in velocity 
space ( v= Ωv ), and σ  is the collision cross section, and N 
is the gas density. The flux Γ  is given by 
 

v
2 v

T ff
m

δν ∂⎛ ⎞Γ = − +⎜ ⎟∂⎝ ⎠
 

where T is the gas temperature, ν  is the transport collision 

frequency and 
2m
M

δ =  is the average fraction of the energy 

lost by the electrons in one elastic collision. The first term in 
(2) is small and describes energy exchange between electrons 
and neutrals. The second, leading term in (2) describes 
collisions with infinitely heavy particles which tend to 
isotropize the electron distribution but do not change their 

energy. Thus, due to mass disparity, electron momentum 
relaxation in elastic collisions occurs much faster than energy 
relaxation, and the EDF averaged over velocity angles evolves 
on a time scale /u M mτ τ∼ , much slower than evolving the 
complete distribution. Inelastic processes do not change this 
picture if characteristic energy of electrons is small compared 
to inelastic threshold 19. 
 
For collisional plasmas, a two-term spherical harmonics 
expansion (SHE) of the EDF in velocity space is commonly 
used 20,21 

0 1( , . ) ( , v, ) ( , v, )
v

t f t t= + ⋅
vf r v r f r     (3) 

This approximation results in two coupled equations for 0f  

and 1f  (sometimes called Davydov-Allis system): 
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Here, e and m are the unsigned charge of an electron and 
electron mass, E is electric field vector, 0S  is the collision 
integral involving energy exchange in elastic and inelastic 
electron-atom collisions and electron-electron interactions. It 
is seen from (5) that the two-term approximation results in 
Ohm’s law because 1f  depends on local value of the electric 
field.  The accuracy of the two-term SHE for electron swarms 
and plasmas is discussed in 22. Even in situations where its 
applicability is not obvious, the two-term SHE gives 
unexpectedly good results 23. 

 
 

For many cases, Eq. (5) can be resolved for 1f  and 
substituted into (4). Dividing the electric field into a potential 
and vortex components, / tφ= −∇ − ∂ ∂E A , where φ  is 
the electric potential and A  is the vector magnetic potential, 
and using the Volt-equivalent of the kinetic energy 

2 / 2u mv e=  as the independent variable, one obtains a 
single closed equation for the Electron Energy Probability 
Function (EEPF) 0f  in the form 

0 0
0

0 0
0 0

1

r

r u u

f fD f
t u

f fuD f u V f D
u u uu

S

φ

φ φ

∂ ∂⎡ ⎤⎛ ⎞− ∇ ⋅ ∇ + ∇ −⎜ ⎟⎢ ⎥∂ ∂⎝ ⎠⎣ ⎦
∂ ∂ ∂⎡ ⎤⎛ ⎞ ⎛ ⎞∇ ⋅ ∇ + ∇ + +⎜ ⎟ ⎜ ⎟⎢ ⎥∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦

=
(6) 

 
Different terms in Eq. (6) describe, correspondingly, the 
diffusion in physical space (second term), with a diffusion 
coefficient 2v / 3rD ν= , the electron drift and heating 
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(cooling) due to the electrostatic field (third term); quasi-
elastic processes (third term) represented by the convection 
and diffusion along the energy axis with a convection velocity 

uV  and a diffusion coefficient in energy uD . The quasielastic 
processes include elastic collisions of electrons with neutrals, 
excitation of molecular vibrations, Coulomb interactions 
among electrons and ions, and electron heating by 
electromagnetic fields. Strongly inelastic collisions 
(excitation, ionization, attachment, etc.) are described by the 
right hand side of Eq (6). Specific expressions for S  and 

( )uδ  can be found, for instance, in 24. 
 

The Fokker Planck Equation (FPE) (6) appears as an 
intermediate step between the BTE (1) and continuum models 
for the time scales exceeding collision time τ and for spatial 
scales exceeding the mean free path λ. Numerical methods of 
solving FPE in the form (6) were developed in 25,26.  
 
It is often convenient to use total energy ( , )u e tε φ= − r  as 

the independent variable instead of kinetic energy u. In this 
case, the FPE (6) can be written in the form 27,28: 
 

0 0
0

0
0

1 ( , ) ( , )

r
f f D f
t t

fD V f Sε ε

φ
ε

χ ε ε
χ ε ε

∂ ∂ ∂
− − ∇ ⋅ ∇ −

∂ ∂ ∂
∂ ∂⎛ ⎞⎡ ⎤+ =⎜ ⎟⎢ ⎥∂ ∂⎣ ⎦⎝ ⎠

r r
  (7) 

 
where ( , ) ( , )uD D u eε ε φ= −r r , ( , ) ( , )uV V u eε ε φ= −r r . It 
is seen that using total energy eliminates complicated cross-
derivative terms in Eq. (6). The price for this simplification is 
more complex boundary conditions for Eq. (7) which have to 
be specified at curved boundaries in the ( , )εr space (see 
Figure 1). One of the boundaries corresponds to zero kinetic 
energy and is defined by the equation ( , )e x tε φ= − . At this 
boundary, zero flux of particles is usually assumed. The 
boundary condition at maxε  corresponds to 0 0f = . The 
commonly used boundary condition in physical space at 
absorbing boundaries is of the form  
 

0
0 4 r

fvf D
x

δ
π
Ω ∂

= −
∂

         (8) 

where ( )2 1 /weδ π ϕ εΩ = −  is the loss cone, and wϕ  is 

the potential value at a distance λ  from the boundary. The 
boundary condition at electron-emitting boundaries is  
 

0 ( )f
x

λ ε∂
− = Φ

∂
          

 
where function ( )εΦ  is determined by the near-electrode 
processes  (see, for instance, 29). 

 
 

 
 
Figure 1. An example of computational domain and boundary 
conditions for Eq. (7). Arrows show a typical trajectory of an 
electron emitted from the boundary at x=0. Inelastic collisions 
correspond to a jump along the energy axis at a given point in 
space. 
 
In our simulations, we used a uniform mesh along the ε axis 
and arbitrary mesh in physical space. It is possible to mesh 
only the band max( ) ( )e x e xφ ε φ ε− < < − +  and use a non-
uniform grid in ε  as in 30. This could save computer memory 
for problems where potential variation is large compared to 
the typical kinetic energy of electrons, such as the positive 
column of a DC discharge in a long tube. 
 

B. Self-consistent discharge simulation. 
 
For self-consistent plasma simulations, the transport and 
chemistry of charged and neutral particles have to be 
calculated in a coupled manner with electromagnetic fields. 
Often, it is possible to enforce quasi-neutrality by assuming 
zero electron current in the plasma. From Eq. (6), this 
condition gives the electric field in the current-free plasma 25 
 

2
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2 0

vv

vv

r

r

d D f
fd D
u
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∂
∂

∫
∫

E        (9) 

 
An alternative approach for calculation of the electric field is 
to use charge conservation 31 or solve the Poisson equation 32. 
Details of our implementation of a hybrid plasma solver can 
be found in 33. Below, we give only a brief outline of the 
important features. 
 



Special Issue of the IEEE Transactions on Plasma Science 
 

Copyright © [2006] IEEE.   Reprinted from Special Issue on Nonlocal, Collisionless 
Electron Transport in Plasmas - June 2006. 

4

The electrostatic potential for transient simulations has been 
obtained from the following equation (see 34 and references 
therein) 
 

( ) ( )e e e i i e e
i

n t t t e n q n e t D nς µ φ ⎡ ⎤
∇ ⋅ + ∆ ∇ + ∆ = − − ∆ ∇ ⋅ ∇⎢ ⎥

⎣ ⎦
∑

    (10) 
where ς  is the electrical permittivity of the medium, eµ  and 

eD  are the electron mobility and diffusion coefficients, en  

and in  are the electron and ion densities, iq  is the sign of i-

ion charge and t∆  is the time step of transient simulations. 
Equation (10) is solved in the entire domain, including 
plasmas, dielectrics, and conductors. The surface charges on 
dielectric surfaces are calculated from fluxes of ions and 
electrons to the surface. For 0t∆ → , Eq. (10) is reduced to 
the Poisson equation, for t∆ → ∞ , it expresses the 
conservation of electron current, 0e∇ ⋅ =j . Employing Eq. 
(10) for calculation of the electrostatic potential allows using 
time steps much larger than the time steps dictated by CFL 
criteria, 1( )e et e nµ −∆ < . 

For calculation of electron density in (10), the electron 
balance equation is solved together with the kinetic equation 
(7), using the electron production rate and electron flux 
provided by the kinetic module. The electron number density 
calculated this way is also used in Maxwell equations for 
calculations of the vector magnetic potential A.  
 
The ion density has been found by solving continuum 
equations with either a drift-diffusion approximation for the 
ion flux or by solving a momentum equation for the ion drift 
velocity. Usually, the ion velocity distribution is strongly 
anisotropic and the ion drift velocity exceeds the thermal ion 
velocity. Ion temperature is assumed to be equal to gas 
temperature in our calculations. 
 
Different FP approaches to simulate electron transport in 
plasmas are compared in 35. Details of our numerical FPE 
solution can be found in 36 37.  
 

C. Including magnetic field and electron inertia 
When a static magnetic field is included in the two-term 

SHE approximation, Eq. (5) becomes.  
 

01
1 1 0v

vB
fef

t m
ν ∂∂

+ − × = − ∇ −
∂ ∂
f Ef ω f     (11) 

where /B e m=ω B  is the electron cyclotron frequency 
vector. An implicit 2D solver for Eqs. (4) and (11) with 
account of self-consistent magnetic field and electron inertia 
was developed in 38. A similar approach was used in 39 for 
studies of spatial relaxation of electrons and in 40 for 
simulation of magnetron discharges. Electron kinetics in RF 
electric and magnetic fields was discussed in 41. 

 

D. Solution of the Vlasov Equation 
 
In the absence of collisions, Equation (1) is called the Vlasov 
equation. Vlasov solvers have been used for studies of 
collisionless plasmas as an alternative to PIC methods. 
Recently, these solvers have been also applied to simulation of 
gas discharge plasmas. A recent review of Eulerian Vlasov 
solvers can be found in 42. 

III. SIMULATION OF COLLISIONAL PLASMAS 

A. Inductively Coupled Plasmas 
 
Among different plasma sources, Inductively Coupled Plasma 
(ICP) is probably the simplest for the numerical solution. Due 
to the small thickness of the space charge sheaths at plasma 
boundaries, a good solution can be obtained using 
quasineutral approximation (9) for calculation of the 
electrostatic potential in the plasma. As a next step, the sheath 
structure can be resolved using non-uniform mesh near the 
boundaries. For typical driving frequency of 13.56 MHz, there 
is no need to resolve the RF period since all the plasma 
parameters vary slightly during the RF period.  
 
We will demonstrate typical results of 2D self-consistent 
simulations of ICP for the experimental system studied in 
detail by Godyak’s group over the last several years (see 43,44 
and references therein). The experimental setup and electrical 
characteristics of this system are described in 43. The plasma is 
created in a cylindrical chamber of radius R=10 cm and length 
L=10.5 cm driven by a planar 5-turn coil separated from the 
dielectric window by the Faraday shield. With good accuracy, 
the system is axially symmetric and 2D simulations are 
sufficient. Experimental data for this system is available 44 for 
a wide range of operating conditions (pressure 0.3-100 mTorr, 
power absorbed in plasma 12-200W, driving frequency 0.45-
13.56 MHz).  Figure 2 shows the calculated spatial 
distributions of electron temperature (left) and electrostatic 
potential (right) for 10 mTorr, 6.8 MHz, 100 W. It is worth 
noting the minimum of electron temperature in the center of 
the reactor, which cannot be explained by fluid models. 
 

 
Figure 2. Calculated electron temperature (left) and 

electrostatic potential (right) for 10 mT, 6.8 MHz, 100W.  
 

dielectric window 

Planar Coil 

PLASMA 

Te -φ 
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The model included 4 plasma species: Ar (ground state), Ar* 
and Ar** (two metastable states with energies u* = 11.55 eV 
and u** = 13.2 eV, correspondingly), radiation transitions from 
Ar** to Ar* states, direct, stepwise and Penning ionization, 
according to 45. The ion inertia effect was shown to play an 
important role for gas pressure below 10 mTorr. The 
electrostatic potential was found by solving Eq. (10) using 
spatially non-uniform mesh to resolve the sheath structure 
near the boundaries. The surface charge on dielectrics was 
found from the local balance of electron and ion fluxes. The 
boundary condition for the EEDF at the walls was defined 
according to Eq. (8). 
 
The measured and calculated EEPFs 46 are shown in Figure 3 
as functions of total electron energy in different points along 
the discharge axis at radius r=4 cm where the induced electric 
field reaches maximal value. It is seen that the body of the 
EEPF depends solely on total electron energy, and the EEPF 
tail is enhanced by hot electrons near the coil due to electron 
heating, in accordance with the experiments. Similar results 
were obtained for a different system in a series of publications 
by Kortshagen et al. (see 47, 48, 49 and references therein) using 
a similar computational approach, and for the same system by 
Vasenkov & Kushner 45 using Monte Carlo simulations of 
electrons. It should be noted the EEPF deviates from the 
Maxwellian even for highest plasma densities obtained in this 
system. The electron induced reaction rates are very sensitive 
to the "tail" of the EEPF and assumption of a Maxwellian 
EEPF can result in large errors in calculation of electron 
induced reaction rates. 
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Figure 3. EEPFs at different points along the discharge axis 

at radial position r=4 cm (after Ref. 46): a) measured, b) 
calculated. 
 
The calculated axial distributions of electron temperature eT  
and plasma potential are compared in Figure 4 with the 
experimental data 44.  The electron temperature is defined as 

2 / 3eT u= , where u  denotes the mean kinetic energy. 

 
Figure 4. Experimental (points) and simulated (lines) 

electron temperature and plasma potential along the discharge 
axis at r = 4 cm. 
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Gas heating affects plasma parameters in ICP even for 
moderate input powers 50, 51. Spatially non-uniform gas 
heating occurs due to ion and electron collisions with neutrals 
in the bulk plasma and heat release at surfaces due to ion 
bombardment and surface reactions. Figure 5 shows the 
calculated gas temperature in the center of the reactor as a 
function of the power absorbed in plasma for different gas 
pressures 46. 
 

 
Figure 5. Calculated gas temperature in the center of plasma 

as a function of absorbed power for different gas pressures 
 
With the decrease of  driving frequency, oscillations of plasma 
parameters during RF period become noticeable. The origin of 
these oscillations can be easily understood by assuming that 
the induced electric field in ICP has a single time-harmonic 
component with angular frequency ω . Then, the part of the 
diffusion coefficient in energy ( , )Dε εr  in Eq. (7) caused by 
electron heating has the form 52 

0 1 cos(2 ) sin(2 )E ED D t tωω ω
ν

⎛ ⎞= + +⎜ ⎟
⎝ ⎠

  (12) 

where 
( )

22

0 2

( )v
6 1 ( / )

rf
E

E
D

ν ω ν
=

+

r
, and ( )rfE r  is the 

amplitude of the inductive RF electric field.  The time 
variation of the diffusion coefficient is the primary reason for 
oscillations of the electron temperature, trapping potential, and 
the excitation/ionization rates. Figure 6 shows an example of 
time modulation of electron temperature for the ICP reactor 43 
in Argon, at gas pressure p=10 mTorr, RF frequency 450 kHz 
in three different points x=9, 5, and 1 cm along the discharge 
axis from the coil location. It is seen that oscillations occur at 
the second harmonic of the driving frequency, and there is a 
phase shift between the oscillations at different points. The 
modulation of EEPF occurs mainly in the tail and is more 
pronounced near the coil where electron heating takes place. 
The knowledge of the EEPF could be useful in the optical 
emission spectroscopy of discharges 53,54. 
 

 
Figure 6. The time variation of the electron temperature at 

three locations along the discharge axis at r=4 cm.  
 
Finally in this section, we present an example of pulsed 

power simulations for the same reactor in Argon gas, at 10 
mTorr, 6.8 MHz, for a pulse-modulated coil current of 50-400 
A. The pulse duration varied in the range 30 and 50 µs, the 
repetition rate is 100 µs. Figure 7 shows the time variation of 
the electron temperature, metastable Ar* density, and electron 
density in the center of the discharge chamber. Figure 8 shows 
the time variation of the EEPF and the wall potential (vertical 
lines). It is seen that a sharp increase of the electron 
temperature at the beginning of the active phase results in 
excessive production of metastable atoms during this phase. 
The electron production during this time is mainly due to 
Penning ionization: 

 
Ar* + Ar* -> Ar+ + Ar + e 

 

 
Figure 7. The time variation of electron temperature, 

electron density, and metastable density in pulsed ICP.  
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Figure 8. The time variation of the EEPF and the wall 

potential (vertical lines) in pulsed ICP. Times are shown 
relative to the beginning of the pulse. 
 

In the afterglow, the EEPF body is Maxwellian and is 
depleted at energies higher than the wall potential (see Figure 
8). A pronounced peak at ~12 eV is formed due to rapid 
electron production in collisions of slow electrons with 
metastable atoms. Such a behavior is typically observed in 
experiments for similar ICP systems 55, 56.  The presence of 
energetic electrons can dramatically effect the potential 
distribution and the wall potential in the low-pressure 
afterglow plasma  57. 
 

B. Capacitively Coupled Plasmas 
 
Anatomy of Capacitively Coupled Plasma (CCP) is described 
in detail in 58, 59. The mechanism of electron heating in CCP in 
weakly collisional regimes remains a subject of active 
research 60. Among other research topics are electron inertia 
effects at ultra-high frequencies 61,62 and standing wave effects 
in large area CCP sources 63,64 important for practical 
applications. 
 
For simulations of CCP, we use total energy with 
instantaneous potential (TEIP) formulation. In this 
formulation, electron heating in RF sheaths occurs due to 
interactions with moving boundaries, defined by the equation 

( , )e tε φ= − r . Figures 9 and 10 illustrate the mechanism of 
electron heating by the electrostatic potential in the form  

2( ) , 0 ( )
( , )

0 ( )
A x s x s t

x t
L x s t

φ
⎧ − < <

= ⎨
> >⎩

    (13) 

where 0( ) (1 cos( ))s t s tω= + . A Maxwellian EEPF is 
assumed at x=L, the boundary condition of the type (8) is 
assumed at x=0. The collision cross sections for Argon are 
used and the ionization is turned off. Figures 9 and 10 show 
results of simulation for A = -4x106, 0s = 0.25 cm, L= 1 cm, 
frequency 10 MHz, gas pressure p = 200 mTorr for two 
different cases. For the first case, the term with / tφ∂ ∂  in Eq. 
(7) was turned off, for the second case this term was included 
in the simulation. The comparison of these Figures shows that 
the transient term in Eq. (7) plays an important role in the 
heating process and the formation of the EEPF. This term 
describes the “drift” of electrons along total energy by virtue 
of time varying potential. In other words, due to time variation 
of potential energy, electrons are being “pushed” up or down 
along the total-energy axis depending on the sign of 

( , ) /t tφ∂ ∂r  at a given point. This term simply compensates 
the shift of the energy reference point. Indeed, if we shift ε  
by some value dε , the particle’s positions and velocities 
remain unchanged. Also the EEPF has to be the same, in the 
phase space ( , )εr , shifted in new variables by dε . The 
term with ( , ) /t tφ∂ ∂r  in the kinetic equation simply 
compensates for this shift of the phase space. In general, the 
neglect of this term gives an error since the kinetic equation in 
the total energy domain is algebraically wrong without this 
term. 
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Figure 9. Electron heating by the RF sheath. The term with 

/ tφ∂ ∂   in Eq. (7). is turned off. 
 

 
Figure 10. Electron heating by the RF sheath. The term with 

/ tφ∂ ∂  in Eq. (7) is turned on. 
 

The importance of spatial gradients in the kinetic equation is 
illustrated in Figures 11-14. These figures compare the results 
of simulations using the local Boltzmann equation with the 
solution of the non-local equation (7) for a 1D 13.56 MHz 
CCP discharge at pressures of 100 and 400 mTorr. 

 
Figure 11. Electron density distribution for CCP at 100 mTorr 
calculated using non-local model (solid line) and local model 
(dashed line). 
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 Figure 12. Electron temperature distribution for CCP at 

100 mTorr calculated using non-local model (solid line) and 
local model (dashed line). 

 
Figure 13. Electron density distribution for CCP at 400 

mTorr calculated using non-local model (solid line) and local 
model (dashed line). 

 
Figure 14. Electron temperature distribution for CCP at 400 

mTorr calculated using non-local model (solid line) and local 
model (dashed line). 

 

The model reproduces the results of PIC simulations for 
simple benchmark cases and for more complicated 
hydrocarbon plasma simulations (see Ref. 37). It could be 
applied to multi-dimensional simulations of industrial multi-
frequency CCP reactors used in modern semiconductor 
manufacturing.  
 

C. Positive Column 
 
Positive column of DC discharges is a classical object of gas 
discharge physics 65 having important applications for light 
sources 66 and gas lasers. Kinetic models based on Monte 
Carlo simulations and solutions of Boltzmann equation for 
electrons have been frequently used in studies of positive 
column  (see, for instance 67,68,69,70,71,72 and references 
therein).  Below, we illustrate some results of recent 
simulations of positive column of rare gases performed for a 
wide range of discharge parameters (gas pressures 0.1-100 
Torr, and currents µA-0.1 A). 73 

For simulation of positive column of DC discharges, the 
radial electrostatic potential can be included in the total energy 
and the axial electric field zE  regarded as an electron heating 
source described by the diffusion coefficient in energy 

2
E z rD E D=        (14) 

Using a self-consistent model of plasma including non-local 
Boltzmann solver and Poisson solver, we have simulated the 
positive column plasma for a wide range of pressures (0.1-100 
Torr) and currents (mA-0.1A) in Ar and He gases. The axial 
electric field zE  was found self-consistently for a given 

discharge current I. Figure 15a shows the dependence of zE  
on discharge current and power in Argon for pR = 100 Torr 
cm. Figure 15b shows results of similar calculations for Neon 
9 using different physical models. The observed hysteresis is 
due to current constriction described below.  
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Figure 15. a) Axial electric field zE  in argon PC as function 
of discharge current and absorbed power for pR = 100 Torr 
cm; b) same for neon at pR=96 Torr cm [9], curve 1 with 

account for gas heating and neglect of Coulomb collisions, 2 – 
with neglect of gas heating, 3- with account for both factors. 

 
An interesting phenomenon was discovered in these 

simulations at moderate pressures in Argon. The model 
included 6 plasma species 74: Ar (ground state), Ar* and Ar** 
(two metastable states with energies u* = 11.55 eV and u** = 
13.2 eV, correspondingly), Arr

* (resonance state), Ar+ and 
Ar2

+ (atomic and molecular ions). The chemistry mechanism 
similar to 75 consisted of 21 reactions including conversion of 
atomic to molecular ions, various electron-induced excitation 
and ionization steps, radiation transitions from Ar** to Ar* 
states (rate constant 3×107 s-1) and from Arr

* to Ar. Radiation 
trapping was calculated according to 76, with accounts for both 
Doppler and collisional line broadening. At pressures in the 
range of 5 < p < 50 Torr and low discharge currents of the 
order of 1 mA, non-monotonic radial distributions of 
excitation rates and metastable density profiles have been 
observed 77. This surprising effect, first observed in the 
numerical simulations (see Fig. 16), later found a theoretical 
interpretation in 78 based on specifics of nonlocal electron 
kinetics. 
 

 
Figure 16. Radial distribution of electron density in positive 
column of radius R= 1 cm for discharge current I = 1 mA. 

 
At high pressures, the current constriction towards the 
discharge axis was observed in simulations with an increasing 
discharge current (see Fig 15). The current constriction takes 
place at about 10 mA discharge current and is accompanied by 
the formation of a narrow current channel near the axis (see 
Figure 17). The width of the channel is determined by the 
volume recombination 79. When this width becomes 
comparable to the energy relaxation length, non-local effects 
become important, as illustrated in Figure 18. 

 

 
 
Figure 17. Radial distribution of charged particle densities and 

gas temperature in the constricted positive column of radius 
R= 1 cm for discharge current I = 25 mA. 
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Figure 18. Radial distributions of electron temperature and 
electrostatic potential in the constricted positive column for 
discharge current I = 25 mA: solid lines show results of the 

non-local model and the dashed lines those of the local model.  
 
As discussed in detail in 80,9, gas heating plays an important 
but not decisive role during PC constriction in rare gases, 
except Helium. The main effect is caused by the non-linear 
dependence of atomic excitation rate on electron density 
caused by the Maxwellization of the EEPF due to Coulomb 
interactions among electrons (see below). In Helium, the 
constriction occurs in the form of an “optical constriction”, i.e. 
localization of excitation rates towards the axis (see Ref 9 for 
more details). Figure 15b illustrates the effects of different 
factors on the current-voltage characteristics of PC in Neon. 

D. Striations 
 

Standing  and/or moving striations in the positive column of 
DC discharges have been studied for over a century. Striations 
were observed in a wide range of pressures (10-3-103 Torr) 
and currents (10-4-10 A) in almost all gases. Standing 
striations are seen by the naked eye in molecular gases (H2, 
N2, and mixtures of molecular and rare gases). Moving 
striations (in rare gases) are more difficult to observe due to 
their high velocity (10-1000 m/s) and frequency (1-1000 
kHz). Dispersion characteristics of striations are rather 
interesting and different for different types of striations. The 
phase velocity ( / kω ) is usually directed from anode to 
cathode, the group velocity ( /d dkω ) can be either directed 
towards the cathode (direct waves) or towards the anode 
(reverse waves). Several types of striations have been 
identified in rare gases depending on gas pressure and 
discharge currents. Latest reviews can be found in 81, 9, 10. 
 

Moving striations have been obtained in computer 
simulations in Argon at low gas pressure and high discharge 
current 82 (near the so-called Pupp limit). The procedure of 
simulation was the following. First, a spatially homogeneous 
kinetic equation for EEPF (7) was solved with account of 

Coulomb collisions for a range of E/N and en  and Look Up 
Tables (LUT) were created for the transport coefficients and 
ionization rates as functions of mean kinetic energy u and 

electron density en . The EEPF Maxwellization due to 
Coulomb collisions among electrons results in a strong 
dependence of inelastic collision rates on electron density 
(Fig. 19). This effect is most pronounced for the elastic energy 
balance of electrons (low E/N). Figure 20 shows an example 
of LUT for the electron temperature 2 / 3eT u=  as a 

function of reduced electric field E/p and electron density. 

 
 
Figure 19. Rate of inelastic collisions as a function of electric 

field and electron density. 

 
 
Figure 20. Electron temperature as a function of electric field 

and electron density. 
 
Having obtained the LUTs, continuum equations for electron 
density and mean kinetic energy were solved together with the 
Poisson equation using the electron transport coefficients and 
reaction rates from the LUTs. The boundary conditions for 
electrons at the cathode were defined taking into account 
either thermal or secondary emission. An external RC circuit 
was also used similar to 83. The ion transport was calculated 
using a fluid model with drift-diffusion approximation for the 
ion flux. 
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In such a way, moving striations have been obtained in 
simulations for one- and two-dimensional settings. The 
computations reproduced all the main features of striations in 
Argon PC observed at low pressures and high currents (near 
the Pupp limit). The computational model could simulate 
nonlinear waves, near-electrode phenomena and external 
circuit effects on the striation behavior. 
 
Figure 21 shows an example of 2D simulations for Argon 
pressure 2 Torr, the discharge current 100 mA, cylindrical 
tube of length L = 20 cm and radius R = 1 cm, planar cathode 
on the left (x = 0) and a planar anode on the right (x = L). The 
tube wall (at r = R) is assumed to be dielectric; its (local) 
potential is calculated by time integrating fluxes of electrons 
and ions to the wall surface. The simulation runs about 30 
hours on a 1 GHz desktop computer.   
 

 
 

 
Figure 21. Two-dimensional distribution of plasma density 
(each contour line corresponds to density variation of about 

1011 cm-3) and axial distributions of electron density, electron 
temperature and axial electric field in striations at p = 2 Torr 

and I = 100 mA. 
 
It is seen in Figure 21 that the electron temperature is shifted 
towards  the cathode with respect to electron density. This 
shift is responsible for the shift of ionization rate and the 
motion of the striations towards the cathode. It is also seen 
that the electric field changes sign along the striations. This 
electric field reversal results in trapping of slow electrons in 
the potential well. At high currents, the trapping does not lead 
to dramatic consequences since Coulomb collisions provide 
effective energy exchange between trapped and free electrons.  
 

 
Figure 22. Electron density modulation amplitude versus 

discharge current in Argon at p = 1 Torr. 
 
Figure 22 shows the results of a scan over the discharge 
current for these conditions: the density modulation amplitude 
is shown as a function of discharge current. One can see in 
Figure 22 that at low currents, the discharge is striation-free 
due to low electron density values (and high electric fields) 
and the absence of nonlinearity of the ionization rate with 
electron density. The discharge is striation-free at high 
currents as well due to large electron densities and the 
resulting saturation of the ionization rate with electron 
density. The discharge parameters are strongly modulated at 
currents between several 10 mA's and several A's, as seen in 
Figure 22. These results are in agreement with experimental 
observations near the Pupp limit. 
 
No self-consistent simulation of kinetic striations observed at 
low currents has been reported so far. Electron kinetics in 
spatially uniform and spatially periodic striation-like fields 
have been extensively studied by Golubovskii and Winkler 
groups (see Refs 84, 11 and references therein). The numerical 
experiments confirmed the resonance character of electron 
interaction with spatially periodic fields predicted by 
analytical models 85,86,87 and previously simulated by 
Shveigert 88. Recently, a new resonance has been uncovered 
for large modulation of the field and attributed to R striations 
observed in experiments (see Ref. 84).  
 
Figure 1 can be used to illustrate typical features of the EEPF 
formation in a spatially modulated static electric field. The 
electrons are injected from the left boundary, x=0, and 
accelerated by the electric field  
 

0
2( ) 1 sin xE x E

L
πα⎛ ⎞⎛ ⎞= + ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

     (15) 

 
The field amplitude 0E  and modulation depth α  can be 
varied in these simulations.  The spatial relaxation of the 
EEPF in rare gases occurs due to energy loss in elastic 
collisions, excitation of several atomic levels with different 
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energy quantum and Coulomb interactions among electrons 
88,89. Near the boundary, damping oscillations are formed with 
a spatial period, SL , corresponding to the averaged value of 

the electric field, 0/S sL U E= . Here 1sU U U= + ∆ , 1U  

is the first excitation potential and 1U U∆ <  depends on 
specifics of the relaxation process. Far from the boundary, the 
period of oscillations is determined by the period of the field L 
and the amplitude of oscillations has resonance character (see 
Fig. 23).  
 

 
 
Figure 23. Modulation amplitude of electron density (a), 
electron temperature (b) and excitation rate (c) as function of 
the field period / SL L  for 0.9α =  (from Ref. 84). 
 
The maximum modulation of electron density en , electron 

temperature eT , and excitation rate W  occurs at 

, / 2, / 3S S SL L L L=  and 2 / 3.SL L=  The first type of 
resonance was predicted by the linear theory (see Ref 85), the 
second type was observed in [84] only for substantial 
modulation of the electric field. The SL L=  resonance 

corresponds to S striations, the / 2SL  resonance corresponds 

to P striations, and the 2 / 3SL L=  resonance was attributed 
to R striations observed in experiments.  
 

E. Effect of Static Magnetic Field 
 
In the presence of a static magnetic field, the spatial diffusion 
coefficient rD  in the kinetic equation (7) becomes a tensor. 

The rD  component along the magnetic field is not affected by 
the field, the component orthogonal to the field is suppressed. 
When the magnetic field is orthogonal to the electric field, its 
effect can be described in terms of the effective collision 
frequency  

2(1 ( / ) )eff Bv v ω ν= +      (16) 

where Bω  is the electron cyclotron frequency and is 
equivalent to an increase in gas pressure. This effect explains 
the impact of magnetic fields on spatial relaxation of electrons 
90 and specifics of electron kinetics in magnetron discharges 
between coaxial electrodes 91 . 
 
 More interesting phenomena take place in a positive column 
submerged in an axial magnetic field. The electric field in the 
positive column has both axial and radial components. The 
radial diffusion of the electrons is suppressed by the axial 
magnetic field, 2 /(3 )r effD v ν= , whereas the electron heating 

described by the energy diffusion ED  remains unchanged. As 
a result, the increase of the magnetic field is accompanied by 
the transition from nonlocal to local mode and exhibits a 
maximum of the axial electric field sustaining the plasma 92.  
 

IV. COLLISIONLESS EFFECTS 
 

A number of interesting phenomena have been observed in 
the near-collisionless regime, when the electron mean free 
path is comparable or larger than discharge dimensions, In 
classical DC discharges, among these phenomena are the 
Langmuir paradox 93, ion-sound and ionization waves 94, etc. 
In RF discharges, the well known are stochastic electron 
heating and anomalous skin effect. Classical works on the 
anomalous skin effect in bounded plasmas were reviewed by 
Kolobov 95,96. Recently, collisionless effects in inductively 
coupled plasmas have been studied in a series of experimental 
papers by Godyak et al (see 7 and references therein), and 
theoretical papers by Turner 97, Vahedi et al. 98, Cohen and 
Rognlien 99, Shaing 100, Yoon et al. 101,102 103,104, Seo et al. 105, 
Tushetsky et al. 106, Kaganovich et al. 107 108,109,110,111 and 
references therein). Results of these studies are partially 
reflected in the second edition of the book [8]. Stochastic 
electron heating and anomalous skin effect observed in radio 
frequency discharges at low gas pressures are of practical 
importance for plasma reactors currently used for 
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semiconductor manufacturing. 
 
When the electron mean free path is comparable or larger 

than discharge dimensions, the EEPF of trapped electrons 
depends solely on total electron energy. Solutions of spatially 
inhomogeneous kinetic equation (7) confirm this statement 
with high accuracy (see Figure 24). In this regime, electron 
collisions with plasma boundaries dominate over collisions 
with atoms. Strictly speaking, the two-term SHE is not valid 
under these conditions, and the EEPF can be found from a 
kinetic equation averaged over the discharge volume 107,112. 
The energy diffusion coefficient and the heating rate are 
determined by integration over electron trajectories.  

 

 

 
Figure 24. Experimental (a) and calculated (b) EEPFs in 

Argon ICP at different points along the discharge axis at r=0 
(from Ref. 46).  
 

Until recently, mostly analytical models and PIC 
simulations have been used for studies of collisionless effects 
in gas discharge plasmas. Stochastic electron heating was 
commonly observed in PIC simulations of CCP (see Ref. 8) 
Some of the collisionless effects have been observed in ICP 
simulations using Monte Carlo models for electron kinetics 
113,45. 

 
Vlasov solvers developed for the collisionless plasma can be 
adapted to studies of low-pressure gas discharges. Figure 25 
shows results obtained with our 6D Vlasov solver for electron 
acceleration by an oscillating RF sheath. In these simulations, 
the electric field was specified in the form 

( ) , 0 ( )
( , )

0 ( )
A x s x s t

E x t
L x s t

⎧ − < <
= ⎨

> >⎩
    (17) 

where 0 1( ) cos( )s t s s tω= + . Electrons are injected from 
one (right) side with a given distribution function (half-
Gaussian with normalized density 1en =�  and temperature 

1eT =� ). The electron velocity is normalized to thermal 

velocity thv  , the characteristic frequency of the system is 

0 /thv Lω = . Figure 25 shows the temporal behavior of the 

distribution function at the sheath edge 0 1s s s= +  for two 

driving frequencies, 0/ω ω = 0.01 and 1. One can see that the 
distribution function of electrons moving out of the sheath (Vx 
> 0) is strongly modulated at 0/ω ω = 0.01 and only slightly 

modulated at 0/ω ω = 1. At low frequencies, electrons are 
being accelerated by the moving sheath boundary and at high 
frequencies they do not respond to the field oscillations. It 
should be noted that electron plasma frequency does not 
appear in this analysis since Poisson equation is not solved 
and the field profile is prescribed a priory by Eq. (17). 
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Figure 25. Distribution function f versus Vx-velocity at the 
sheath edge for two RF frequencies. f is shown at 5 times for a 
full cycle at ω = 0.01 and for a half-cycle at ω = 1. 

 
Among a variety of hot plasma effects observed in ICP 114 

are non-monotonic distributions of electric and magnetic 
fields, generation of electrostatic potential perturbation in the 
skin layer, collisionless electron heating etc. Figure 26 shows 
an example of recent simulation of these effects using a 
Vlasov solver 115.  

 

 
 
Figure 26. Longitudinal electric field in the skin layer (from 
Ref. 115) 
 
In Ref. 115, a set of Vlasov equations for electrons and ions 
was solved together with Maxwell equations for the electric 
field Ey and magnetic field Bz and Poisson equation for the 
electric field Ex in a one-dimensional case, for the wave 
frequencies 13.56 and 6.78 MHz. The results of analytical 
model 99 were confirmed in these simulations. The fields, Ey 
and Bz decay exponentially from the plasma boundary at x=0, 
within the skin layer. Owing to large difference of electron 
and ion mass, an electrostatic field is created in the skin layer 
by the Lorentz forces at the second harmonic of the applied 
electric field (see Figure 26). Since the skin depth is much 
larger than Debye length and the wave frequency is much 
smaller than electron plasma frequency, the plasma remains 
quasi-neutral in the skin layer. Solving Poisson equation 
requires a high accuracy under these conditions since small 
charge separation of the order of 10-4 creates noticeable fields 
in the plasma. The use of low noise Vlasov code is crucial in 

this case because the noise level of particle codes cannot allow 
required accuracy.  
 

V. CONCLUSION 
Numerous phenomena in gas discharge physics cannot be 

properly understood without kinetic analysis of electrons. We 
have reviewed the recent progress in the numerical solution of 
the Boltzmann equation for simulation of electron kinetics in 
gas discharge plasmas. The reduction of the 6D Boltzmann 
equation to a 4D Fokker Planck equation using two-term 
spherical harmonics expansion enables efficient and accurate 
simulation of the electron distribution function in collisional 
gas discharge plasmas. This approach has also been 
successfully used for simulation of electron transport in 
semiconductor devices 116,117 and collisionless electron 
transport in plasma thrusters 118. It covers a niche between the 
particle simulation methods and semi-analytical discharge 
models. The two-term approximation, called diffusion 
approximation in mathematical literature, works unexpectedly 
well even beyond its range of validity. 

Simulations of weakly-collisional plasmas have been 
traditionally performed by Particle-in-Cell (PIC) codes. 
Recently, Vlasov codes have been also applied to simulations 
of collisionless effects in gas discharges. We believe, with 
further development of the numerical methods and computing 
power, these methods will offer a viable alternative to 
statistical methods for certain classes of problems. Among 
promising methods for increasing efficiency of the 
deterministic kinetic solvers is adaptive mesh refinement in 
phase space 119. The adaptive mesh refinement technologies 
have already been used with fluid discharge models 120 and are 
being actively developed now for simulation of streamer 
discharges.  
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