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This paper presents a study of the two-stream instability of an electron beam propagating in a

finite-size plasma placed between two electrodes. It is shown that the growth rate in such a system

is much smaller than that of an infinite plasma or a finite size plasma with periodic boundary con-

ditions. Even if the width of the plasma matches the resonance condition for a standing wave,

a spatially growing wave is excited instead with the growth rate small compared to that of

the standing wave in a periodic system. The approximate expression for this growth rate is

c � ð1=13Þxpeðnb=npÞðLxpe=vbÞlnðLxpe=vbÞ½1� 0:18 cos ðLxpe=vb þ p=2Þ�, where xpe is the elec-

tron plasma frequency, nb and np are the beam and the plasma densities, respectively, vb is the

beam velocity, and L is the plasma width. The frequency, wave number, and the spatial and temporal

growth rates, as functions of the plasma size, exhibit band structure. The amplitude of saturation of

the instability depends on the system length, not on the beam current. For short systems, the ampli-

tude may exceed values predicted for infinite plasmas by more than an order of magnitude.

Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4967858]

I. INTRODUCTION

Interaction of electron beams with plasmas is of consid-

erable importance for many plasma applications where elec-

tron emission occurs from surfaces. The electrons extracted

from the surface and accelerated in the sheath, form a beam

of electrons; the beam propagating in the plasma excites

electron plasma waves through the two-stream instability.1

Laboratory plasmas and plasmas in industrial applications

are usually bounded by electrodes. We show that electrodes

greatly affect the growth of the two-stream instability.

Though beam-plasma systems have been extensively studied

in the past using kinetic simulations,2–5 the presence of elec-

trically connected boundaries changes the character of the

two-stream instability from convective to absolute, similar to

the instability of a Pierce diode.6 In the Pierce diode, the

instability was extensively studied taking only beam elec-

trons and neutralizing ions into account as relevant to

vacuum diodes, see, for example, Ref. 7 and the references

within. Here, we consider the two-stream instability between

a low density electron beam and high density plasma elec-

trons as relevant to discharges. In this letter, we have per-

formed an analytical study and fluid and particle-in-cell

(PIC) simulations in order to obtain the growth rate of the

two-stream instability in a finite plasma bounded by electri-

cally connected electrodes. To the best of our knowledge and

to some extent to our surprise the solution to this problem

was not reported before.

The linear stage of the instability can be described making

use of fluid formalism which includes the continuity equations

@ne;b

@t
þ @ve;bne;b

@x
¼ 0; (1)

the momentum equations

@ve;b

@t
þ ve;b

@ve;b

@x
¼ � e

m
E; (2)

and the Poisson equation

@2/
@x2
¼ 4pe ne þ nb � nið Þ; (3)

where ne;b and ve;b are the densities and the velocities of the

plasma and beam electrons, �e and m are the electron charge

and mass, E ¼ �@/=@x is the electric field, / is the electric

potential, and ni is the ion density. The initial plasma state is

neutral: ne;0 þ nb;0 ¼ ni;0, where ne;0 and nb;0 are the initial

densities of the bulk and the beam electrons, and ni;0 is the

initial density of ions, respectively. The ion density is uni-

form and constant, ni ¼ ni;0 ¼ const. Initially, the bulk and

the beam electron densities and the beam flow velocity are

uniform everywhere. Note that everywhere in this paper sub-

scripts e and b denote values related to plasma and beam

electrons, respectively.

For the studies described in the present paper, the bound-

ary conditions are non-periodic and describe a plasma pro-

duced in a discharge between two electrodes. At the ends of

the system x¼ 0 and x¼L, the potential perturbations are set

to zero, /ð0Þ ¼ /ðLÞ ¼ 0. The beam is injected at the bound-

ary x¼ 0. The boundary conditions for the beam electrons are

nbð0Þ ¼ nb;0 and vbð0Þ ¼ vb;0, where vb;0 is the injection

velocity of the beam. Note that in fluid simulations, a small

sheath forms near the electrodes and more accurate boundary

conditions are required to account for the sheath effect.8

The paper is organized as follows. In Section II, a dis-

persion relation for the finite-length beam-plasma system is

derived. In Section III, complex frequencies and wave num-

bers obtained by direct solution of the dispersion equation
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are compared with the fluid simulation and approximate ana-

lytical formulas for the frequency, wave number, and tempo-

ral and spatial growth rates are given. Section IV compares

growth rates in kinetic simulations with the predictions of

the fluid theory. Section V discusses the amplitude of satura-

tion of the instability and provides analytical formulas for

the estimate of the saturation electric field amplitude. The

results are summarized in Section VI.

II. ANALYTICAL SOLUTION

The dispersion equation is obtained by solving linear-

ized Eqs. (1)–(3) for perturbations of plasma and beam

electron densities and velocities. The perturbations are

defined as

dne ¼ ne � ne;0; dnb ¼ nb � nb;0;
dvb ¼ vb � vb;0; dve ¼ ve:

Linearized equations can be readily solved using Laplace’s

method.9 However, we are only looking for an asymptotic

solution which the system approaches on longer times.

Following the Pierce method,6 the asymptotic solution for

the potential has the following form:

d/ðt; xÞ ¼ ðAxþ Beikþx þ Ceik�x þ DÞe�ixt; (4)

where x is the frequency of the wave, k6 are the wave vec-

tors of the two waves propagating in the system, and coeffi-

cients A;B;C;D are complex constants. The density and the

velocity perturbations are

dne;bðt; xÞ ¼ ðdn0e;b þ dnþe;beikþx þ dn�e;beik�xÞe�ixt;

dve;bðt; xÞ ¼ ðdv0e;b þ dvþe;beikþx þ dv�e;beik�xÞe�ixt:
(5)

The linearized equations for the parts of the perturbations

proportional to expð�ixtþ ik6xÞ are

�ixdn6
e þ ik6dv6

e ne;0 ¼ 0;

�ixdv6
e ¼

e

m
ik6d/6;

�ixdn6
b þ ik6 dv6

b nb;0 þ vb;0dn6
b

� �
¼ 0;

�ixþ ik6vb;0ð Þdv6
b ¼

e

m
ik6d/6;

�k2
6d/6 ¼ 4pe dn6

e þ dn6
b

� �
;

where d/þ ¼ B and d/� ¼ C. These equations yield

dv6
e ¼

x
k

dn6
e

ne;0
;

dn6
e

ne;0
¼ � e

m

k2
6

x2
d/6;

dv6
b ¼

x� vb;0k6

k6

dn6
b

nb;0
;

dn6
b

nb;0
¼ � e

m

k2
6

x� kv6
b

� �2
d/6:

(6)

Substitution of relations (6) into the Poisson equation gives

usual dispersion relation for waves

1 ¼
x2

e;0

x2
þ

x2
b;0

x� vb;0k6ð Þ2
: (7)

Here x2
e;0 � 4pe2ne;0=m and x2

b;0 � 4pe2nb;0=m are the elec-

tron plasma frequencies corresponding to the plasma and

beam densities.

The uniform parts of the density and velocity perturba-

tions (5), which are proportional to expð�ixtÞ and corre-

spond to high-frequency uniform electric field given by the

first term in Eq. (4), are obtained in a similar way

dv0e ¼ dv0b ¼
ie

xm
A; dn0e ¼ dn0b ¼ 0 : (8)

These perturbations correspond to high-frequency current

flowing through the plasma and allow for dve 6¼ 0 at the sys-

tems ends; dvbð0Þ ¼ 0 because the beam is injected with a

given velocity but dvbðLÞ 6¼ 0.

Applying four boundary conditions dnbð0Þ ¼ dvbð0Þ
¼ d/ð0Þ ¼ d/ðLÞ ¼ 0 to perturbations (4) and (5) and tak-

ing into account (6) and (7) in the form

x� k6vb;0 ¼ 6
xb;0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�
x2

e;0

x2

s ; (9)

gives the following additional relation between x and k:

k2
� eikþL � 1ð Þ � ik2

�kþxL

x� kþvb;0
¼ k2

þ eik�L � 1ð Þ �
ik2
þk�xL

x� k�vb;0
:

(10)

Eqs. (9) and (10) determine the temporal ½ImðxÞ� and the

spatial ½ImðkÞ� growth rates of the instability as well as the

frequency ½ReðxÞ� and the wave number ½ReðkÞ�. If plasma

electrons are absent and only beam electrons are taken into

account ðne;0 ¼ 0Þ, Eq. (10) reduces to the Pierce’s disper-

sion relation for vacuum diode.

In order to solve the dispersion relation (10), we intro-

duce a new dimensionless variable

v ¼ xb;0=xe;0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

x2
e;0

x2

s : (11)

Substituting (11) into (9) and assuming that x ¼ xe;0 in the

left-hand side of (9) gives

k6 ¼ 17vð Þxe;0

vb;0
: (12)

Substitution (12) into (10) yields equation for v

�i
2 1� vð Þ
1þ vð Þv Ln þ ei 1�vð ÞLn � 1

� 1� vð Þ2

1þ vð Þ2
ei 1þvð ÞLn � 1½ � ¼ 0 ; (13)

where Ln � Lxe;0=vb;0 is the normalized gap width.

Equation (13) gives v as a function of Ln. The frequency

is calculated from (11) and for a low-density beam with

nb;0 � ne;0 it is
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x ¼ xe;0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

x2
b;0

x2
e;0v

2

s � xe;0 1þ nb;0

2ne;0v2

� �
: (14)

The wave numbers k6 can be obtained from (12).

The function vðLnÞ is complex with band structure, that

is, it abruptly changes at certain Ln ¼ cþ 2pl, where c is a

constant and l is an integer. Indeed, in the limit of Ln � 1,

the first two terms in (13) are dominant which gives the fol-

lowing approximate expression:

�ivLne�ivLn ¼ 2L2
ne�iLn :

Here, we used the fact that jvj � 1 and ImðvÞ > 0. The solu-

tion of this equation is the Lambert or productlog function10

�ivLn ¼ Wð2L2
ne�iLnÞ: (15)

This function has many branches, the branch selected must

ensure the maximal growth rate. When parameters of the

plasma, for example, the discharge gap, change, a transition

from one branch to another may occur and the instability

growth rate will abruptly change.

Since v is complex and independent on nb;0, it follows

from (14) that the temporal growth rate of the instability is

proportional to xe;0ðnb;0=ne;0Þ unlike the growth rate of the

resonant perturbation k � xe;0=vb;0 in a periodic system pro-

portional to xe;0ðnb;0=ne;0Þ1=3
.1

The analytical solution is verified by fluid and particle-

in-cell (PIC) simulations described below.

III. FLUID SIMULATIONS

The fluid numerical model solves Eqs. (1)–(3). The den-

sities in (1) are advanced using the SHASTA method.11 The

velocities in (2) are advanced using an upwind scheme.12

The model demonstrates excellent agreement with the the-

ory1 in simulations of the instability of a cold beam in a cold

plasma with periodic boundary conditions.

The fluid simulations are carried out with the following

common parameters: ne;0¼2�1017m�3, xe;0¼2:52�1011s�1,

beam energy 50 eV and beam velocity vb;0 ¼ 4:2� 106 m=s,

the numerical grid cell size is 1:3 lm, and the time step is

0:9 fs. The selected values of spatial and temporal steps ensure

stability of the SHASTA algorithm. The resonant beam wave-

length kb � 2pvb;0=xe;0 is 1.044 mm for these plasma parame-

ters. Initially, the bulk electron flow velocity is given a

harmonic perturbation dve ¼ dve;0 sinðxxe;0=vb;0Þ with the

wavelength corresponding to the resonance in a periodic or an

infinite plasma, the amplitude of the perturbation is very small,

dve;0 ¼ 0:1 m=s.

The oscillations have the wavelength of the initial per-

turbation during only the first few periods. The initial oscilla-

tion pattern corresponds to a standing wave. As the

instability develops, the standing wave transforms to a prop-

agating wave, see Fig. 1(a). This process is accompanied by

the shrinking of the wave length, compare the density pertur-

bation profiles at three consecutive times in Fig. 2. At the ini-

tial phase of the instability, the perturbations propagate with

the original beam velocity, see Fig. 1(a). At the asymptotic

stage given by Eq. (4) with the spatial growth rate along the

beam propagation, the wave phase velocity is noticeably

lower than the velocity of beam propagation, compare the

slope of the black dashed line with that of the black solid

lines in Fig. 1(b).

FIG. 1. Evolution of the bulk electron density perturbation in time and space

in fluid simulation with L ¼ 4kb and a ¼ 0:0006. Panels (a) and (b) corre-

spond to the very beginning of the fluid simulation (a) and to the asymptotic

constant growth stage (b); the corresponding temporal growth of the electric

field amplitude is shown by the red curve in Fig. 3. Solid black lines in (a)

and (b) represent propagation with the unperturbed beam velocity. Dashed

black lines in (b) represent phase velocity of the wave calculated as

ReðxÞ=ReðkÞ, where ReðxÞ ¼ 2:522� 1010 s�1 and ReðkÞ ¼ 7:288 mm�1.

Arrows A, B, and C mark times tA ¼ 0:35 ns; tB ¼ 3:01 ns, and tC ¼ 141:8 ns

when profiles shown in Figs. 2(a)–2(c) are obtained.

FIG. 2. Spatial profiles of bulk electron density perturbation obtained at

tA ¼ 0:35 ns (a), tB ¼ 3:01 ns (b), and tC ¼ 141:8 ns (c). Times tA;B;C are

shown by arrows A, B, and C in Fig. 1.
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Simulation reveals that before the asymptotic state

establishes, the temporal growth rate changes with time, see

Fig. 3. Initially, the growth rate is large compared to the ana-

lytical value defined by Eqs. (14) and (13). Then it gradually

decreases towards the asymptotic value predicted by the the-

ory and it stays approximately constant for tens and even

hundreds of plasma periods until the nonlinear stage of insta-

bility and its saturation occurs, see the red curve in Fig. 3.

Note that the modification of the wavelength mentioned

above, stops, when the instability reaches the asymptotic

stage, which for the red curve in Fig. 3 occurs near 20 ns.

In order to investigate the dependence of the growth rate

on plasma parameters, four simulation sets are discussed

below. In set one, the ratio of the beam to plasma density is

a � nb;0=np;0 ¼ 0:00015, the size of the system L increases

from kb to 8:5kb. Set two is similar to set one but the beam

density is higher, a ¼ 0:0006. In set three, L ¼ 3:4kb is con-

stant while a changes from 0.0001 to 0.0006. The fourth set

is similar to set three but L ¼ 8:3kb.

In all simulations, the growth rates, the frequencies, and

the wave numbers are calculated during the asymptotic stage

when the temporal growth rate is constant for a prolonged

period of time, see the red curve in Fig. 3, for 20 s < t
< 160 s. In simulation sets one and two, for some values of L
such a stage never appears, see the blue curve in Fig. 3.

These values of L correspond to the gaps in the simulation

data seen in Fig. 4.

Overall, there is an excellent agreement between

the simulations and the theory. The dimensionless values

of ½ReðxÞ � xe;0�=ðxe;0aÞ; ImðxÞ=ðxe;0aÞ, ReðkkbÞ, and

ImðkkbÞ, obtained in simulation sets one and two (red and

black curves in Fig. 4) and by analytical solution of the theo-

retical dispersion relation (blue crosses in Fig. 4), are very

close to each other and appear to be functions of the dimen-

sionless system length only, as predicted by the analytical solu-

tion given by Eqs. (12) and (14). These functions for ReðxÞ;
ImðxÞ, and ReðkÞ have band structure. Mathematically, it is

the consequence of the presence of many branches in the

Lambert function. The instability growth is given by the maxi-

mum growth rate value that changes from branch to branch

when the gap size crosses some critical value, typically, when

L=kb approaches an integer, see Fig. 4. Similar band structure

was also observed for the Pierce diode.7,13 Figure 4(e) shows

the number of wave periods in the gap as a function of the gap

length. In all cases, it is very close to an integer number,

although not exactly

ReðkÞL=ð2pÞ ’ dL=kbe; (16)

where dxe � ceilingðxÞ is the smallest integer not less than x.

Since the shape of the functions is universal for various

beam densities, it is reasonable to introduce approximate for-

mulas which fit the numerical solution as follows:

Re xð Þ � xe;0a
18

Ln ln Lnð Þ 1� 0:9 cos Ln þ 0:4ð Þ½ �; (17)

Im xð Þ � xe;0a
13

Ln ln Lnð Þ 1� 0:18 cos Ln þ
p
2

� �� �
; (18)

Re kð Þ � xe;0

vb;0
1:1þ 1þ 2:5 cos Lnð Þ

1:1Ln

� �
; (19)

Im kð Þ � xe;0

vb;0

2 ln Lnð Þ � 0:5

Ln
: (20)

FIG. 3. Amplitude of electric field oscillations versus time in fluid simula-

tions with a ¼ 0:0006 and L ¼ 4kb (red curve), L ¼ 4:7kb (blue curve).

The curves are obtained in the point with coordinate x ¼ 3:55 mm (red) and

x ¼ 4:34 mm (blue).

FIG. 4. Frequency (a), temporal growth rate (b), wave number (c), spatial

growth rate (d), and the number of wave periods per system length (e) versus

the length of the system. The blue crosses mark values obtained by analyti-

cal solution given by Equations (12)–(14). Solid red and black curves repre-

sent values obtained in fluid simulations with a ¼ 0:00015 (red) and

a ¼ 0:0006 (black). Solid green curves are values provided by fitting formu-

las (17)–(20). In (c), the black dashed line marks the resonant wave number.
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The wave number and the spatial growth rate depend on

the system length but are virtually insensitive to the beam

density, see Figs. 5(c) and 5(d). The temporal growth rate is

approximately linearly proportional to the relative beam den-

sity a. The linear law holds especially well for short systems,

see the red curve in Fig. 5(b) and compare red and black

curves for L=kb < 6 in Fig. 4(b). For longer systems, how-

ever, deviation from the linear law becomes noticeable.

IV. TEMPORAL GROWTH RATE IN KINETIC
SIMULATION

Kinetic simulations are carried out with the EDIPIC

1D3V particle-in-cell (PIC) code.14 The code is modified to

reproduce conditions of the fluid simulations. The ions form

an immobile background, the boundaries have zero potential.

The bulk electrons are reflected specularly from the bound-

aries. The beam electrons penetrate through the boundaries

freely. The initial plasma density and the beam energy are

the same as in the fluid simulations. Collisions are omitted.

Two simulations are carried out with L ¼ 8:3kb; a ¼ 0:0006

but different number of particles per cell. One simulation has

10 000 particles per cell. The other simulation has 2000 par-

ticles per cell. Below, these simulations are referred to as

10k and 2k simulations, respectively.

PIC simulations start with a significant level of statisti-

cal noise which is few orders of magnitude higher than the

initial perturbation induced in the fluid simulations above. At

the same time, the amplitudes of nonlinear saturation of the

instability in PIC and fluid simulations are close to each

other. As result, the time when the oscillations grow from

the initial noise level to the saturation in PIC, simulation is

much shorter than that in a fluid simulation. Moreover, at the

initial stage the growth rate gradually decreases, which fur-

thermore limits the duration of the asymptotic stage

described by analytic solution. For example, in the 10k simu-

lation, the asymptotic stage lasts from 10 ns to 20 ns while in

the fluid simulation that stage occurs between 10 ns and

45 ns, compare the green and the red curves in Fig. 6. The

short asymptotic stage in the 10k simulation still allows to

calculate the temporal growth rate, which appeared to be

very close to the value obtained in fluid simulations. In the

2k simulation, however, the noise level is higher and the

asymptotic stage is very short and barely detectable, see the

blue curve in Fig. 6.

V. SATURATION AMPLITUDE IN KINETIC SIMULATION

PIC simulations described below are carried out with the

following common parameters. The initial uniform plasma

electron density is ne;0 ¼ 2� 1017 m�3, the initial electron

beam energy or the energy of injection is Wb ¼ 50 eV, the

beam-to-plasma density ratio is a ¼ 1:5� 10�4, the initial

plasma electron temperature Te;0 ¼ 0:5 eV, the size of a cell

of the computational grid is Dx ¼ 2:078� 10�6 m corre-

sponding to kD;e=8 where kD;e is the electron Debye length of

the ambient plasma, both the plasma and the beam initially

are represented by 2500 macroparticles per each cell of the

grid. The ions are represented by an immobile uniform back-

ground with density which ensures that the plasma-beam sys-

tem is initially neutral. The electron beam propagates in the

positive x-direction.

The following three PIC simulations are carried out.

First simulation has periodic boundary conditions and the

system length of L ¼ 2kb where kb ¼ 2pVb=xe;0 is the wave-

length of the plasma wave resonant with the beam in an infi-

nite plasma, and Vb is the beam velocity. For the selected

parameters, kb ¼ 1:044 mm. Second simulation has non-

periodic boundary conditions similar to the ones used in the

fluid model. The boundaries are grounded, the plasma elec-

trons are reflected from the boundaries, while the beam

FIG. 5. Frequency (a), temporal growth rate (b), wave number (c), and spa-

tial growth rate (d) versus the ratio of the beam and bulk electron densities

in fluid simulations with L ¼ 3:4kb (red) and L ¼ 8:3kb (black). In (c), the

black dashed line marks the resonant wave number.

FIG. 6. Amplitude of electric field oscillations versus time in simulations

with L ¼ 8:3kb and a ¼ 0:0006. The curves represent fluid simulation (red),

PIC simulation with 10 000 particles per cell (green), and PIC simulation

with 2000 particles per cell (blue).
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electrons penetrate through them freely. System length in the

second simulation is L ¼ 8:3kb which corresponds to the

maximum of the temporal growth rate in the dispersion band

with L=kb � 8 in the fluid simulation. The third simulation

also has the non-periodic boundary conditions similar to the

second simulation, but the system length is much shorter,

only L ¼ 1:5kb. In the second and the third simulations, the

beam injection occurs at the boundary x¼ 0.

The theory of interaction of a cold beam with a cold

plasma predicts that the exponential growth of the amplitude

of plasma oscillations is followed by saturation and subse-

quent amplitude oscillations.15 Such a picture is reproduced

in the first simulation, see Figs. 7(a) and 7(c). The plasma

wave propagates in the direction of beam propagation and has

constant amplitude along the system, see Figs. 7(b) and 8(a).

The theoretical growth rate is

ImðxÞ ¼ 0:7a1=3xe;0; (21)

and the electric field amplitude in the first maximum is

E1;max ¼ 3kWba
2=3; (22)

where xe;0 is the Langmuir frequency of plasma electrons and

k ¼ xe;0=Vb is the resonance wave number. For the selected

beam and plasma parameters, xe;0 ¼ 2:52� 1010 s�1,

Vb ¼ 4:19� 106 m=s, and k ¼ 6015:9 m�1. Therefore, the

theoretical growth rate (21) is

ImðxÞ ¼ 0:938� 109 s�1;

and the electric field amplitude maximum (22) is

E1;max ¼ 2549 V=m:

Both values are very close to the simulation results, see the

red curve in Fig. 7(c) and compare it with the dashed straight

line which corresponds to the theoretical growth rate (21). It

is necessary to mention here that during the first 4 ns, the

growing oscillations are obscured by the noise present in the

system due to the finite number of particles in simulation.

The saturation begins at t¼ 6 ns when the beam particles

start passing each other, see the phase plane in Fig. 8(b).

Note that by this time the beam electrons in the laboratory

frame travel about 25 mm which is several times more than

the length of the system in the second simulation.

In the second simulation, the boundary conditions are

non-periodic and the linear stage of the instability follows

the fluid theory for the finite-length systems developed

above—the wave amplitude grows both along the system

and in time, the temporal growth rate is close to the fluid

value, compare the red curve with the straight black dashed

line in Fig. 7(g). The saturation of the amplitude occurs

around 70 ns and here the amplitude is maximal near the

exit end of the system, see Figs. 7(d) and 7(f) near arrow 1

and the electric field profile in Fig. 8(c). The maximum

wave amplitude is an order of magnitude higher than that

in the periodic simulation, and it causes much stronger

velocity perturbations of the beam particles. Due to both

limited distance of interaction between the beam and the

wave and the nonuniform wave amplitude, the beam elec-

trons start passing each other only near the exit end, see

Fig. 8(d).

FIG. 7. Results of PIC simulation with periodic boundaries (a)–(c), non-periodic boundaries and L ¼ 8:3kb (d)–(g), and non-periodic boundaries and L ¼
1:5kb (h)–(j). The top row (a), (d), (h) shows amplitude of oscillations versus coordinate and time. The middle row (b), (e), (f), (i) shows electric field versus

coordinate and time. The bottom row (c), (g), (j) shows the amplitude of oscillations versus time at certain locations marked by vertical arrows in (a), (d), and

(h), respectively. The green and the red curves in (g) correspond to locations marked by vertical arrows A and B in (d), respectively. The horizontal arrows in

(a), (b) mark time of the snapshot shown in Figs. 8(a) and 8(b). The horizontal arrows in (d)–(f) mark time of snapshots shown in Figs. 8(c) and 8(d) (arrow 1)

and in Figs. 8(e) and 8(f) (arrow 2). The horizontal arrows in (h), (i) mark time of the snapshot shown in Figs. 8(g) and 8(h). The dashed black straight line in

(c) shows the exponential growth with the theoretical growth rate in an infinite plasma. The dashed black straight lines in (g) and (j) corresponds to the growth

rates obtained in fluid simulations with the same system length and beam current.
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An interesting process occurs after the first saturation.

The position of the maximum amplitude gradually moves

towards the injection boundary until it reaches the distance

of about 5.5 mm, and the value of the maximum almost dou-

bles, see Figs. 7(d) and 8(e). After 150 ns, it is this new maxi-

mum where the passing of beam electrons is achieved, not

the exit end of the system, see Fig. 8(f). The amplitude maxi-

mum moves away from the beam-exit-boundary towards the

injection boundary as a result of the following processes.

Mixing of the beam particles occurs at first near the beam-

exit boundary, see Fig. 8(d). Once this happens, the beam in

this area no longer supplies energy to the plasma oscillations.

Correspondingly, the amplitude of oscillations near the

beam-exit boundary decreases. The region near the beam-

exit wall with strongly mixed electron beam (x> 6 mm in

Fig. 8(f)) becomes a new boundary that changes the wave

structure, compare Figs. 7(e) and 7(f), and thus, reduces the

effective system length. It is shown in the paper that the

shorter the system, the stronger the electric field of the insta-

bility (Figure 9). Correspondingly, in the regions closer to

the injection boundary (x< 6 mm in Figure 8(f)) mixing of

the beam particles occurs later and at higher values of the

electric field which looks as if the maximum of amplitude

moved towards the injection boundary. Downstream of this

maximum (x > 6 mm) the beam electrons are completely

mixed in the phase plane. As a result of this change in the

beam structure, while upstream of the maximum

(x < 5 mm), the wave propagates along the beam direction

with spatially growing amplitude, and while downstream of

the maximum, the wave pattern is closer to that of a standing

wave, compare Figs. 7(e) and 7(f).

The second simulation clearly shows that the amplitude

of saturation of the two stream instability in finite length

plasmas can be significantly higher than that in an infinite

plasma. In a bounded system, the length of interaction

between a beam electron and the plasma wave cannot exceed

the distance between the boundaries. An infinite plasma has

no such limit. Here a wave of modest intensity can interact

with beam electrons over longer distances, before the mixing

of the beam electrons in the phase plane occurs. In order to

FIG. 8. Electric field profiles (a), (c), (e), (f) and electron “velocity versus coordinate” phase planes (b), (d), (f), (h) in the PIC simulations with periodic bound-

aries (a), (b), non-periodic boundaries and L ¼ 8:3kb (c)–(f), and non-periodic boundaries and L ¼ 1:5kb (g), (h). Snapshots (a), (b) are obtained at time 6 ns

shown by the horizontal arrows in Figs. 7(a) and 7(b). Snapshots (c) and (d) are at time 71.88 ns shown by arrows 1 in Figs. 7(d) and 7(f). Snapshots (e) and (f)

are at time 185.69 ns shown by arrows 2 in Figs. 7(d) and 7(e). Snapshots (g) and (h) are at time 979.8 ns shown by the horizontal arrows in Figs. 7(h) and 7(i).

In the phase planes, the beam electrons are represented by the blue color; while the plasma electrons are represented by the color map, the white background

correspond to the empty space.

FIG. 9. (a) Amplitude of the first maximum versus the relative beam density

in PIC simulations with L ¼ 8:3kb (green) and L ¼ 1:5kb (red). In (a), the

solid blue curve is the theoretical prediction (22) for an infinite plasma, the

dashed horizontal lines mark theoretical predictions given by Eq. (25) for

finite-length systems with L ¼ 8:3kb (green) and L ¼ 1:5kb (red). (b)

Saturation amplitude versus the system length. In (b), the black curve is

obtained with Eq. (25), the red vertical crosses and the green diagonal

crosses mark first amplitude maxima in the PIC simulations with L ¼ 8:3kb

(green) and L ¼ 1:5kb (red); the blue horizontal lines mark theoretical

values (22) for the infinite plasma with the beam of relative density

a ¼ 0.00015 (dashed), 0.0003 (short dashed), and 0.0006 (dashed-dotted).

The PIC simulation values for L ¼ 8:3kb and L ¼ 1:5kb are obtained at

points marked by vertical arrow B in Fig. 7(d) and by the vertical arrow in

Fig. 7(h), respectively.
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achieve such a mixing over much shorter distances, which is

the case in bounded systems, the wave field must be much

stronger.

If the mixing of the beam particles does not occur, then

the amplitude of oscillations will continue to grow. If the

plasma density profile is uniform, the phase velocity of the

intense plasma wave is much faster than the bulk electrons

(we consider beams with energy much higher than the bulk

electron temperature) and irreversible energy transfer from

the wave to the bulk electrons does not occur—the wave

only moves the bulk electrons in the coordinate-velocity

phase plane up and down, as shown, for example, in Fig.

8(h). Eventually, the amplitude grows high enough to begin

mixing of the beam even in rather short beam-plasma sys-

tems. If the density profile is nonuniform, then wave trans-

formation is possible at density gradients which will cause

acceleration and heating of bulk electrons.16 Then the insta-

bility may saturate at lower levels, before the mixing of the

beam occurs.

In order to find how strong this effect can be, the third

simulation with the non-periodic boundary conditions is per-

formed with a very short system length L ¼ 1:5kb. The wave

pattern corresponds to a standing wave with 5 nodes and 4

antinodes. The antinodes and the 3 middle nodes are clearly

visible in Figs. 7(h) and 7(i). There are two nodes with

approximately zero electric field at the ends of the system.

These two nodes were not resolved by the code diagnostics

used to produce Figs. 7(h) and 7(i), but they are visible in the

electric field profile in Fig. 8(g). The temporal growth rate in

this simulation is about 34% higher than the growth rate in

the fluid simulation with the same parameters, compare the

red curve with the black straight dashed line in Fig. 7(j). The

maximal wave amplitude reaches 170 V/mm which is more
than 60 times stronger than the field in the periodic system,

compare Figs. 7(j) and 7(c). Such a strong electric field produ-

ces mixing of beam electrons on a very short distance of

1 mm which is about one resonance wavelength, see Fig. 8(h).

The phase plots shown in Fig. 8 prove that in the finite

length system the saturation of the instability occurs when

the beam particles are overtaking each other. This process

depends on the wave amplitude and the system length but

should not depend on the beam current. To check this, two

additional simulations are carried out with L ¼ 8:3kb and the

relative beam density of a ¼ 0:0003 and 0.0006. Another

two additional simulations with these beam densities are car-

ried out for L ¼ 1:5kb. The results of these simulations com-

bined with those obtained above for a ¼ 0:00015 confirm

that the amplitude of the first maximum of saturation of the

instability is virtually insensitive to the beam current, see the

red and the green curves with markers in Fig. 9(a). The only

difference is that for higher current the saturation is achieved

faster. Note that in the whole range of the beam density a
considered, the values of the saturation amplitude in the

finite system are much higher than the predictions for the

infinite system, compare the red and the green curves with

markers with the blue curve in Fig. 9(a).

The wave amplitude which causes overtaking of beam

particles can be estimated as

eE

me x� kvbð Þ2
	 kb; (23)

where the left-hand side is the displacement of the particles

trapped by the wave in the wave frame. Using Equation (12)

one can replace ðx� kvbÞ2 with ðvxe;0Þ2. Then, replacing

kbxe;0 with vb;0 one can write an expression for the maximal

electric field of the wave as

Emax ¼
mevb;0xe;0

e
jv2j : (24)

For estimates, the value of v2 is convenient to find as

v2 ¼ 1� vb;0

xe;0
Re kð Þ þ iIm kð Þ½ �

	 
2

; (25)

with Re(k) and Im(k) given by the approximate formulas (19)

and (20). Note that expressions (19) and (20) are independent

on beam current and are functions of the normalized plasma

gap width Ln only. Therefore, the maximal field (24) depends

on the beam velocity vb and the gap width L but does not

depend on the beam current.

A dependence EmaxðLÞ calculated with (25) for the

beam parameters used in the simulations above is shown

by the black curve in Fig. 9(b). The oscillations in this

curve reflect the band structure of the wave number in the

finite length system. The saturation values obtained in the

PIC simulations are remarkably close to the values given

by Eq. (25), compare curves with markers with the hori-

zontal dashed curves of the same color in Fig. 9(a), also

compare the markers with the black curve in Fig. 9(b). The

value of Emax decreases with L and eventually approaches

the saturation values for the infinite system given by Eq.

(22), compare the black curve with the horizontal blue

lines in Fig. 9(b).

The PIC simulations discussed above demonstrate that the

growth of the maximal electric field in the two-stream instabil-

ity in a short system compared to an infinite plasma can be very

large. It is necessary to mention, however, that these simula-

tions are carried out with certain simplifications similar to those

made in the fluid model. In particular, the sheath is not

resolved, the ion background is immobile, and collisions with

neutrals are omitted. The realistic sheath will allow some ener-

getic plasma electrons to escape and may affect the structure of

the wave interacting with the beam. If the ion dynamics is

accounted for, the strong plasma oscillations may result in the

modulation instability which will create density cavities and

affect the wave. Finally, the two stream instability can be sup-

pressed by electron-neutral collisions if the collision frequency

is more than two times the collisionless growth rate. In very

short systems, the temporal growth rate is very small, which

means that the neutrals present in a real beam-plasma system

may simply prevent the instability from developing.

VI. SUMMARY

In summary, we have studied the development of the

two-stream instability in a finite size plasma bounded by

electrodes both analytically and making use of fluid and
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particle-in-cell simulations. We show that the instability

reaches the asymptotic state when the wave structure has the

same spatial profile and grows in time with a constant growth

rate. The spatial structure of the wave is close to a standing

wave but has a spatial growth along the beam propagation.

We derived analytic expressions (17)–(20) for the frequency,

wave number, and the spatial and temporal growth rates.

Obtained analytic solution agrees well with the values given

by fluid and particle-in-cell simulations.

The saturation of the instability occurs due to the over-

taking of beam particles. Formulas for the estimate of the

saturation amplitude (24) and (25) are derived and are in

good agreement with the simulation results. The amplitude

of saturation does not depend on the beam current but grows

significantly for shorter systems. Compared to the value pre-
dicted for an infinite plasma, the saturation amplitude for
low-current plasma beam systems of length of a few reso-
nance wavelengths may be higher by more than an order of
magnitude.

If the density profile is nonuniform, then wave transfor-

mation is possible at density gradients, which will cause

acceleration and heating of bulk electrons.16 Then the insta-

bility may saturate at lower levels, before the mixing of the

beam occurs. Collisions may suppress the instability and

their effect on instability is studied in Ref. 17.
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