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Effect of collisions on the two-stream instability in a finite length plasma
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The instability of a monoenergetic electron beam in a collisional one-dimensional plasma bounded between
grounded walls is considered both analytically and numerically. Collisions between electrons and neutrals are
accounted for the plasma electrons only. Solution of a dispersion equation shows that the temporal growth
rate of the instability is a decreasing linear function of the collision frequency which becomes zero when the
collision frequency is two times the collisionless growth rate. This result is confirmed by fluid simulations.
Practical formulas are given for the estimate of the threshold beam current which is required for the two-
stream instability to develop for a given system length, neutral gas pressure, plasma density, and beam energy.
Particle-in-cell simulations carried out with different neutral densities and beam currents demonstrate good
agreement with the fluid theory predictions for both the growth rate and the threshold beam current.
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I. INTRODUCTION

In plasma discharges, surfaces of objects immersed in
the plasma may emit electrons. This emission may be
caused by direct heating of the material (thermal cath-
odes), intense light (photoemission), or by bombardment
by energetic electrons or ions (secondary electron emis-
sion). If the electrostatic potential of the object is much
lower than the potential of the plasma, the emitted elec-
trons are accelerated by the electric field and form an
electron beam in the plasma. If the two-stream insta-
bility develops, the intense plasma oscillations will heat
the plasma and modify the electron velocity distribution
function (EVDF). This includes, in particular, produc-
tion of suprathermal electrons which are very important
in material processing.1

The presence of the electron beam itself does not guar-
antee that the intense oscillations will appear. If the
dissipation, e.g. due to collisions between electrons and
neutrals, is strong, the instability may not develop at all.
In an experiment of Sato and Heider,2 a 1000 eV electron
beam was creating a plasma in a chamber filled with neu-
tral gas (hydrogen or helium). Various values of neutral
pressure were used. An energy analyzer placed at the
exit end was measuring the energy spectrum of the beam
particles. For neutral pressures below 70 mTorr, it was
found that the higher the beam current the greater the
width of the spectrum. Similar effect was caused by the
increase of the neutral density since this was accompanied
with the plasma density increase and the corresponding
increase of the instability growth rate. The growth of the
energy spectrum width was attributed to the nonlinear
interactions between the beam and the plasma. How-
ever, when the neutral pressure exceeded 70 mTorr, the
spectrum broadening disappeared which was interpreted
as suppression of the instability by the collisions.

The effect of collisions of plasma electrons on the two-
stream instability has been studied previously in infinite
or semi-infinite plasmas. Singhaus3 considered a rela-

tivistic electron beam with a Gaussian velocity distri-
bution in a relatively cold plasma. The system was in-
finite and initially uniform. Only collisions for plasma
electrons were accounted for. Electron beams with dif-
ferent temperatures were used. The beam was consid-
ered hot or cold depending on the value of parameter
τ = (npTb/nbWb)

1/2, where nb and np are the beam and
the plasma electron densities, and Wb and Tb are the av-
erage energy and temperature of the beam. For the cold
beam τ ≪ 1 and low collision frequency ν ≪ Im(ω), the
growth rate is

Im(ω) = 0.69(ωpω
2
b )

1/3 , (1)

where ωp and ωb are the Langmuir frequencies of the
plasma and the beam electrons. For the large collision
frequency ν ≫ Im(ω), the growth rate of the cold beam
instability is

Im(ω) = 0.8
(

ωpω
2
b/ν

)1/2
. (2)

Growth rate (1) is essentially an ordinary collisionless
growth rate of the two-stream instability in an infinite
plasma. Growth rate (2) remains nonzero for any value
of ν and therefore the collisions cannot stabilize the cold
beam. The reason for this is the strong resonance be-
tween the cold beam and the plasma wave in the infi-
nite plasma. In warm beams, however, this resonance is
weaker and the collisions may prevent the instability. Ac-
cording to Singhaus,3 for high-temperature beams τ ≫ 1
this occurs if the collision frequency satisfies condition

ν >∼ 0.76ωpτ
−2 . (3)

These conclusions, with minor corrections, were later
confirmed by Self, Shoucri, and Crawford.4 In particu-
lar, they provide the following convenient expression for
the growth rate of the instability of a hot Maxwellian
beam consistent with the criterion (3):

Im(ω) = 0.38ωpτ
−2 − ν/2 . (4)
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Abe et al.5 used a one-dimensional particle-in-cell
(PIC) code to study injection of a beam into a long (15
to 17 resonance beam wavelengths λb = 2πvb/ωe where
vb is the beam velocity and ωe is the electron plasma
frequency) plasma-filled region approximating a semi-
infinite plasma. They focused on spatial rather than
temporal growth and found that while the linear spa-
tial growth rate (observed in the region few λb wide near
the emission boundary) was barely affected by collisions,
the amplitude of oscillations in the area where the parti-
cle dynamics is nonlinear (downstream of the first wave
amplitude maximum) was reduced compared to the colli-
sionless case. It is necessary to mention that the collisions
considered were due to electrostatic forces existing in the
numerical model. In general, the frequency of such col-
lisions is a function of the grid size, time step, and the
number of particles.6,7

Andriyash, Bychenkov, and Rozmus8 considered an-
alytically and numerically the two-stream instability
which appears when an ultra-short linearly-polarized X-
ray laser pulse produces streams of photoionized elec-
trons in a gas target. They shown that for higher colli-
sion frequencies, the saturation of the instability occurs
faster and at lower levels.

Cottrill et al.9 considered relativistic electron beams
with different temperatures and distribution functions
propagating in a dense plasma where electron-ion coli-
sions for the bulk electrons are important. This problem
is relevant to the fast ignition scheme in fusion applica-
tions where the plasma is heated by a relativistic beam
created by a short high-intensity laser pulse. Numeri-
cal solution of the dispersion equation showed that the
two-stream instability growth rate is reduced due to col-
lisions for the cold beam. For a high-temperature beam
the collisions can cancel the two-stream instability. Simi-
lar results were obtained by Hao et al.10 who also solved a
kinetic dispersion relation for a relativistic electron beam
propagating in a cold dense plasma with Coulomb colli-
sions.

Lesur and Idomura11 studied the bump-on-tail insta-
bility in an infinite 1D plasma using a Vlasov code with
the collisional operator containing drag and diffusion.
They showed that the collisions strongly affect nonlin-
ear stochastic dynamics of plasma oscillations in such a
system.

Unlike papers mentioned above, the present paper con-
siders a low pressure beam-plasma system of the length
of only few beam resonance wavelengths. Previously, a
short beam-plasma system was considered by Pierce.12 In
Pierce diode, however, the beam electron density is equal
to the density of background ions, while in the present pa-
per there is also the electron background while the beam
density is small compared to the density of ambient elec-
trons. For theoretical analysis, the electron beam is con-
sidered as monoenergetic. This is justified if the beam en-
ergy is much higher than both the plasma and the beam
temperature. The beam temperature may increase as the
beam propagates through the plasma due to scattering

on neutrals and due to interaction with strong plasma
wave if the two-stream instability is excited. However,
the size of the system considered is small compared to
the mean free path of beam electrons associated with
electron-neutral collisions. Beam electrons perturbed by
the wave also quickly leave the system and perturbations
of the beam velocity remain small compared to the ini-
tial velocity for a large part of the linear growth stage.
Whether the two-stream instability develops or not de-
pends on the competition between the two time scales –
the growth rate of the instability without collisions and
the collision frequency. The growth rate of the instabil-
ity in such a short plasma is much lower than that in an
infinite plasma.13 Therefore, the suppression of the in-
stability occurs for a lower neutral gas pressures than in
an infinite plasma for the same beam and plasma density
and the beam energy.
The paper is organized as follows. In Section II, the

linear theory of the two-stream instability in a bounded
plasma with collisions is given. In Section III, fluid sim-
ulation confirms the theory. Kinetic simulations are de-
scribed in Section IV. The results are summarized in Sec-
tion V.

II. FLUID THEORY

Consider a cold uniform plasma bounded between two
grounded walls at x = 0 and x = L. A beam of electrons
is emitted by the wall x = 0 with velocity vb,0 and ab-
sorbed by the wall x = L. The walls reflect plasma elec-
trons. This boundary condition approximates a sheath
appearing in a real plasma at the plasma-wall interface.
The beam motion is collisionless while the plasma elec-
trons are scattered, for example by neutrals, with the
collision frequency νe. The ion motion is omitted. The
ion density ni is uniform, constant, and it ensures that
the plasma is initially neutral ni = ne,0+nb,0, where ne,0

and nb,0 are the initial densities of the bulk and beam
electrons. Full dynamics of such a system is described by
the following set of equations:

∂

∂t
ne,b +

∂

∂x
ne,bve,b = 0 , (5)

∂

∂t
ve + ve

∂

∂x
ve = −

e

m
E − νeve , (6)

∂

∂t
vb + vb

∂

∂x
vb = −

e

m
E , (7)

∂2

∂x2
Φ =

e

ε0
(ne + nb − ni) , (8)

where subscripts e and b denote bulk and beam electrons,
−e and m are the electron charge and mass, the electric
field is E = −∂Φ/∂x, and Φ is the electrostatic potential.
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Note that in the beam motion equation (7) the colli-
sional term is omitted. This is reasonable if (a) for the
given beam energy and neutral density the electron mean
free path is much larger than the size of the system L, and
(b) the energy of the beam is high (typically hundreds of
eV) so that the scattering occurs at small angles14,15 and
the velocity of the scattered beam electron is close to its
initial velocity. Collisions for the plasma electrons are re-
tained, however, since these electrons are trapped by the
sheath inside the plasma volume and they suffer collisions
even though they have to bounce several times between
the walls before that. These conditions are satisfied in
kinetic simulations described in Section IV.
The linear dispersion equation is obtained in a pro-

cedure similar to the one used by Pierce12 and recently
in Ref. 13. The plasma and the beam densities and ve-
locities are represented as sums of unperturbed values
ne,0, nb,0, vb,0 and perturbations δne, δnb, δvb, and δve
(the unperturbed value of the plasma electron velocity
is zero). The perturbations are described by linearized
equations (5-8):

∂

∂t
δne + ne,0

∂

∂x
δve = 0 , (9)

∂

∂t
δve = −

e

m
E − νeδve , (10)

∂

∂t
δnb +

∂

∂x
(nb,0δvb + δnbvb,0) = 0 , (11)

∂

∂t
δvb + vb,0

∂

∂x
δvb = −

e

m
E , (12)

∂2

∂x2
Φ =

e

ε0
(δne + δnb) , (13)

Note that for perturbations proportional to exp(−iωt+
ikx), equations (9-13) give a usual dispersion equation

1 =
ω2
e,0

ω(ω + iνe)
+

ω2
b,0

(ω − kvb,0)2
, (14)

where ω2
e,0 ≡ ne,0e

2/ε0m and ω2
b,0 ≡ nb,0e

2/ε0m are the
electron plasma frequencies of the plasma and the beam
electrons, respectively.
In the bounded system one looks for a solution for the

potential in the form

Φ(t, x) =
(

Ax+Beik+x + Ceik−
x +D

)

e−iωt, (15)

where coefficients A,B,C,D are complex constants and
wave vectors k± of the two waves propagating in the sys-
tem satisfy dispersion equation (14):

(ω − k±vb,0)
2 =

ω2
b,0

1− ω2
e,0/ω(ω + iνe)

. (16)

The corresponding density and velocity perturbations of
plasma and beam electrons are

δne,b(t, x) =
(

δn′

e,b + δn+
e,be

ik+x + δn−

e,be
ik

−
x
)

e−iωt,

δve,b(t, x) =
(

δv′e,b + δv+e,be
ik+x + δv−e,be

ik
−
x
)

e−iωt.

(17)

Substituting (15) and (17) into Eqs. (9-12) gives

δn′

e = 0, δn±

e =
ne,0k±

ω
δv±e , δv′e =

e

m

A

(−iω + νe)
,

δv+e = −
e

m

k+B

(ω + iνe)
, δv−e = −

e

m

k−C

(ω + iνe)
,

(18)

and

δn′

b = 0, δn±

b =
nb,0k±

ω − k±vb,0
δv±b , δv′b =

e

m

A

(−iω)
,

δv+b = −
e

m

k+B

(ω − k+vb,0)
, δv−b = −

e

m

k−C

(ω − k−vb,0)
.

(19)

Combining (15), (18), and (19) with boundary condi-
tions δnb(0) = 0, δvb(0) = 0, Φ(0) = 0, and Φ(L) = 0,
one obtains

k2+B + k2−C = 0,

A

ω
+

e

m

ik+B

(ω − k+vb,0)
+

e

m

ik−C

(ω − k−vb,0)
= 0,

B + C +D = 0,

AL+Beik+L + Ceik−
L +D = 0,

(20)

which results in the following dispersion equation:

−i
2(1− χ)

χ(1 + χ)
+ei(1−χ)Ln−1−

(1− χ2)

(1 + χ2)

[

ei(1+χ)Ln − 1
]

= 0 ,

(21)
where

Ln ≡ Lωe,0/vb,0 (22)

and

χ =
ωb,0/ωe,0

√

1− ω2
e,0/ω(ω + iνe)

. (23)

Equations (21-23) define frequency ω as a function of the
distance between the walls L while the wavenumbers k±
can be obtained from (16) and (23) as

k±vb,0 = (1∓ χ)ωe,0. (24)

Dispersion equation (21) exactly matches the disper-
sion equation for χ obtained in Ref. 13 for the collisionless
system. Therefore, χ itself is a universal parameter de-
pending on the normalized system length (22) only. The
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difference, however, is in the definition (23) of variable
χ as a function of ω which in the present paper involves
the collision frequency. Note that if νe = 0, equation (23)
defines χ in exactly the same way as Ref. 13. Introduce
the frequency of oscillations in the collisionless system as

ω2
ncl =

ω2
e,0

1− α/χ2
, (25)

where subscript “ncl” stands for “no collisions”, α =
nb,0/ne,0 is the relative beam density, and χ is found
from (21). Then (23) can be transformed to

ω(ω + iνe)− ω2
ncl = 0 , (26)

which in the limit νe ≪ ωe,0 gives ω = ωncl − iνe/2 so
that

Im(ω) = Im(ωncl)− νe/2 . (27)

Therefore, the instability will not develop if the collision
frequency exceeds a threshold value

νe,thr = 2Im(ωncl) , (28)

where Im(ωncl) is the temporal growth rate in the sys-
tem without collisions which can be estimated using the
approximate formula provided in Ref. 13:

Im(ωncl)

ωe,0
=

α

13
Ln ln(Ln)

[

1− 0.18 cos
(

Ln +
π

2

)]

.

(29)
It is necessary to mention that Eq. 27 is similar to Eq. 4
originally obtained in Ref. 4 except for the definition of
the growth rate without collisions.

For practical use, criterion (28) can be written in a
form which involves the neutral gas pressure and the
beam current. To do this, first, assume a linear rela-
tion between the electron collision frequency νe and the
neutral gas pressure pn for the selected neutral species:

νe = κ(Te)pn , (30)

where the coefficient κ(Te) depends on the scattering
cross sections and the electron temperature (or on the
EVDF if it is not Maxwellian). Using (30) and replacing
α in (29) with Jb,thr/ene,0vb,0, where Jb,thr is the thresh-
old beam current density, criterion (28) can be written
as follows:

Jb,thr =
6.5κ(Te)

√

2eε0ne,0Wb,0

Ln ln(Ln) [1− 0.18 cos (Ln + π/2)]
pn , (31)

where the beam energy Wb,0 is in electronvolts. For
a given neutral gas pressure, the two-stream instability
does not develop if the beam current density is below this
threshold.
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FIG. 1. Temporal growth rate of the two-stream instability
versus system length in a collisionless beam-plasma system.
The red markers connected by the red curve represent values
obtained in the simulation. The solid blue curve is calculated
with the approximate formula (29). The arrow marks the
length selected for fluid simulations with non-zero collision
frequency shown in Figures 2 and 3.

III. FLUID SIMULATION

Theoretical predictions of Section II are tested in fluid
simulations. The numerical fluid model solves equa-
tions (5-8) on a regular grid. The model uses SHASTA
method16 to advance densities in Eqs. (5) and a simple
upwind scheme to advance velocities in Eqs. (6) and (7).
In order to include reflection of plasma electrons from
the sheath, condition ve = 0 is introduced at the ends
of the system x = 0 and x = L. The potential at the
system ends is set to zero, Φ(0) = Φ(L) = 0. The beam
injection at boundary x = 0 is ensured by conditions
nb(x = 0) = nb,0 and vb(x = 0) = vb,0. No boundary
condition is imposed on the plasma density at both ends
of the system and on the beam density and velocity at
the exit end x = L. Initially, the bulk and beam electron
densities are uniform, the beam flow velocity is vb,0 every-
where, the bulk electron flow velocity in the inner nodes
has a harmonic perturbation ve,0 = v0 sin(xωe,0/vb,0)
where the amplitude v0 is very small, v0 ≪ vb,0. Pre-
viously this model was used to study the dispersion of
oscillations excited by an electron beam in a collisionless
finite length plasma.13

Simulations discussed in this section are carried out
with the following common parameters: the initial
plasma electron density ne,0 = 2·1017 m−3, the Langmuir
plasma frequency corresponding to this density ωe,0 =
2.523 ·1010s−1, beam energy Wb,0 = 800 eV (the velocity
corresponding to this energy is vb,0 = 1.678 · 107m/s),
beam-to-plasma density ratio α = 0.0001, numerical grid
cell size ∆x = 4.156 · 10−6 m which is 1/8 of the Debye
length for the electron density as above and the temper-
ature 2 eV, time step ∆t = 8.258 · 10−14 s. The selected
values of ∆x and ∆t ensure stability of the SHASTA al-
gorithm for electron flows with velocity ∆x/2∆t which
corresponds to the energy of 1800 eV. The classical reso-
nance beam wavelength is λb = 2πvb,0/ωe,0 = 4.178 mm.

In general, both the frequency and the wavenumber are
complex numbers and functions of L with band structure,
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FIG. 2. Logarithm of the amplitude of electric field in V/m
versus time in fluid simulations with the following relative val-
ues of the collision frequency ν/ωe,0: 0 (red), 0.0004 (green),
0.0008 (blue), 0.00119 (magenta), 0.00146 (cyan), and 0.00148
(black). The dependencies are obtained at x = 4.178λb. The
system length is L = 4.4λb, see the arrow in Figure 1.

as studied in detail in Ref. 13. The present paper con-
siders a single band with 3.9 ≤ L/λb ≤ 4.6. This makes
the plasma size near 18 mm which is close to the size of
the density plateau in the recent study of beam-plasma
interaction in Ref. ? and the size of the plasma in a dc-
rf etcher considered in Ref. 1. The growth rate obtained
in collisionless fluid simulation for the selected band is
shown by the red curve in Fig 1. Note that there is good
agreement between the simulation and the approximate
formula (29), compare the red and the blue curves in
Fig. 1.

To study the effect of collisions with the fluid model,
the value of L = 4.4λb is selected corresponding to the
maximum of the collisionless growth rate marked by the
arrow in Fig. 1. A set of simulations is performed with
the frequency of collisions gradually increasing from zero
until the growth of the amplitude of oscillations cancels
completely, as shown in Fig. 2.
The temporal growth rate decreases linearly with the

collision frequency in good agreement with Eq. 27, com-
pare the red and the blue curves in Fig. 1. Note that the
temporal growth rate is obtained during time intervals of
exponential growth with a constant rate (including the
zero growth rate). One can easily identify such intervals
in Fig. 2. The initial stage when the growth rate rapidly
decreases with time and the saturation stage are excluded
from consideration.

It is instructive to compare the results presented above
with the predictions of Refs. 3 and 4. Equations (1) and
(2) for cold beam are of no use here: the low-collision
frequency limit growth rate (1) is too high and indepen-
dent on the collision frequency while the expression for
the high-collision frequency growth rate (2) cannot be
used since the collision frequency is too low. Threshold
condition for a warm beam (3), however, produces a rea-
sonable estimate. The collision frequency which sets the
growth rate to zero in the fluid simulation with L = 4.4λb

above is ν = 3.736× 107s−1. For the selected beam and
plasma parameters, according to (3), such a collision fre-
quency cancels the instability in an infinite plasma if the
beam temperature exceeds 41 eV. Similar energy spread
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FIG. 3. Temporal growth rate of the two-stream instabil-
ity versus collision frequency in a finite-length beam-plasma
system. The red markers connected by the red curve rep-
resent values obtained in fluid simulations. The blue curve
corresponds to Eq. 27. The system length is L = 4.4λb, the
collisionless growth rate is marked by the arrow in Figure 1.

of an 800 eV beam is observed in Ref. 1. Note that us-
ing a warm electron beam reduces the growth rate of the
two-stream instability even without collisions, compare
equations (4) and (1). The estimate above shows that
for plasma parameters used in the present paper, which
are typical for plasma processing applications, the finite
beam temperature and the finite system length have sim-
ilar effect for a reasonable value of the beam temperature.
Therefore, in future studies it is necessary to consider a
finite temperature beam in a finite length plasma.

IV. KINETIC SIMULATION

In low-pressure plasmas, kinetic effects are important
for the electron dynamics. The frequency of collisions
with neutrals and the scattering angle for each elec-
tron depend on the electron energy. Reflection from the
sheath near the wall changes the direction of the electron
velocity but does not stop the particle. The electron ve-
locity at each point is the result of action of the electric
field not only in this point, but along the whole trajectory
before that. These effects are omitted in the simple fluid
approximation used in Section II. Therefore, it is neces-
sary to check whether the results of the fluid theory, in
particular the expressions for the growth rate (27) and
the threshold current (31), remain valid if the kinetic ef-
fects are accounted for. Below, for kinetic description of
the interaction of an electron beam with a low-pressure
finite length plasma, a 1d3v particle-in-cell (PIC) code
EDIPIC17 is used.
The PIC simulation setup is very similar to the one in

the fluid simulations above: a uniform plasma is bounded
by grounded walls with a distance L between them and
wall x = 0 emits an electron beam with constant flux and
energy. At the beginning of simulation, both beam and
bulk electrons are uniformly distributed along the sys-
tem. The bulk electrons and the beam electrons are rep-
resented by macroparticles with different charge which
greatly improves resolution of beam dynamics for low
beam currents. The ions are represented by a uniform
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constant immobile positively charged background which
ensures quasineutrality at t = 0. The motion of beam
electrons is collisionless, they are injected at x = 0 with
the given beam energy and can freely penetrate through
the boundaries. The bulk electrons may collide elastically
with neutrals and are reflected specularly at the bound-
aries. The cross section of the collisions corresponds to
Argon.

Initial plasma and beam parameters, such as ne,0, Wb,
and grid resolution ∆x are the same as in Section III. The
time step is ∆t = 1.65 × 10−13 s. The plasma electrons
have finite initial temperature of Te,0 = 2 eV. This value
is selected as a compromise between the desire to have
a cold plasma as in the fluid simulation and the growth
of the numerical cost when the Debye length (and there-
fore the size of a cell in the computational grid) decreases
for low electron temperature. Note that Te,0 is well be-
low the thresholds for the excitation (11.5 eV) and ion-
ization (15.76 eV) electron-neutral collisions for Argon
which justifies omitting them for the plasma electrons.

One unpleasant consequence of using plasma with a
finite electron temperature is that the level of noise in
PIC simulations is much higher than that in the fluid
simulation. The noise, in particular, reduces time inter-
val when the exponential growth of oscillations is visible,
see Fig. 4.

Kinetic simulation reveals that the beam-plasma sys-
tem is very sensitive to the length of the plasma. A set
of collisionless simulations is performed with the relative
beam density α = 0.0001 and L = 4.3λb, 4.4λb, 4.5λb,
and 4.6λb. The selected values of L correspond to the
same band of the dispersion as shown in Fig. 1. Only
for L = 4.5λb the exponential growth of the amplitude of
oscillations has a constant rate from the start till the first
amplitude maximum, see the blue curve in Fig. 4. For
other values of L, the growth rate oscillates, see the red,
green, and magenta curves in Fig. 4. Note that simula-
tions with L = 4.4λb has a noticeable time interval where
the growth rate is very close to the one in the fluid simu-
lation with the same L, compare the green and the black
curves in Fig. 4. It is necessary to mention that oscilla-
tions of the growth rate are observed for certain intervals
of L in fluid simulations as well,13 but these intervals
are more narrow. In view of the above, for PIC simu-
lation with collisions described below the system length
L = 4.5λb is selected.

In order to obtain a dependence of the threshold beam
current on the neutral gas pressure equivalent to (31), a
set of fourteen simulations is carried out with L = 4.5λb,
three values of electron beam density α, and various val-
ues of neutral density nn. The summary of these sim-
ulation parameters is given in Table I. Note, since the
threshold current (31) depends on the neutral pressure
pn, below the pressure is used instead of the density.

The behavior of the system in PIC simulations is qual-
itatively similar to that of the fluid system considered
above. For each value of α, the lower values of pn al-
low development of the instability with a pronounced
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FIG. 4. Logarithm of the amplitude of electric field in V/m
versus time in collisionless PIC simulations with α = 0.0001
and the system length L = 4.3λb (red, obtained at x =
4.16λb), 4.4λb (green, obtained at x = 4.26λb), 4.5λb (blue,
obtained at x = 4.31λb), and 4.6λb (magenta, obtained at
x = 4.36λb). For comparison, the black curve represents a
fluid simulation with L = 4.4λb (same as the red curve in
Figure 2). Note that the blue curve corresponds to simula-
tion 5 of Table I.

TABLE I. Parameters of PIC simulations with L = 4.5λb.
The neutral pressure pn corresponds to the given neutral gas
density nn and the neutral gas temperature of 300 K. In the
growth rate column, “N/A” means that the instability is sup-
pressed and a sufficiently long time interval with exponential
growth cannot be identified.

Number α Jb nn pn Im(ω) pthr

(10−4) [A/m2] [1020 m−3] [mTorr] [107 s−1] [mTorr]

1 0.5 26.83 0.805 2.5 0.63 8.8

2 1.61 5 0.33

3 2.415 7.5 0.08

4 3.22 10 N/A

5 1 53.67 0 0 1.41 15.2

6 1.61 5 1.01

7 3.22 10 0.38

8 4.83 15 N/A

9 6.44 20 N/A

10 1.5 80.51 3.22 10 1.34 25.0

11 4.83 15 1.01

12 6.44 20 0.5

13 8.05 25 N/A

14 9.66 30 N/A

time interval of the exponential growth with an approx-
imately constant rate, see red, green, and blue curves in
Figs. 5(a), (c), and (e). Increasing pn reduces the growth
rate and eventually prevents oscillations from growing af-
ter a relatively short initial transitional stage which lasts
no more than 200 ns, see magenta and cyan curves in
Figs. 5(a), (c), and (e). The higher the value of α, the
higher is the value of pn which suppresses the instability.

It is necessary to mention that intense oscillations pro-
duced by the two stream instability heat plasma electrons
which gradually increases the frequency of collisions, see
the red and the green curves in Fig. 5(b), the green and
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FIG. 5. The logarithm of amplitude of electric field in V/m (a,c,e) and the bulk electron collision frequency (b,d,f) versus
time in PIC simulations with parameters shown in Table I. In (a) and (b), the red, green, blue, and magenta curves are for
simulations 1, 2, 3, and 4 of Table I, respectively. In (a), dashed black straight lines A, B, and C show exponential growth
in simulations 1, 2, and 3, respectively. In (c) and (d), the red, green, blue, magenta, and cyan curves are for simulations
5, 6, 7, 8, and 9, respectively. In (c), dashed black straight lines D, E, and F show exponential growth in simulations 5, 6,
and 7, respectively. In (e) and (f), the red, green, blue, magenta, and cyan curves are for simulations 10, 11, 12, 13, and 14,
respectively. In (e), dashed black straight lines G, H, and I show exponential growth in simulations 10, 11, and 12, respectively.
The growth rates for lines A to I correspond to the ones shown in Table I.

the blue curves in Fig. 5(d), the red, green, and blue
curves in Fig. 5(f). The collision frequency produced
by the code diagnostics is the frequency of scattering of
electrons by neutrals averaged over all electron particles.
Usually the growth of the collision frequency is a clear
sign that the intense oscillations are excited. Only in sim-
ulation 3 of Table I, where the oscillations were growing
at a very low rate, no significant modification of the col-
lision frequency occurs till the end of simulation, see the
blue curves in Figs. 5(a) and (b). In simulations where
the prolonged exponential growth of oscillations was not
identified, the collision frequency stays constant, see ma-
genta and cyan curves in Figs. 5(b), (d), and (f). Note
that the growth of the collision frequency starts when the
amplitude approaches its maximum and does not affect
the initial stages of the instability. The effect of the col-
lisions on the nonlinear stage of the instability is out of
the scope of this paper.

The simulation parameters are selected in such a way
that for a single value of α there are several values of
pn. In this case, it is easier to find the threshold value of
the neutral pressure pn,thr preventing the instability for a
given beam current rather then the threshold current for
a given pressure. To find the threshold pressures, the fol-
lowing procedure is involved. First, for each simulation
where the exponential growth is observed, the growth
rate is identified by fitting the dependence of the elec-
tric field amplitude versus time E(t) with an exponent
exp(Im(ω)t), see the dashed black lines A-I in Figs. 5(a),
(c), and (e). This gives growth rates Im(ω) for different

α and pn, see Table I.
Second, values of Im(ω) from simulations with the

same α but different pn are fitted with a straight line

Im(ω) = Im(ωkin
ncl )− κpn/2 , (32)

where Im(ωkin
ncl ) has the meaning of the growth rate with-

out collisions in the kinetic description, κ is the coeffi-
cient of proportionality between ν and pn introduced in
Eq. 30. In the present paper, κ = 1.839×106 s−1mTorr−1

for electrons with a Maxwellian EVDF of temperature 2
eV performing elastic scattering in an Argon gas with
temperature 300 K. This value is obtained by approxi-
mating the initial collision frequencies from simulations
6, 7, 8, and 9 of Table I with a linear law, as shown
in Fig. 6. Equation (32) is equivalent to equation (27).
Note that while the slope κ/2 of line (32) is enforced
to match that of (27), the growth rates in PIC simu-
lations fit this slope surprisingly well, compare markers
with dashed straight lines of the same color in Fig. 7.
The difference from the fluid theory is that the collision-
less growth rates Im(ωkin

ncl ) are lower than the fluid values
(29) by up to to 24%, compare the dashed and the solid
curves of the same color in Fig. 7.
Finally, with Im(ωkin

ncl ) known for each α, the threshold
pressure values giving Im(ω) = 0 are calculated as

pn,thr = 2Im(ωkin
ncl )/κ , (33)

which is equivalent to (28). These threshold pressures
are given in Table I and are marked by arrows in Fig. 7.
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FIG. 6. The average frequency of elastic electron-neutral col-
lisions versus the neutral pressure. Markers with error bars
represent values obtained in simulations 6, 7, 8, and 9 of Ta-
ble I, the error bars correspond to the amplitude of noise in
the simulation. The solid line is described by equation (30)
with κ = 1.839 × 106 s−1mTorr−1.
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FIG. 7. Temporal growth rate of the two-stream instabil-
ity versus the neutral gas pressure. The solid straight lines
are obtained with fluid theory equations (27) and (29) where
νe(pn) is defined by equation (30); the red, green, and blue
solid lines are for α = 5 × 10−5, 10−4, and 1.5 × 10−4, re-
spectively. Red markers represent simulations 1, 2, and 3 of
Table I, respectively (see also lines A, B, and C in Fig. 5(a)).
Green markers represent simulations 5, 6, and 7 of Table I,
respectively (see also lines D, E, and F in Fig. 5(c)). Blue
markers represent simulations 10, 11, and 12 of Table I, re-
spectively (see also lines G, H, and I in Fig. 5(e)). Dashed
red, green, and blue straight lines are the approximate depen-
dencies “growth rate versus pressure” for α = 5×10−5, 10−4,
and 1.5×10−4, respectively, plotted as the best fit of the PIC
simulation data. The arrows mark threshold pressures which
turn the growth rate of the instability into zero for the three
values of the beam density mentioned above.

The three values of pn,thr for the three values of beam
current (shown by open black markers connected by a
solid black line in Fig. 8) are fitted with a linear law

Jkin
b,thr = 3.4pn (34)

shown by the black dashed straight line in Fig. 8. In (34),
the current density is in A/m2 and the neutral pressure
is in mTorr. This curve represents the threshold current
predicted by the PIC simulation. For comparison, with
κ, Wb,0, ne,0, and Ln as in the kinetic simulations with
L = 4.5λb above, the fluid threshold current (31) is

Jb,thr = 2.695pn , (35)

where the current density and the pressure units are the
same as in (34). Thus, for the same pressure, the value

 0

 20

 40

 60

 80

 100

 0  5  10  15  20  25  30  35

J b
(A

/m
2 )

pn (mTorr)

instability

no instability

FIG. 8. Phase plane “emission current density vs neutral gas
pressure”. Red markers in ascending pressure order repre-
sent simulations 1, 2, 3, and 4 of Table I, respectively. Green
markers in ascending pressure order represent simulations 5,
6, 7, 8, and 9, respectively. Blue markers in ascending pres-
sure order represent simulations 10, 11, 12, 13, and 14, re-
spectively. Everywhere, the vertical crosses mark simulations
where the exponential growth is identified while the diagonal
crosses mark simulations where the instability is suppressed.
Open boxes connected by a solid black line represent thresh-
old pressures given in Table I and marked by arrows in Fig. 7.
The dashed black straight line is the threshold current (34)
plotted using these threshold pressure values. The solid ma-
genta line is the threshold curent (35) calculated using the
fluid theory.

of the threshold current predicted by PIC simulations
is about 26% higher than the value given by the fluid
theory, compare the dashed black and the solid magenta
lines in Fig. 8. This difference corresponds to the lower
collisionless growth rates in kinetic simulation which is
reasonable since kinetic effects have a tendency to dis-
rupt the resonance between the wave and the particles
and reduce the growth rate. Overall, for the selected pa-
rameters there is a very reasonable agreement between
the kinetic simulations and the simple fluid theory given
in Section II.

V. SUMMARY

The two-stream instability in a plasma bounded be-
tween walls is quite different from that in an infinite
plasma. The oscillations grow both in time and space,
and the growth rates are functions of the distance be-
tween the bounding walls. If this distance is only few
resonance wavelengths, the temporal growth rate is very
small. Scattering of plasma bulk electrons further re-
duces this growth rate. The present paper finds that the
rate becomes zero if the collision frequency is equal to the
doubled growth rate without collisions. Unlike the results
of previous studies,3,4 this criterion predicts that the in-
stability may be completely suppressed for cold beams.
The proposed fluid theory allows to calculate a threshold
beam current density for the given neutral gas pressure
pn, the collision frequency as a function of the pressure
νe = κpn, the electron density ne, the beam energy Wb,
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and the normalized system length Ln:

Jb,thr =
6.5κ

√
2eε0neWb

Ln ln(Ln) [1− 0.18 cos (Ln + π/2)]
pn ,

where Wb is in electronvolts while the units of pn depend
on the method of calculation of the coefficient κ. The
instability will not develop if the beam current is below
this threshold. The quantitative effect of collisions on
both the growth rate and the threshold current predicted
by the fluid theory is in good agreement with the results
of kinetic simulations.
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