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The instability of a monoenergetic electron beam in a collisional one-dimensional plasma bounded

between grounded walls is considered both analytically and numerically. Collisions between electrons

and neutrals are accounted for the plasma electrons only. Solution of a dispersion equation shows that

the temporal growth rate of the instability is a decreasing linear function of the collision frequency

which becomes zero when the collision frequency is two times the collisionless growth rate. This

result is confirmed by fluid simulations. Practical formulas are given for the estimate of the threshold

beam current which is required for the two-stream instability to develop for a given system length,

neutral gas pressure, plasma density, and beam energy. Particle-in-cell simulations carried out with

different neutral densities and beam currents demonstrate a good agreement with the fluid theory

predictions for both the growth rate and the threshold beam current. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4972543]

I. INTRODUCTION

In plasma discharges, surfaces of objects immersed in

the plasma may emit electrons. This emission may be caused

by a direct heating of the material (thermal cathodes), intense

light (photoemission), or by bombardment by energetic elec-

trons or ions (secondary electron emission). If the electro-

static potential of the object is much lower than the potential

of the plasma, the emitted electrons are accelerated by the

electric field and form an electron beam in the plasma. If the

two-stream instability develops, the intense plasma oscilla-

tions will heat the plasma and modify the electron velocity

distribution function (EVDF). This includes, in particular,

the production of suprathermal electrons which are very

important in material processing.1

The presence of the electron beam itself does not guar-

antee that the intense oscillations will appear. If the dissipa-

tion, e.g., due to collisions between electrons and neutrals, is

strong, the instability may not develop at all. In an experi-

ment of Sato and Heider,2 a 1000 eV electron beam was cre-

ating a plasma in a chamber filled with neutral gas (hydrogen

or helium). Various values of neutral pressure were used. An

energy analyzer placed at the exit end was measuring the

energy spectrum of the beam particles. For neutral pressures

below 70 mTorr, it was found that the higher the beam cur-

rent the greater the width of the spectrum. Similar effect was

caused by the increase of the neutral density since this was

accompanied with the plasma density increase and the corre-

sponding increase of the instability growth rate. The growth

of the energy spectrum width was attributed to the nonlinear

interactions between the beam and the plasma. However,

when the neutral pressure exceeded 70 mTorr, the spectrum

broadening disappeared which was interpreted as suppres-

sion of the instability by the collisions.

The effect of collisions of plasma electrons on the two-

stream instability has been studied previously in infinite or

semi-infinite plasmas. Singhaus3 considered a relativistic

electron beam with a Gaussian velocity distribution in a

relatively cold plasma. The system was infinite and initially

uniform. Only the collisions for plasma electrons were

accounted for. Electron beams with different temperatures

were used. The beam was considered hot or cold depending

on the value of parameter s ¼ ðnpTb=nbWbÞ1=2
, where nb and

np are the beam and the plasma electron densities, and Wb

and Tb are the average energy and temperature of the beam.

For the cold beam s� 1 and low collision frequency

� � ImðxÞ, the growth rate is

ImðxÞ ¼ 0:69ðxpx
2
bÞ

1=3; (1)

where xp and xb are the Langmuir frequencies of the plasma

and the beam electrons. For the large collision frequency

� � ImðxÞ, the growth rate of the cold beam instability is

ImðxÞ ¼ 0:8ðxpx
2
b=�Þ

1=2: (2)

Growth rate (1) is essentially an ordinary collisionless

growth rate of the two-stream instability in an infinite

plasma. Growth rate (2) remains nonzero for any value of �
and therefore the collisions cannot stabilize the cold beam.

The reason for this is the strong resonance between the cold

beam and the plasma wave in the infinite plasma. In warm

beams, however, this resonance is weaker and the collisions

may prevent the instability. According to Singhaus,3 for

high-temperature beams s� 1 this occurs if the collision

frequency satisfies the condition

�� 0:76xps
�2: (3)

These conclusions, with minor corrections, were later

confirmed by Self et al.4 In particular, they provide the fol-

lowing convenient expression for the growth rate of the

instability of a hot Maxwellian beam consistent with the

criterion (3):
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ImðxÞ ¼ 0:38xps
�2 � �=2: (4)

Abe et al.5 used a one-dimensional particle-in-cell (PIC)

code to study the injection of a beam into a long (15 to 17

resonance beam wavelengths kb ¼ 2pvb=xe where vb is the

beam velocity, and xe is the electron plasma frequency)

plasma-filled region approximating a semi-infinite plasma.

They focused on spatial rather than the temporal growth and

found that while the linear spatial growth rate (observed in

the region few kb wide near the emission boundary) was

barely affected by collisions, the amplitude of oscillations in

the area where the particle dynamics is nonlinear (down-

stream of the first wave amplitude maximum) was reduced

compared to the collisionless case. It is necessary to mention

that the collisions considered were due to electrostatic forces

existing in the numerical model. In general, the frequency of

such collisions is a function of the grid size, time step, and

the number of particles.6,7

Andriyash et al.8 considered analytically and numeri-

cally the two-stream instability which appears when an ultra-

short linearly polarized X-ray laser pulse produces streams

of photoionized electrons in a gas target. They have shown

that for higher collision frequencies, the saturation of the

instability occurs faster and at lower levels.

Cottrill et al.9 considered the relativistic electron beams

with different temperatures and distribution functions propa-

gating in a dense plasma where the electron-ion collisions

for the bulk electrons are important. This problem is relevant

to the fast ignition scheme in fusion applications where the

plasma is heated by a relativistic beam created by a short

high-intensity laser pulse. Numerical solution of the disper-

sion equation showed that the two-stream instability growth

rate is reduced due to collisions of the cold beam. For a

high-temperature beam, the collisions can cancel the two-

stream instability. Similar results were obtained by Hao

et al.10 who also solved a kinetic dispersion relation for a rel-

ativistic electron beam propagating in a cold dense plasma

with Coulomb collisions.

Lesur and Idomura11 studied the bump-on-tail instability

in an infinite 1D plasma using a Vlasov code with the colli-

sional operator containing the drag and diffusion. They

showed that the collisions strongly affect the nonlinear sto-

chastic dynamics of plasma oscillations in such a system.

Unlike the papers mentioned above, the present paper

considers a low pressure beam-plasma system of the length

of only few beam resonance wavelengths. Previously, a short

beam-plasma system was considered by Pierce.12 In Pierce

diode, however, the beam electron density is equal to the

density of background ions, while in the present paper there

is also the electron background while the beam density is

small compared to the density of ambient electrons. For

theoretical analysis, the electron beam is considered as

monoenergetic. This is justified if the beam energy is much

higher than both the plasma and the beam temperature. The

beam temperature may increase as the beam propagates

through the plasma due to scattering on neutrals and due to

interaction with strong plasma wave if the two-stream insta-

bility is excited. However, the size of the system considered

is small compared to the mean free path of beam electrons

associated with electron-neutral collisions. Beam electrons

perturbed by the wave also quickly leave the system, and

perturbations of the beam velocity remain small compared to

the initial velocity for a large part of the linear growth stage.

Whether the two-stream instability develops or not depend

on the competition between the two time scales—the growth

rate of the instability without collisions and the collision fre-

quency. The growth rate of the instability in such a short

plasma is much lower than that in an infinite plasma.13

Therefore, the suppression of the instability occurs for a

lower neutral gas pressures than in an infinite plasma for the

same beam and plasma density and the beam energy.

The present paper is the second in the series started by

Ref. 13 where a collisionless short beam-plasma system is

considered. It applies the analytical approach as well as the

fluid and kinetic numerical models used in Ref. 13 with

minor modifications to study the effect of collisions in such a

system.

The paper is organized as follows. In Section II, the lin-

ear theory of the two-stream instability in a bounded plasma

with collisions is given. In Section III, the fluid simulation

confirms the theory. Kinetic simulations are described in

Section IV. The results are summarized in Section V.

II. FLUID THEORY

Consider a cold uniform plasma bounded between two

grounded walls at x¼ 0 and x¼ L. A beam of electrons is

emitted by the wall x¼ 0 with velocity vb;0 and absorbed by

the wall x¼L. The walls reflect the plasma electrons. This

boundary condition approximates a sheath appearing in a

real plasma at the plasma-wall interface. The beam motion is

collisionless while the plasma electrons are scattered, for

example, by neutrals, with the collision frequency �e. The

ion motion is omitted. The ion density ni is uniform, con-

stant, and it ensures that the plasma is initially neutral ni

¼ ne;0 þ nb;0, where ne;0 and nb;0 are the initial densities of

the bulk and beam electrons. Full dynamics of such a system

is described by the following set of equations:

@

@t
ne;b þ

@

@x
ne;bve;b ¼ 0; (5)

@

@t
ve þ ve

@

@x
ve ¼ �

e

m
E� �eve; (6)

@

@t
vb þ vb

@

@x
vb ¼ �

e

m
E; (7)

@2

@x2
U ¼ e

e0

ne þ nb � nið Þ; (8)

where subscripts e and b denote the bulk and beam electrons,

�e and m are the electron charge and mass, the electric field

is E ¼ �@U=@x, and U is the electrostatic potential.

Note that in the beam motion equation (7), the colli-

sional term is omitted. This is reasonable if (a) for the given

beam energy and neutral density, the electron mean free path

is much larger than the size of the system L, and (b) the

energy of the beam is high (typically hundreds of eV) so that

the scattering occurs at small angles14,15 and the velocity of
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the scattered beam electron is close to its initial velocity.

Collisions for the plasma electrons are retained, however,

since these electrons are trapped by the sheath inside the

plasma volume, and they suffer collisions even though they

have to bounce several times between the walls before that.

These conditions are satisfied in kinetic simulations

described in Section IV.

The linear dispersion equation is obtained in a procedure

similar to the one used by Pierce12 and recently in Ref. 13.

The plasma and the beam densities and velocities are repre-

sented as sums of unperturbed values ne;0, nb;0; vb;0 and per-

turbations dne; dnb, dvb, and dve (the unperturbed value of

the plasma electron velocity is zero). The perturbations are

described by linearized equations (5)–(8)

@

@t
dne þ ne;0

@

@x
dve ¼ 0; (9)

@

@t
dve ¼ �

e

m
E� �edve; (10)

@

@t
dnb þ

@

@x
nb;0dvb þ dnbvb;0ð Þ ¼ 0; (11)

@

@t
dvb þ vb;0

@

@x
dvb ¼ �

e

m
E; (12)

@2

@x2
U ¼ e

e0

dne þ dnbð Þ: (13)

Note that for perturbations proportional to expð�ixtþ ikxÞ,
Equations (9)–(13) give a usual dispersion equation

1 ¼
x2

e;0

x xþ i�eð Þ þ
x2

b;0

x� kvb;0ð Þ2
; (14)

where x2
e;0 � ne;0e2=e0m and x2

b;0 � nb;0e2=e0m are the elec-

tron plasma frequencies of the plasma and the beam elec-

trons, respectively.

In the bounded system, one looks for a solution for the

potential in the form

Uðt; xÞ ¼ ðAxþ Beikþx þ Ceik�x þ DÞe�ixt; (15)

where coefficients A;B;C;D are complex constants, and

wave vectors k6 of the two waves propagating in the system

satisfy the dispersion equation (14)

x� k6vb;0ð Þ2 ¼
x2

b;0

1� x2
e;0=x xþ i�eð Þ : (16)

The corresponding density and velocity perturbations of

plasma and beam electrons are

dne;bðt; xÞ ¼ ðdn0e;b þ dnþe;beikþx þ dn�e;beik�xÞe�ixt;

dve;bðt; xÞ ¼ ðdv0e;b þ dvþe;beikþx þ dv�e;beik�xÞe�ixt:
(17)

Substituting (15) and (17) into Eqs. (9)–(12) gives

dn0e ¼ 0; dn6
e ¼

ne;0k6

x
dv6

e ; dv0e ¼
e

m

A

�ixþ �eð Þ ;

dvþe ¼ �
e

m

kþB

xþ i�eð Þ ; dv�e ¼ �
e

m

k�C

xþ i�eð Þ ; (18)

and

dn0b ¼ 0; dn6
b ¼

nb;0k6

x� k6vb;0
dv6

b ; dv0b ¼
e

m

A

�ixð Þ ;

dvþb ¼ �
e

m

kþB

x� kþvb;0ð Þ
; dv�b ¼ �

e

m

k�C

x� k�vb;0ð Þ
: (19)

Combining (15), (18), and (19) with boundary condi-

tions dnbð0Þ ¼ 0; dvbð0Þ ¼ 0; Uð0Þ ¼ 0, and UðLÞ ¼ 0, one

obtains

k2
þBþ k2

�C ¼ 0;

A

x
þ ikþB

x� kþvb;0
þ ik�C

x� k�vb;0
¼ 0;

Bþ Cþ D ¼ 0;

ALþ BeikþL þ Ceik�L þ D ¼ 0: (20)

Then one can express A, C, and D in terms of B using the

first three equations of (20), substitute the results into the

fourth equation of (20), and get

k2
� eikþL � 1ð Þ � ik2

�kþxL

x� kþvb;0
¼ k2

þ eik�L � 1ð Þ � ik2
þk�xL

x� k�vb;0
:

(21)

It is convenient to introduce a dimensionless variable

v ¼ xb;0=xe;0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

e;0=x xþ i�eð Þ
q ; (22)

which in combination with (16) allows to write the denomi-

nators in (21) as

x� k6vb;0 ¼ 6vxe;0: (23)

Finally, substituting (23) into (21) produces the following

dispersion equation for the finite length beam-plasma

system:

�i
2 1� vð Þ
v 1þ vð ÞLn þ ei 1�vð ÞLn � 1� 1� vð Þ2

1þ vð Þ2
ei 1þvð ÞLn � 1½ � ¼ 0;

(24)

where the normalized system length Ln is

Ln � Lxe;0=vb;0: (25)

Equations (24), (25), and (22) define the frequency x as a

function of the distance between the walls L while wavenum-

bers k6 can be obtained from (23) as

k6vb;0 ¼ ð17vÞxe;0: (26)

Dispersion equation (24) exactly matches the dispersion

equation for v obtained in Ref. 13 for the collisionless sys-

tem. Therefore, v itself is a universal parameter depending

on the normalized system length (25) only. The difference,

however, is in the definition (22) of variable v as a function

of x which in the present paper involves the collision

frequency. Note that if �e ¼ 0, Equation (22) defines v in

122119-3 Sydorenko et al. Phys. Plasmas 23, 122119 (2016)



exactly the same way as Ref. 13. Introduce the frequency of

oscillations in the collisionless system as

x2
ncl ¼

x2
e;0

1� a=v2
; (27)

where subscript “ncl” stands for “no collisions,” a ¼
nb;0=ne;0 is the relative beam density, and v is found from

(24). Then (22) can be transformed into

xðxþ i�eÞ � x2
ncl ¼ 0; (28)

which in the limit �e � xe;0 gives x ¼ xncl � i�e=2 so that

ImðxÞ ¼ ImðxnclÞ � �e=2: (29)

Therefore, the instability will not develop if the collision fre-

quency exceeds a threshold value

�e;thr ¼ 2ImðxnclÞ; (30)

where ImðxnclÞ is the temporal growth rate in the system

without collisions which can be estimated using the approxi-

mate formula provided in Ref. 13

Im xnclð Þ
xe;0

¼ a
13

Lnln Lnð Þ 1� 0:18 cos Ln þ
p
2

� �� �
: (31)

It is necessary to mention that Eq. (29) is similar to Eq. (4)

originally obtained in Ref. 4 except for the definition of the

growth rate without collisions.

For practical use, criterion (30) can be written in a form

which involves the neutral gas pressure and the beam cur-

rent. To do this, first, assume a linear relation between the

electron collision frequency �e and the neutral gas pressure

pn for the selected neutral species

�e ¼ jðTeÞpn; (32)

where the coefficient jðTeÞ depends on the scattering cross

sections and the electron temperature (or on the EVDF if it is

not Maxwellian). Substituting (32) and (31) in the left- and

right-hand sides of (30), respectively, replacing a in (31)

with Jb;thr=ene;0vb;0 where Jb;thr is the threshold beam current

density, then expressing the beam velocity vb;0 via its energy

Wb;0, and finally replacing xe;0 with its definition, criterion

(30) can be written as follows:

Jb;thr ¼
6:5j Teð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ee0ne;0Wb;0

p
Ln ln Lnð Þ 1� 0:18 cos Ln þ p=2ð Þ½ � pn; (33)

where Wb;0 � mv2
b;0=2e is the beam energy in electronvolts.

For a given neutral gas pressure, the two-stream instability

does not develop if the beam current density is below this

threshold.

III. FLUID SIMULATION

Theoretical predictions of Section II are tested in fluid

simulations. The numerical fluid model solves Equations

(5)–(8) on a regular grid. The model uses the SHASTA

method16 to advance densities in Eq. (5) and a simple

upwind scheme to advance velocities in Eqs. (6) and (7). In

order to include the reflection of plasma electrons from the

sheath, condition ve¼ 0 is introduced at the ends of the sys-

tem x¼ 0 and x¼ L. The potential at the system ends is set

to zero, Uð0Þ ¼ UðLÞ ¼ 0. The beam injection at boundary

x¼ 0 is ensured by conditions nbðx ¼ 0Þ ¼ nb;0 and vbðx ¼ 0Þ
¼ vb;0. No boundary condition is imposed on the plasma den-

sity at both ends of the system and on the beam density and

velocity at the exit end x¼L. Initially, the bulk and the beam

electron densities are uniform, the beam flow velocity is vb;0

everywhere, the bulk electron flow velocity in the inner nodes

has a harmonic perturbation ve;0 ¼ v0 sinðxxe;0=vb;0Þ where

the amplitude v0 is very small, v0 � vb;0. Previously, this

model was used to study the dispersion of oscillations excited

by an electron beam in a collisionless finite length plasma.13

Simulations discussed in this section are carried out with

the following common parameters: the initial plasma electron

density ne;0 ¼ 2� 1017 m�3, the Langmuir plasma frequency

corresponding to this density xe;0 ¼ 2:523� 1010s�1, beam

energy Wb;0 ¼ 800 eV (the velocity corresponding to this

energy is vb;0 ¼ 1:678� 107m=s), beam-to-plasma density

ratio a ¼ 0:0001, numerical grid cell size Dx ¼ 4:156

�10�6 m which is 1/8 of the Debye length for the electron

density as above and the temperature 2 eV, time step

Dt ¼ 8:258� 10�14 s. The selected values of Dx and Dt
ensure stability of the SHASTA algorithm for electron flows

with a velocity Dx=2Dt which corresponds to the energy of

1800 eV. The classical resonance beam wavelength is kb

¼ 2pvb;0=xe;0 ¼ 4:178 mm.

In general, both the frequency and the wavenumber are

complex numbers and functions of L with band structure, as

studied in detail in Ref. 13. The present paper considers a

single band with 3:9 � L=kb � 4:6. This makes the plasma

size near 18 mm which is close to the size of the density pla-

teau in the recent study of beam-plasma interaction in Ref.

17 and the size of the plasma in a dc-rf etcher considered in

Ref. 1. The growth rate obtained in collisionless fluid simula-

tion for the selected band is shown by the red curve in Fig. 1.

Note that there is a good agreement between the simulation

and the approximate formula (31), compare the red and the

blue curves in Fig. 1.

To study the effect of collisions with the fluid model,

the value of L ¼ 4:4kb is selected corresponding to the maxi-

mum of the collisionless growth rate marked by the arrow in

FIG. 1. Temporal growth rate of the two-stream instability versus the system

length in a collisionless beam-plasma system. The red markers connected by

the red curve represent values obtained in the simulation. The solid blue

curve is calculated with the approximate formula (31). The arrow marks the

length selected for fluid simulations with the non-zero collision frequency

shown in Figures 2 and 3.
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Fig. 1. A set of simulations is performed with the frequency

of collisions gradually increasing from zero until the growth

of the amplitude of oscillations cancels completely, as shown

in Fig. 2.

The temporal growth rate decreases linearly with the col-

lision frequency in good agreement with Eq. (29), compare

the red and the blue curves in Fig. 3. Note that the temporal

growth rate is obtained during time intervals of exponential

growth with a constant rate (including the zero growth rate).

One can easily identify such intervals in Fig. 2. The initial

stage when the growth rate rapidly decreases with time, and

the saturation stage are excluded from consideration.

It is instructive to compare the results presented above

with the predictions of Refs. 3 and 4. Equations (1) and (2)

for cold beam are of no use here: the low-collision frequency

limit growth rate (1) is too high and independent on the colli-

sion frequency while the expression for the high-collision

frequency growth rate (2) cannot be used since the collision

frequency is too low. Threshold condition for a warm beam

(3), however, produces a reasonable estimate. The collision

frequency which sets the growth rate to zero in the fluid sim-

ulation with L ¼ 4:4kb above is � ¼ 3:736� 107 s�1. For the

selected beam and plasma parameters, according to (3), such

a collision frequency cancels the instability in an infinite

plasma if the beam temperature exceeds 41 eV. Similar

energy spread of an 800 eV beam is observed in Ref. 1. Note

that using a warm electron beam reduces the growth rate of

the two-stream instability even without collisions, compare

Equations (4) and (1). The estimate above shows that for

plasma parameters used in the present paper, which are typi-

cal for plasma processing applications, the finite beam tem-

perature and the finite system length have similar effects for

a reasonable value of the beam temperature. Therefore, in

future studies, it is necessary to consider a finite temperature

beam in a finite length plasma.

IV. KINETIC SIMULATION

In low-pressure plasmas, the kinetic effects are impor-

tant for the electron dynamics. The frequency of collisions

with neutrals and the scattering angle for each electron

depend on the electron energy. Reflection from the sheath

near the wall changes the direction of the electron velocity

but does not stop the particle. The electron velocity at each

point is the result of action of the electric field not only in

this point, but along the whole trajectory before that. These

effects are omitted in the simple fluid approximation used in

Section II. Therefore, it is necessary to check whether the

results of the fluid theory, in particular, the expressions for

the growth rate (29) and the threshold current (33), remain

valid if the kinetic effects are accounted for. Below, for

kinetic description of the interaction of an electron beam

with a low-pressure finite length plasma, a 1d3v particle-in-

cell (PIC) code EDIPIC18 is used.

The PIC simulation setup is very similar to the one in

the fluid simulations above: a uniform plasma is bounded by

grounded walls with a distance L between them and the wall

x¼ 0 emits an electron beam with constant flux and energy.

At the beginning of simulation, both beam and bulk electrons

are uniformly distributed along the system. The bulk elec-

trons and the beam electrons are represented by macropar-

ticles with different charges which greatly improve the

resolution of beam dynamics for low beam currents. The

ions are represented by a uniform constant immobile posi-

tively charged background which ensures the quasineutrality

at t¼ 0. The motion of beam electrons is collisionless, they

are injected at x¼ 0 with the given beam energy and can

freely penetrate through the boundaries. The bulk electrons

may collide elastically with neutrals and are reflected specu-

larly at the boundaries. The cross section of the collisions

corresponds to Argon.19

Initial plasma and beam parameters, such as ne;0, Wb,

and grid resolution Dx are the same as in Section III. The

time step is Dt ¼ 1:65� 10�13 s. The plasma electrons have

a finite initial temperature of Te;0 ¼ 2 eV. This value is

selected as a compromise between the desire to have a cold

plasma as in the fluid simulation and the growth of the

numerical cost when the Debye length (and therefore the

size of a cell in the computational grid) decreases for low

electron temperature. Note that Te;0 is well below the thresh-

olds for the excitation (11.5 eV) and ionization (15.76 eV)

electron-neutral collisions for Argon which justifies omitting

them for the plasma electrons.19

One unpleasant consequence of using plasma with a

finite electron temperature is that the level of noise in PIC

simulations is much higher than that in the fluid simulation.

The noise, in particular, reduces the time interval when the

exponential growth of oscillations is visible, see Fig. 4.

Kinetic simulation reveals that the beam-plasma system

is very sensitive to the length of the plasma. A set of colli-

sionless simulations is performed with the relative beam

FIG. 2. Logarithm of the amplitude of electric field in V/m versus time in

fluid simulations with the following relative values of the collision fre-

quency �=xe;0: 0 (red), 0.0004 (green), 0.0008 (blue), 0.00119 (magenta),

0.00146 (cyan), and 0.00148 (black). The dependencies are obtained at

x ¼ 4:178kb. The system length is L ¼ 4:4kb, see the arrow in Figure 1.

FIG. 3. Temporal growth rate of the two-stream instability versus the colli-

sion frequency in a finite-length beam-plasma system. The red markers con-

nected by the red curve represent the values obtained in fluid simulations.

The blue curve corresponds to Eq. (29). The system length is L ¼ 4:4kb, the

collisionless growth rate is marked by the arrow in Figure 1.
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density a ¼ 0:0001 and L ¼ 4:3kb; 4:4kb, 4:5kb, and 4:6kb.

The selected values of L correspond to the same band of the

dispersion as shown in Fig. 1. Only for L ¼ 4:5kb, the expo-

nential growth of the amplitude of oscillations has a constant

rate from the start till the first amplitude maximum, see the

blue curve in Fig. 4. For other values of L, the growth rate

oscillates, see the red, green, and magenta curves in Fig. 4.

Note that the simulations with L ¼ 4:4kb have a noticeable

time interval where the growth rate is very close to the one

in the fluid simulation with the same L, compare the green

and the black curves in Fig. 4. It is necessary to mention that

oscillations of the growth rate are observed for certain inter-

vals of L in fluid simulations as well,13 but these intervals

are more narrow. In view of the above, for PIC simulation

with collisions described below, the system length L ¼ 4:5kb

is selected.

In order to obtain a dependence of the threshold beam

current on the neutral gas pressure equivalent to (33), a set of

fourteen simulations is carried out with L ¼ 4:5kb, three val-

ues of electron beam density a, and various values of neutral

density nn. The summary of these simulation parameters is

given in Table I. Note, since the threshold current (33)

depends on the neutral pressure pn, below the pressure is

used instead of the density.

The behavior of the system in PIC simulations is qualita-

tively similar to that of the fluid system considered above.

For each value of a, the lower values of pn allow the devel-

opment of the instability with a pronounced time interval of

the exponential growth with an approximately constant rate,

see red, green, and blue curves in Figs. 5(a), 5(c), and 5(e).

Increasing pn reduces the growth rate and eventually pre-

vents oscillations from growing after a relatively short initial

transitional stage which lasts no more than 200 ns, see

magenta and cyan curves in Figs. 5(a), 5(c), and 5(e). The

higher the value of a, the higher is the value of pn which sup-

presses the instability.

It is necessary to mention that the intense oscillations

produced by the two stream instability heat plasma electrons

which gradually increases the frequency of collisions, see

the red and the green curves in Fig. 5(b), the green and the

blue curves in Fig. 5(d), the red, green, and blue curves in

Fig. 5(f). The collision frequency produced by the code diag-

nostics is the frequency of scattering of electrons by neutrals

averaged over all electron particles. Usually the growth of

the collision frequency is a clear sign that the intense oscilla-

tions are excited. Only in simulation 3 of Table I, where the

oscillations were growing at a very low rate, no significant

modification of the collision frequency occurs till the end of

simulation, see the blue curves in Figs. 5(a) and 5(b). In

simulations where the prolonged exponential growth of

oscillations was not identified, the collision frequency stays

constant, see the magenta and cyan curves in Figs. 5(b), 5(d),

and 5(f). Note that the growth of the collision frequency

starts when the amplitude approaches its maximum and does

not affect the initial stages of the instability. The effect of

the collisions on the nonlinear stage of the instability is out

of the scope of this paper.

The simulation parameters are selected in such a way

that for a single value of a, there are several values of pn. In

this case, it is easier to find the threshold value of the neutral

pressure pn;thr preventing the instability for a given beam

current rather than the threshold current for a given pressure.

To find the threshold pressures, the following procedure is

involved. First, for each simulation where the exponential

growth is observed, the growth rate is identified by fitting the

dependence of the electric field amplitude versus time E(t)
with an exponent expðImðxÞtÞ, see the dashed black lines

A-I in Figs. 5(a), 5(c), and 5(e). This gives the growth rates

ImðxÞ for different a and pn, see Table I.

Second, the values of ImðxÞ from simulations with the

same a but different pn are fitted with a straight line

ImðxÞ ¼ Imðxkin
nclÞ � jpn=2; (34)

where Imðxkin
nclÞ has the meaning of the growth rate without

collisions in the kinetic description, j is the coefficient of

proportionality between � and pn introduced in Eq. (32). In

the present paper, j ¼ 1:839� 106 s�1mTorr�1 for electrons

with a Maxwellian EVDF of temperature 2 eV performing

elastic scattering in an Argon gas with temperature 300 K.

FIG. 4. Logarithm of the amplitude of electric field in V/m versus time in

collisionless PIC simulations with a ¼ 0:0001 and the system length L ¼
4:3kb (red, obtained at x ¼ 4:16kb), 4:4kb (green, obtained at x ¼ 4:26kb),

4:5kb (blue, obtained at x ¼ 4:31kb), and 4:6kb (magenta, obtained at

x ¼ 4:36kb). For comparison, the black curve represents a fluid simulation

with L ¼ 4:4kb (same as the red curve in Figure 2). Note that the blue curve

corresponds to simulation 5 of Table I.

TABLE I. Parameters of PIC simulations with L ¼ 4:5kb. The neutral pres-

sure pn corresponds to the given neutral gas density nn and the neutral gas

temperature of 300 K. In the growth rate column, “N/A” means that the

instability is suppressed, and a sufficiently long time interval with an expo-

nential growth cannot be identified.

Number

a
(10�4)

Jb

(A=m2)

nn

(1020 m�3)

pn

(mTorr)

ImðxÞ
(107 s�1)

pthr

(mTorr)

1 0.5 26.83 0.805 2.5 0.63 8.8

2 1.61 5 0.33

3 2.415 7.5 0.08

4 3.22 10 N/A

5 1 53.67 0 0 1.41 15.2

6 1.61 5 1.01

7 3.22 10 0.38

8 4.83 15 N/A

9 6.44 20 N/A

10 1.5 80.51 3.22 10 1.34 25.0

11 4.83 15 1.01

12 6.44 20 0.5

13 8.05 25 N/A

14 9.66 30 N/A
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This value is obtained by approximating the initial collision

frequencies from simulations 6, 7, 8, and 9 of Table I with a

linear law, as shown in Fig. 6. Equation (34) is equivalent to

Equation (29). Note that while the slope j=2 of line (34) is

enforced to match that of (29), the growth rates in PIC simu-

lations fit this slope surprisingly well, compare markers with

dashed straight lines of the same color in Fig. 7. The differ-

ence from the fluid theory is that the collisionless growth

rates Imðxkin
nclÞ are lower than the fluid values (31) by up to

24%, compare the dashed and the solid curves of the same

color in Fig. 7.

Finally, with Imðxkin
nclÞ known for each a, the threshold

pressure values giving ImðxÞ ¼ 0 are calculated as

pn;thr ¼ 2Imðxkin
nclÞ=j; (35)

which is equivalent to (30). These threshold pressures are

given in Table I and are marked by arrows in Fig. 7.

The three values of pn;thr for the three values of beam

current (shown by open black markers connected by a solid

black line in Fig. 8) are fitted with a linear law

Jkin
b;thr ¼ 3:4pn; (36)

shown by the black dashed straight line in Fig. 8. In (36), the

current density is in A=m2 and the neutral pressure is in

mTorr. This curve represents the threshold current predicted

by the PIC simulation. For comparison, with j, Wb;0; ne;0,

and Ln as in the kinetic simulations with L ¼ 4:5kb above,

the fluid threshold current (33) is

Jb;thr ¼ 2:695pn; (37)

where the current density and the pressure units are the same

as in (36). Thus, for the same pressure, the value of the

threshold current predicted by PIC simulations is about 26%

higher than the value given by the fluid theory, compare the

FIG. 5. The logarithm of amplitude of electric field in V/m (a), (c), (e) and the bulk electron collision frequency (b), (d), (f) versus time in PIC simulations

with parameters shown in Table I. In (a) and (b), the red, green, blue, and magenta curves are for simulations 1, 2, 3, and 4 of Table I, respectively. In (a),

dashed black straight lines A, B, and C show an exponential growth in simulations 1, 2, and 3, respectively. In (c) and (d), the red, green, blue, magenta, and

cyan curves are for simulations 5, 6, 7, 8, and 9, respectively. In (c), dashed black straight lines D, E, and F show an exponential growth in simulations 5, 6,

and 7, respectively. In (e) and (f), the red, green, blue, magenta, and cyan curves are for simulations 10, 11, 12, 13, and 14, respectively. In (e), dashed black

straight lines G, H, and I show an exponential growth in simulations 10, 11, and 12, respectively. The growth rates for lines A to I correspond to the ones

shown in Table I.

FIG. 6. The average frequency of elastic electron-neutral collisions versus

the neutral pressure. Markers with error bars represent values obtained in

simulations 6, 7, 8, and 9 of Table I, the error bars correspond to the ampli-

tude of noise in the simulation. The solid line is described by Equation (32)

with j ¼ 1:839� 106 s�1mTorr�1.

FIG. 7. Temporal growth rate of the two-stream instability versus the neutral

gas pressure. The solid straight lines are obtained with fluid theory equations

(29) and (31) where �eðpnÞ is defined by Equation (32); the red, green, and

blue solid lines are for a ¼ 5� 10�5; 10�4, and 1:5� 10�4, respectively.

Red markers represent the simulations 1, 2, and 3 of Table I, respectively

(see also lines A, B, and C in Fig. 5(a)). Green markers represent simulations

5, 6, and 7 of Table I, respectively (see also lines D, E, and F in Fig. 5(c)).

Blue markers represent simulations 10, 11, and 12 of Table I, respectively

(see also lines G, H, and I in Fig. 5(e)). Dashed red, green, and blue straight

lines are the approximate dependencies “growth rate versus pressure” for

a ¼ 5� 10�5; 10�4, and 1:5� 10�4, respectively, plotted as the best fit of

the PIC simulation data. The arrows mark the threshold pressures which turn

the growth rate of the instability into zero for the three values of the beam

density mentioned above.
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dashed black and the solid magenta lines in Fig. 8. This dif-

ference corresponds to the lower collisionless growth rates in

kinetic simulation which is reasonable since the kinetic

effects have a tendency to disrupt the resonance between the

wave and the particles and reduce the growth rate. Overall,

for the selected parameters, there is a very reasonable agree-

ment between the kinetic simulations and the simple fluid

theory given in Section II.

V. SUMMARY

The two-stream instability in a plasma bounded between

walls is quite different from that in an infinite plasma. The

oscillations grow both in time and space, and the growth

rates are functions of the distance between the bounding

walls. If this distance is only few resonance wavelengths, the

temporal growth rate is very small. Scattering of plasma bulk

electrons further reduces this growth rate. The present paper

finds that the rate becomes zero if the collision frequency is

equal to the doubled growth rate without collisions. Unlike

the results of previous studies,3,4 this criterion predicts that

the instability may be completely suppressed for cold beams.

The proposed fluid theory allows to calculate a threshold

beam current density for the given neutral gas pressure pn,

the collision frequency as a function of the pressure

�e ¼ jpn, the electron density ne, the beam energy Wb, and

the normalized system length Ln ¼ Lxe=vb

Jb;thr ¼
6:5j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ee0neWb

p

Ln ln Lnð Þ 1� 0:18 cos Ln þ p=2ð Þ½ � pn;

where Wb is in electronvolts while the units of pn must be

consistent with the definition of the coefficient j. The insta-

bility will not develop if the beam current is below this

threshold. The quantitative effect of collisions on both the

growth rate and the threshold current predicted by the fluid

theory is in good agreement with the results of kinetic

simulations.

The obtained results have practical implications for any

system where a beam is injected into a plasma with the

plasma gap width of the order of a few resonant plasma

wavelengths. The two-stream instability in such a short

system has an amplitude of saturation much higher than pre-

dicted for an infinite plasma13 which may cause various

interesting physical effects. For example, the bulk electrons

of temperature of a few eV can be accelerated to suprather-

mal energies of hundreds of eV by a beam with an energy of

a few keV despite the huge difference in the velocities of the

bulk electrons and the long wavelength plasma waves

excited by the beam. The acceleration occurs in the plasma

density gradient areas where these intense waves convert

into shorter wavelength waves with a lower phase speed.17

Collisions, however, suppress the instability and the related

effects in a short system for a much lower neutral pressure

compared to an infinite plasma because of the small growth

rate of the instability.
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sent the threshold pressures given in Table I and marked by arrows in Fig. 7.
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