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Abstract.
Partially-magnetized plasmas with magnetized electrons and non-magnetized

ions are common for Hall thrusters for electric propulsion and magnetron material
processing devices. These plasmas are usually in strongly non-equilibrium state
due to presence of crossed electric and magnetic fields, inhomogeneities of plasma
density, temperature, magnetic field and beams of accelerated ions. Free energy
from these sources make such plasmas prone to various instabilities resulting
in turbulence, anomalous transport, and appearance of coherent structures
as found in experiments. This paper provides an overview of instabilities
that exist in such plasmas. A nonlinear fluid model has been developed for
description of the Simon-Hoh, lower-hybrid and ion-sound instabilities. The model
also incorporates electron gyroviscosity describing the e↵ects of finite electron
temperature. The nonlinear fluid model has been implemented in the BOUT++
framework. The results of nonlinear simulations are presented demonstrating
turbulence, anomalous current and tendency toward the formation of coherent
structures.
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1. Introduction

Plasma systems with electron drift in crossed electric and magnetic fields are of interest
for a number of applications such as space propulsion, plasma sources for material
processing and magnetic filters for ion extraction and separation. In these devices,
the strength of the external magnetic field is such that the electrons are magnetized
but ions are not, so that ⇢e ⌧ L and ⇢i � L, where L is the characteristic length scale
of the plasma region in the device. For the purposes of this article we will refer to such
regimes as partially-magnetized or Hall plasmas. In these plasmas, the discharge is
supported by the electron current due to E⇥B drift, while ions, due to large Larmor
radius, can be accelerated by externally applied electric field E and extracted from
the discharge. These are common operation regimes in Hall plasma thrusters [1, 2],
magnetron devices for material processing [3], magnetic filters [4] and Penning type
plasma sources [5]. Similar plasma parameters regimes with strong E⇥B flows are
also of interest for space plasma physics [6, 7, 8].

Despite long history of successful application of Hall thrusters and other Hall
plasma sources, some aspects of their operation are still poorly understood. One
notable problem is the anomalous electron mobility, which exceeds the classical
collisional values by several orders of magnitude [9, 10, 11, 12, 13, 14, 15]. Hall plasmas
exhibit numerous oscillations in a wide range of frequencies [16, 17, 18, 19], and it is
generally believed that turbulent oscillations are responsible for anomalous transport
in Hall plasmas. Hall plasma devices also demonstrate the appearance of low frequency
coherent structures [20, 21, 22, 23] which are likely the result of plasma nonlinear self-
organization. Therefore, the problem of anomalous electron mobility in Hall plasmas
is another incarnation of a more general problem of plasma turbulence, anomalous
transport and heating. In this paper, we review basic mechanisms of instabilities that
may be operative in such plasmas and resulting in plasma turbulence. We formulate
the nonlinear fluid model describing such turbulence and present results of nonlinear
fluid simulations demonstrating turbulent behavior, anomalous transport and coherent
structures.

The equilibrium E⇥B electron drift, plasma density, temperature and magnetic
field gradients, and ion flow are all sources of plasma instabilities in Hall plasmas
[24]. The gradient-drift instability, related to the anti-drift mode [25], and lower-
hybrid instability of Hall plasma with transverse current [26, 27, 28] are thought
to be particularly important. The long wavelength E ⇥ B instability driven by
the combination of the magnetic field and density gradients was experimentally and
theoretically identified as a possible source of fluctuations and anomalous mobility
in Hall plasma thrusters [29, 30, 31, 32] and later in Penning discharges [33]. In
general, this instability can be considered as a collisionless version ofthe collisional
Simon-Hoh instability [34, 35]. The long wavelength gradient-drift instabilities are
usually considered in neglect of the electron inertia. However, for higher frequencies
and shorter wavelengths the e↵ects of the electron inertia become important which
leads to coupling to the lower-hydrid modes. The e↵ects of plasma and magnetic
field gradients on the lower-hybrid instability were earlier studied in kinetic theory
in Refs. [36, 37, 38, 39]. Here we present an advanced nonlinear fluid model
that incorporates electron gyroviscosity and self-consistently describes both long-
wavelength gradient-drift and lower-hybrid instabilities. In fact, we show that
gradient-drift instability smoothly transits into the lower-hybrid mode at shorter
wavelengths k?⇢e ' 1.
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The short wavelength lower-hybrid modes are also a special case of more general
beam cyclotron instabilities [40, 41, 42], in which higher cyclotron harmonics are
included. The nonlinear stage of such cyclotron instabilities, driven by the transverse
current was analyzed in Refs. [40, 41, 43], where it was concluded that these small scale
modes saturate at relatively low amplitude due to ion trapping. It was also shown that
a number of e↵ects such as collisions, finite value of the wavevector along the magnetic
field, nonlinear di↵usion also result in smoothing out the cyclotron resonances and the
mode transits into a slow ion-sound instability. This mode has been recently considered
as a possible source of short-wavelength fluctuations and anomalous mobility in Hall
thrusters [44, 45, 19, 46, 47, 42]. For a recent review of physics of the electron-
cyclotron instability, numerical simulations results and related experiments see Ref.
[48] and references therein.

Our fluid model in the short-wave-length limit, k2?⇢
2
e
� 1, correctly describes the

transition to the ion sound mode. In plasmas with unmagnetized ions, pure ion sound
mode exists for finite values of the wave-vector along the magnetic field, kkvTe > !.
In the lowest order, coupling of the ion sound mode to the equilibrium E⇥B flow of
electrons is weak. This coupling, however, is further enhanced e.g. by electron-neutral
collisions resulting in the collisional instability of the ion sound waves in plasma with
the equilibrium E⇥B flow [49]. The instability of a similar nature occurs in the
collisionless regime due to the inverse Landau damping associated with the E⇥B

electron current. In a finite length plasma, the electron current into the sheath leads
to a specific resistive e↵ect: sheath resistivity [50], which may result in the wall induced
(resistive) instabilities [51, 49]. General case of the dielectric walls was considered in
Ref. [49].

The full picture of instabilities in Hall plasmas is complex and, for typical
experimental conditions, likely involves a number of interacting modes which require
numerical simulations. Particle-in-cell kinetic simulations that o↵er a first principles
description and have provided valuable results on E⇥B plasma discharges [52, 53,
54, 55] could be the most realistic approach to study the experimental conditions.
However PIC simulations also could be di�cult to interpret, especially when practical
limitations of the modern computer capabilities and available resources are taken
into account. On the other hand, fluid simulations are faster and cheaper numerical
tools for simulating nonlinear plasma dynamics. They are easier to interpret and
provide much greater flexibility in separating various physics elements. We have
developed a set of nonlinear fluid codes to investigate the turbulent fluctuations
and transport in Hall plasmas relevant to electric propulsion [56, 57]. These fluid
simulations capabilities are being developed in conjunction with kinetic Particle-In-
Cell simulations [58]. Here we describe the results of our fluid simulations of turbulence
and anomalous transport relevant to electric propulsion, magnetron plasma sources,
and magnetic filters.

In this paper we mostly consider 2D plasma dynamics in the plane perpendicular
to the magnetic field and do not consider any 3D e↵ects, assuming that kk = 0, kk is
the wave-vector along the equilibrium magnetic field. Therefore, we do not consider
here the modified two-stream instability [59, 41] and related modes, which require a
finite component of the wavevector along the magnetic field. Our emphasis in this
paper is on higher frequency modes. Thus we do not consider here low-frequency
oscillations and instabilities that involve ionization processes such as breathing modes
[60]. For the description of some instabilities due to the ionization see Refs. [61, 62]
and references therein. A useful summary of experimental studies of low-frequency
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oscillations is provided in Ref. [63].
The overview of instabilities in this paper is oriented toward the understanding

the behavior of plasmas in such systems as Hall thrusters [64, 65, 66], magnetrons
[67] and magnetic filters [4]. In most typical configurations these devices involve
electron E⇥B current, beams of accelerated ions and plasma parameters gradients
as sources of plasma instabilities. One particular case, namely Penning discharge
geometry, does not involve the accelerated ions nor the magnetic field gradient. The
experiments with Penning discharges[23, 8, 68] have been performed to study the
e↵ects of plasma density gradients, shear of the E⇥B flows and neutral pressure. In
this paper, unless noted otherwise, various instabilities as presented in Figs. 1-4 are
characterized for plasma parameters of the Penning discharge in Ref. [23]. Unstable
eigen-modes for the parameters of the Hall thruster from Ref. [65] are characterised
in Ref. [69]. We have developed a simple solver that can be used to evaluate real
frequency and growth rate for the local instabilities discussed in this paper. The solver
is described in Ref. [70] and also available online as a supplemental material to this
paper. Local models are useful in providing physics insight and developing intuition on
presence of instabilities. It is important to note though, that in plasmas with strongly
inhomogeneous parameters, the properties of nonlocal modes can significantly di↵er
from the predictions of the local models [69]. In general, nonlocal and nonlinear
analysis is required to predict the occurance of fluctuations, its characteristics and
consequences such as anomalous transport. In this paper, we describe the physics
of the instabilities relevant to partially magnetized plasmas in E⇥B discharges and
present nonlinear simulations of turbulence resulting from such instabilities.

The rest of the paper is organised as follows. In Section 2, the analytical models
and results of the linear eigen-value analysis are presented. Section 3 is devoted to
the description of nonlinear model and results of nonlinear simulations.

2. Basic plasma dynamics models and instabilities

In this section, the set of basic fluid equations for plasma dynamics in partially
magnetised Hall plasmas is formulated. We use a generic geometry configuration
in which the equilibrium magnetic field is directed along the z axis, B0 = B0bz, the
equilibrium electric field and density (and possibly magnetic field) gradients are in
the x direction, E0 = E0bx, n0 = n0 (x). The azimuthal (periodic) direction is taken
along the y axis. In application to the cylindrical Hall thrusters, the magnetic field
would be directed radially (z� axis), the electric field along the axis of the thruster (x-
axis), and the y� direction is azimuthal. For the cylindrical magnetron configuration
(Penning discharge geometry), the magnetic field is axial (z�direction), and electric
field and density gradients are radial (x-direction) and y� direction is azimuthal.
Plasma is assumed to be quasineutral and the perturbed electric field is electrostatic.
Plasma is quasineutral at the length scales below the Debye length, k2�2

De
< 1. For

typical parameters in Ref. [23], B0 = 5 ⇥ 10�3 T, Te = 10 eV, and ne = 1018 m�3,
we have �De = 2. 35 ⇥ 10�5 m ⇢e = 6. 73 ⇥ 10�4 m, and ⇢2

e
/�2

De
' 103. Thus, for

⇢2
e
/�2

De
> 1, quasineutral approximation remains valid for k2?⇢

2
e
� 1. The electrostatic

approximation is valid for small scale fluctuations with k2c2/!2
pe

� 1. In the range
of ne = 1017 ÷ 1018 m�3, c/!pe ' (1.7÷ 0.5) ⇥10�2m, thus, the electromagnetic
corrections, related to the magnetosonic waves, will be important only for large scale
perturbations with L ' 10�2 m and larger.
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In this Section we use the parameters of Penning discharge experiment [23], to
characterise the main instabilities in partially-magnetized plasmas.

2.1. Ion dynamics

In partially magnetized plasmas, the ion Larmor radius is typically larger than the
system size and the ion cyclotron frequency is lower than the oscillations frequencies.
These conditions allow to neglect the e↵ects of the magnetic field on ions in the simplest
model. For some phenomena, the magnetic field e↵ect on ions is still important. In
these regimes, ion dynamics is strongly nonlocal and generally require kinetic theory
which is outside the scope of this paper.

Basic equations for cold unmagnetized ions are the continuity and momentum
equations:

@ni

@t
+r · (nivi) = 0, (1)

@vi

@t
+ (vi ·r)vi = � e

mi

r�. (2)

For linear perturbations with (en,�) ⇠ exp (�i!t+ ik · x), the system of equations
gives the following expression for the perturbed ion density

en
n0

=
k2ev2

i

(! � k · v0i)
2 , (3)

where evi =
⇣
ee�/mi

⌘1/2
is the oscillatory ion velocity in the perturbed field and v0i is

the equilibrium ion velocity.

2.2. Destabilization of anti-drift mode by the electron and ion flows

Hall plasmas with unmagnetized ions do not support the standard drift waves.
However, the density gradient and ion inertia result in the so-called anti-drift mode
[25]. Formally, this mode occurs only for the perturbations which are constant along
the magnetic field, where b ·r = 0, where b = B/B is the unit vector along the
magnetic field. In fact, in finite length systems, where the magnetic field lines
are terminated by boundaries, the perturbations also become two-dimensional (in
the plane perpendicular to the magnetic field) when the electron pressure quickly
equilibrates along the magnetic field due to fast electron thermal motion, for
! ⌧ kkvTe, where vTe =

p
2Te/me is the electron thermal velocity and kk is the

component of the wave vector along the magnetic field. In this state, the electron
density is constant along the magnetic field but remains a function of the transverse
(perpendicular to the magnetic field) coordinates. Then, the slow electron motion
in the perpendicular plane such as that due to the E⇥B and diamagnetic drifts
determine the density evolution, which e↵ectively means kk = 0.

In the simplest case and neglecting electron inertia, the electron response is due
to the electron E⇥B drift

@en
@t

+v
0
E
·ren+ evE ·rn0 = 0, (4)

giving

en
n0

=
!⇤

! � !0

ee�
Te

= � 1

(! � !0)!ci

kyev2i
Ln

, (5)
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where !0 = kyvE0, !⇤ = kyv⇤, vE0 = �E0/B0, v⇤ = �cTe/ (eB0Ln), L�1
n

= n
0

0/n0.
Using the perturbed ion density from Eq. (3), and neglecting the ion flow, one gets
for quasineutral oscillations

k2c2
s

!2
=

!⇤
! � !0

. (6)

The stable anti-drift mode follows for !0 = 0 : ! = k2c2
s
/!⇤ [25]. In fact, the anti-drift

mode does not depend on the electron temperature and the eigen-mode frequency can
be written as: ! = �k2Ln!ci/ky. Note that for !⇤ ! 0, the electron inertia and
parallel dynamics which were neglected in the equation (4), will have to be included.

The collisionless Simon-Hoh instability [71, 72, 73, 33] occurs due to the
destabilization of the anti-drift mode by the electron flow. The electron response
is modified by the E⇥B Doppler shift: ! ! !�!0. From (6), one can easily see the
instability criteria for ! < !0 in the form: !⇤/!0 > 0. The latter instability condition
can be written in general form as

✓
k · b⇥rn0

n0

◆
(k · b⇥E0) > 0. (7)

For a simple case when b =bz, k =kyby and n0 = n0 (x) this is written as E0 ·rn0 > 0.
The equilibrium ion velocity introduces the Doppler shift in the ion response,

! ! ! � k · v0i. This regime, called the modified Simon-Hoh instability, has been
studied in Refs. [73, 74, 75] with emphasis on the e↵ects of large orbits of trapped
ions in Penning discharge geometry. Note however, that for the Hall truster and
plane magnetron situations, the ions are not trapped and may have finite velocity
due to acceleration in the equilibrium electric field. The contribution of a finite ion
velocity v0i, modifies the real part of the frequency and, for larger values of v0i, a new
instability may set in. This can be seen from general dispersion relation

!⇤
! � !0

=
k2c2

s

(! � !0i)
2 , (8)

which gives

! = !0i +
k2c2

s

2!⇤
+

s
k4c4

s

4!2
⇤
+

k2c2
s

!⇤
(!0i � !0). (9)

There exist two separate mechanisms of destabilization, associated with the
equilibrium drift of electrons !0, and ions !0i, respectively. Finite electron flow is
destabilizing for !0/!⇤ > 0. This condition is independent of the sign of the azimuthal
wave vector ky and can be written as E0 · rn0 > 0. More precisely, the condition
vE0 > (k2/4k2

y
)!ciLn is required for the instability. For the modes with the lowest

instability threshold, kx = 0, see Fig. 2, this condition becomes |vE0| > !ci |Ln| /4,
which easily satisfied in most E⇥B discharge plasmas. Note that for B0 = 5⇥ 10�3

T , xenon plasma and |Ln| = 0.04 m, !ci |Ln| /4 ' 37 m/s.
The equilibrium ion flow is destabilizing for !0i/!⇤ < 0, or equivalently for

kxv0iLn/ky > 0. This means that for the conditions of the Hall thruster with
v0i = v0ibx, v0i > 0, the unstable modes should have definite helicity: kxLn/ky > 0.
A more accurate instability criterion has the form

!0i

!⇤
< �k2c2

s

4!2
⇤
, (10)
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which can also be written as

v0i >
1

4

✓
kx
ky

+
ky
kx

◆
!ciLn, (11)

assuming the condition kxLn/ky > 0.
The growth rate and real part of the anti-drift mode destabilized by the electron

flow has a linear scaling with the wave-vector, (!r, �) ⇠ ky [76]. The ion flow driven
instability has more complex dependence on ky, see Fig. 1.

It is interesting to note that for kxv0iLn/ky > 0, the instability may occur in two
di↵erent situations; simultaneous change of the sign of ky and kx does not change the
growth rate, but a↵ects the sign of the real part of the frequency. The eigen-frequency
of of the ion driven instability is shown in Fig. 1 for negative vi0, kx < 0 and Ln < 0,
ky is taken to be positive.

The Simon-Hoh instability is usually thought of as a relatively low frequency
mode, ! < !0 [77]. It is important to note however that for a given value of the
azimuthal wave-vector ky, the eigen-value of the destabilized anti-drift mode is a non-
monotonous function of the axial wave vector kx[69]. The modes with kx = 0 have the
lowest instability threshold. At fixed ky (and !0i = 0), the growth rate is increasing
with kx and reaches the maximum at

k2c2
s

2!⇤
= !0. (12)

At this point, the real part of the frequency and growth rate are equal to !0,
! = !0 + i!0. For higher values of kx the growth rate decreases and finally the mode
is stabilized. For the case of pure electron flow destabilization, the eigen-frequency
is shown in Fig. 2 as a function of kx for two values of the Ln parameter. Thus,
for the eigen-modes with a maximum growth rate [69], the frequency follows kyvE0

scaling similarly to the experimental data in Ref. [11]. For the ion flow destabilization
(!0 = 0) , the maximum growth rate depends on the ratio of !⇤ and kycs.

0 0.175 0.35 0.525 0.7
kyρe

-2.8

-1.4

0.0

1.4

2.8

γ
, ω

 , 
ra

d/
s

×104

a)

ω

γ

Figure 1: Frequency and growth rate of the anti-drift mode in Eq. (9) destabilized by
the ion drift as a function of ky⇢e for vi0 < 0, vi0 = �2 ⇥ 104 m/s, !0 = 0, Ln < 0,
kx⇢e = �7.5 · 10�4, ⇢e =

p
Te/me!2

ce
.

2.3. Electron dynamics including inertia and gyroviscosity

As was shown in Ref. [69], the growth rate and real part of the unstable anti-drift
modes reaches the !0 = kyvE0 value, which means that even for low azimuthal wave
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ω
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×105

ω

γ

Figure 2: Frequency and growth rate of the anti-drift mode destabilized by the electron
flow, vi0 = 0 as a function of the transverse wave-vector kx⇢e for Ln = �0.04 m
(squares) and Ln = �0.1 m (dots).
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ω
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γ
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ω

γ

0 4 8 12 16
ky ρe

0.0

1.1

2.2

3.3

ω
, r

ad
/s

b)

×106
×105

0.0

2.2

4.4

6.6

γ
, r

ad
/s

ω

γ

Figure 3: Frequency and growth rate of the lower-hybrid mode as a function of ky⇢e
at kx⇢e = 7.5 · 10�4: (a) destabilized by density gradient, v⇤ = 1.3 · 104 m/s, ⌫e = 0;
(b) destabilized by collisions only, !⇤ = 0, ⌫e = 106 s�1.

vector ky, the mode frequency may become comparable to the lower-hybrid frequency.
In this case, electron inertia has to be included which couples Simon-Hoh instability
to the lower-hybrid waves. At shorter wavelengths, the finite electron temperature
(electron Larmor radius) e↵ects also become important. In general, the regimes
with large values of the wave vector k2?⇢

2
e

� 1 have to be described by kinetic
theory. It is however, possible to describe the finite electron Larmor radius (FLR)
e↵ects via the electron gyroviscosity. In the limit of finite but small k2?⇢

2
e
< 1 the

gyroviscosity provides asymptotically correct description of the electron FLR. In the
limit of large, k2?⇢

2
e
� 1, the gyro-viscosity provides qualitatively correct behaviour

which is equivalent to the Padé type approximants (for k2?⇢
2
e
� 1) for the Bessel

functions appearing in the exact kinetic theory [78].
The most general electron momentum balance equation, including the electron

inertia and gyroviscosity is written in the form

mene

dve

dt
= ene(�r�+

1

c
ve ⇥B)�rpe �r ·⇧�mene⌫ve, (13)
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Figure 4: E↵ect of the gyroviscosity and conversion into the ion sound mode; note that
!r ⇠ ky. (a) Destabilization of the ion-sound mode by density gradient and collisions,
v⇤ = 1.3 · 104 m/s, ⌫e = 106 s�1, !0 = 0 (b) Destabilization by density gradient,E⇥B

drift and collisions, v⇤ = 1.3 · 104 m/s, vE0 = 5 · 105 m/s, ⌫e = 106 s�1.

where the fluid (substantive) derivative is

d

dt
=

@

@t
+ ve ·r, (14)

and ⇧ is the viscosity tensor. We also consider the electron collisions with stationary
neutral atoms resulting in the friction force described by the last term in Eq. (13).

The electron dynamics is considerably simplified by employing the low frequency
ordering ! ⌧ !ce. In this ordering, for the electron viscosity, it su�ces to consider
only collisionless gyroviscosity tensor ⇧g. Assuming that d/dt ⌧ !ce, the electron
velocity from Eq. 13 can be written as

ve? = vE + vpe + vI + v⌫ + v⇧g , (15)

where vE is the E⇥B drift velocity, vpe is the diamagnetic drift velocity and vI , v⌫

and v⇧g are the drift velocities associated with the inertia, collisions and gyroviscosity
tensor,

vE =
cb

B0
⇥r?�,vpe = � 1

en

b

B0
⇥r?pe, (16)

vI = � 1

!ce

b⇥ d

dt
(vE + vpe) , (17)

v⌫ =
⌫

!ce

b⇥ (vE + vpe) ,v⇧g = � c

enB
b⇥r ·⇧g. (18)

The gyroviscosity tensor in the last equation is given by [79, 80, 81]

⇧g =
1

!ce

K̂
�1

✓h
prv + p (rv)T

i
+

2

5

h
rq+ (rq)T

i◆
, (19)

where the operator K̂�1 acting on a (symmetric) tensor A is

K̂
�1

A =
1

4

n
[b⇥A · (1+ 3bb)] + [b⇥A · (1+ 3bb)]T

o
. (20)

In the expression for ⇧g, v = vE+vpe and the heat flux q =� 5/2peb⇥rTe/ (eB0).
The gyroviscous force provides the same order contribution to the momentum

balance equation as the inertia term. There are certain cancellations between two
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terms, the so called gyroviscous cancellation. The general form of the gyroviscous
cancellation can be written as [80]

mene (vpe ·r)ve? +r ·⇧g = r⇠
0
, (21)

where ⇠
0
is some scalar function.

Taking into account the gyroviscous cancellation from Eq. 21, for isothermal
electrons, the electron velocity is

ve? = v
(0) + v

(1), (22)

v
(0) =

cb

B0
⇥r?�� cTe

ene

b

B0
⇥r?n = vE + vpe, (23)

v
(1) = � 1

!ce

✓
@

@t
+ vE ·r+ ⌫

◆
(vE + vpe), (24)

and the electron continuity equation

@en
@t

+ vE ·rn+r ·
⇣
nv(1)

⌘
= 0.

Then, with (22)-(24), general equation for the perturbed electron density can be
written in the form

@

@t

�
en� ⇢2

e
r2

?en
�
� ⌫⇢2

e
r2

?en+ v
0
E
·ren+ evE ·rn0 + evE ·ren

+ n0⇢
2
e
r2

?
@

@t

 
ee�
Te

!
+ ⌫n0⇢

2
e
r2

?
ee�
Te

+
n0c

B0!ce

(vE ·r)r2
?�� Tec

eB0!ce

r · [(vE ·r)r?n] = 0. (25)

In the last two terms in this equation, variables vE , � and n contain both equilibrium
and perturbed parts. One has

(vE ·r)r2
?� =

�
v
0
E
·r

�
r2

?
e�+ (evE ·r)r2

?
e�+ (evE ·r)�

00

0 , (26)

where �
00

0 = d2�0/dx2. Similarly,

r · [(vE ·r)r?n] = r ·
⇥�
v
0
E
·r

�
r?en

⇤
+r · [(evE ·r)r?en] +

+r · [(evE ·r)r?n0] . (27)

The nonlinear terms can conveniently be written in the form using the Poisson
brackets: {a, b} = (@a/@x) (@b/@y)� (@b/@x) (@a/@y) . Therefore,

(evE ·r)r2
?
e� =

c

B0

n
e�,r2

?
e�
o
, (28)

and

r · [(evE ·r)r?en] =
c

B0
r ·

n
e�,r?en

o
. (29)

The last terms in equations (26) and (27) are related to the shear of the
equilibrium flow v

0
E

and the higher order derivatives of the equilibrium density.
The shear of the equilibrium flow (the last term in Eq. (26)) may result in the Kelvin-
Helmholtz type instabilities. Such instabilities in application to Hall thruster were
studied in Refs. [82, 83] (related modes were also considered in [83]). Note that
the gyroviscosity adds new terms related to the higher derivatives of the equlibrium
density. Similarly to the shear flow e↵ects, the gradients of the equilibrium density will
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a↵ect the stability of Hall plasma systems and, in general, require nonlocal analysis,
which is outside of this paper.

In linear approximation and using the Boussinesque approximation (neglecting
the terms related to the shear of the equilibrium flow v

0
E

and higher derivatives
of the equilibrium density), one obtains from (25)) the following expression for the
perturbed electron density

en
n0

=
!⇤ + k2?⇢

2
e
(! � !0 + i⌫en)

! � !0 + k2?⇢
2
e
(! � !0 + i⌫en)

e�

Te

. (30)

where !0 = k · v0
E
is the Doppler shift frequency due to the equilibrium electron flow,

and ⇢2
e
= cTe/ (eB0!ce) is the electron Larmor radius.

2.4. Lower-hybrid instability and transition to the ion sound mode for k2?⇢
2
e
� 1.

The lower-hybrid mode appears as a result of the balance between inertia of
unmagnetized ions and transverse inertia of magnetized electrons across the magnetic
field. In neglect of the drift terms, electron gyroviscosity and collisions, the transverse
electron inertia results in the perturbed electron density in the form: en/n0 =
k2?⇢

2
e
(e�/Te). Quasineutrality and ion density from (3) give the basic lower-hybrid

mode: (! � kxv0i)
2 = !2

LH
⌘ !ce!ci. General expression for the perturbed electron

density in Eq. (30) results in the following general dispersion equation for quasineutral
oscillations

!⇤ + k2?⇢
2
e
(! � !0 + i⌫en)

! � !0 + k2?⇢
2
e
(! � !0 + i⌫en)

=
k2?c

2
s

(! � kxv0)2
. (31)

This dispersion equation describes modifications of the basic lower-hybrid mode due
to density gradient, equilibrium E⇥B drift, collisions and e↵ects of finite electron
Larmor radius (via the gyroviscosity tensor). The density gradient, equilibrium E⇥B

electron flow and collisions are the mechanisms of the destabilization of the lower-
hybrid mode.

Alternatively, one can consider Eq. (31) as a high frequency extension of the
Simon-Hoh instability. The density gradient is a critical ingredient of the Simon-
Hoh instability (as described by Eq. (6)) in neglect of electron inertia. At the
higher frequencies, the mode becomes the lower-hybrid mode destabilized by a density
gradient. The transition of the inertialess Simon-Hoh instability into the lower-hybrid
instability is described by the equation

!⇤ + k2?⇢
2
e
(! � !0 )

! � !0
=

k2?c
2
s

!2
, (32)

where the electron gyroviscosity is omitted. The growth rate and real frequency
described by this equation are shown in Fig. 3a. The transition between Simon-Hoh
and lower-hybrid instabilities roughly occurs at !⇤ ' k2?⇢

2
e
!0.

The lower-hybrid mode in plasmas with E⇥B can also be destabilized by
collisions alone and in absense of the density gradient. Such modes were considered
in Ref. [84]. Relevant dispersion relation has the form

k2?⇢
2
e
(! � !0 + i⌫en)

! � !0
=

k2?c
2
s

!2
. (33)

Assuming ! < !0 and ⌫ < !0 one has [84]

! = ±!LH

✓
1 +

i⌫en
2!0

◆
.
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The behavior of the growth rate and real part of the frequency from Eq. (33) is shown
in Fig. 3b. The maximum growth rate occurs roughly at the point where !0 ' !LH .

The gyroviscosity has profound e↵ect on the mode behavior at large k2?⇢
2
e
. It

is easily seen from Eq. (30) that at large k2?⇢
2
e
, the electron response becomes

Boltzmann, and the general dispersion equation (31) results in the ion-sound mode,
!2 = k2c2

s
. The short wavelength sound mode can be destabilized by drift e↵ects

and collisions even in absence of the E⇥B drift as is shown in Fig. 4a. The E⇥B

drift enhances the instability as is shown in Fig. 4b. This instability is similar to
the appearance of the short wavelength ion sound mode in the kinetic theory of the
electron drift cyclotron instability [85, 86, 87]. In finite length systems, the ion sound
modes can also be destabilized by ion flow e↵ects [88].

2.5. Gradient of the magnetic field e↵ects

The authors have recently revisited the problem of the long wavelength E ⇥ B

instability in plasmas with inhomogeneous magnetic field and plasma density gradients
which was originally studied in Ref. [30] and later in Ref. [89]. It was shown
that quantitative corrections (to the previous theory) are required for the accurate
determination of the conditions for the instability and its characteristics (real part
of the frequency and growth rate) [90, 76]. These corrections occur due to full
compressibility of the E⇥B drift in inhomogeneous magnetic field, r · vE '
�2vE ·r lnB. It was also shown that the compressibility of the diamagnetic velocity,
r·(nvpe) ' �2nvpe ·r lnB, results in finite perturbations of the electron temperature.
A three-field fluid model that includes density, potential and electron temperature
perturbations was developed in Ref. [90, 76]. The general dispersion equation that
includes the electron inertia, gyroviscosity and e↵ects of the magnetic filed gradients
has the form

!⇤ � !D + k2?⇢
2
e
(! � !0 + i⌫en)

! � !D � !0 + k2?⇢
2
e
(! � !0 + i⌫en)

=
k2?c

2
s

(! � kxv0)2
. (34)

Neglecting electron inertia, the instabilities of some realistic profiles in Hall thrusters
were considered in Ref. [76].

3. Nonlinear model and simulations

3.1. Ion dynamics

For simulations, nonlinear equations are simplified by separating the equilibrium and
perturbed parts: X = X0 (x)+ eX (x, y, t) . The nonlinear evolution equations are solved
for the perturbed quantities eX (x, y, t). The equilibrium part X0 (x) is assumed to be
fixed. Here, we consider the case of the uniform electric field E0 = �r�0, and a
uniform gradient of plasma density.

The density evolution equation for ions has the form
✓
@

@t
+ v0 ·r

◆
en+ ev ·rn0 + enr · v0 + n0r · ev +r · (enev) = 0. (35)

The equation of motion for cold ions is
✓
@ev
@t

+ v0 ·rev + ev ·rv0 + (ev ·r) ev
◆

= � e

mi

r�. (36)
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We consider electrostatic perturbations, r⇥E =0, so that one can introduce a scalar
potential for the perturbed ion flow

ev = �re�. (37)

This representation is exact in the linear electrostatic case, however nonlinear terms
in Eq. (36) may not satisfy the relation (37). A more general form for the ion velocity
would be ev = �re� + r ⇥  , where the vector function  describes the solenoidal
part of the ion velocity. In many situations, the ion dynamics is determined by the
ballistic acceleration in the static electric field E0 = �r�0 so that the corrections to
(37) are small and can be considered in equation (36) perturbatively. The full range
of the validity of the potential representation (37) needs further studies.

In the potential approximation, the full ion equations are
✓
@

@t
+ v0 ·r

◆
r2e� = r2

✓
e

mi

� +
(re�)2

2

◆
, (38)

and ✓
@

@t
+ v0 ·r

◆
en
n0

�re� · rn0

n0
�r2e�� en

n0
r2e� = 0. (39)

3.2. Nonlinear model in dimensionless form

For nonlinear simulations equations (25), (38) and (39) are transformed into the
dimensionless form

@tn = � v0@xn+ ⇢⇤@x�+ ✓ + n✓ +rn ·r��Dnr4n, (40)

@t✓ = � v0@x✓ + ⌘ � n+r2 (r�)2 /2�D✓r4✓, (41)

@t⌘ = � u0@y⌘ + ⇢⇤@y�� ⌫⇤(⌘ � n)� {�, n}
� µ

�
�,r2

?�
 
+ µr · {�,r?n}�D⌘r4⌘. (42)

Here r2� = ✓, and n + µr2
?� � µr2n = ⌘. Dimensionless variables are defined

as follows t
0

= !LHt, x
0

= x/⇢LH , en/n0 = n
0
, ✓ = !LH✓

0
, e�/Te = �

0
,�

0
=

�/
�
⇢2
LH

!LH

�
. The dimensionless ion and electron velocities are defined as u

0

0 =

vE0/ (!LH⇢LH) and v
0

0 = v0i/ (⇢LH!LH). In what follows, the primes are omitted
from the equations. The normalized Larmor radius and collisionality are introduced as
⇢⇤ = ⇢LH/Ln and ⌫⇤ = ⌫/!LH , cLH = Te/

p
memi, ⇢LH = cLH/!LH , µ =

p
me/mi,

Dn, D✓, D⌘ are hyper-viscosity terms. All variables are considered on the rectangular
two-dimensional periodic domain (x, y); 0  x < Lx and 0  y < Ly, where x and y
are the axial and azimuthal coordinates for the Hall thruster geometry. We consider
uniform magnetic field, uniform electric field and fixed density gradient.

3.3. Nonlinear simulations

The fluid simulations presented in this paper are performed in the BOUT++
framework that was adapted for simulations of partially magnetized plasmas of for
E⇥B discharges [56]. BOUT++ was developed[91] for fluid and plasma simulations
in curvilinear magnetic field geometry using finite-di↵erence discretization and a
variety of numerical methods and time-integration solvers. It was designed and tested
with reduced plasma fluid models applications and has been widely used for studies
of edge tokamak phenomena, 3D plasma turbulence and structures [92, 93, 94].
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The typical parameters [65] for nonlinear simulations reported in this paper are
as follows: Te = 20 eV, n0 =1018 m�3, B0=10�2 T, E0=104 V/m, mi = 131 amu
(Xe+), !LH = 3.6 · 106 rad/s, cLH =8.485·104 m/s, ⇢LH=2.35 cm, v0 = 0.35 cLH ,
u0 = 11.7 cLH , ⌫e = 0.1826 !LH , D = Dn = D✓ = D⌘ = 10�6. Number of points in
the axial direction (x) is 1320, and number of points in azimuthal directions is 128.

Theory

Simulations

0.0 0.5 1.0 1.5 2.0
kx�LH

0.5

1.0

1.5

2.0

2.5

3.0

�/�LH

Theory

Simulations

0.0 0.5 1.0 1.5 2.0
ky�LH

0.5

1.0

1.5

2.0

2.5

3.0

�/�LH

Figure 5: The linear benchmark of the BOUT++ initial value simulations against the
linear analytical eigen-value solutions from Eqs. 40-42, ky⇢LH = 1, and kx⇢LH = 1,
for each plot respectively.

The BOUT++ initial simulations were benchmarked in the linear regime by using
the initial condition in the form ⇠ sin(2⇡x/Lx) sin(2⇡y/Ly). The comparison with the
linear eigen-value solutions is shown in Fig. 5. In nonlinear simulations the linear
(exponential) instability phase lasts few ⌧LH = !�1

LH
periods. The simulations were

run for 30⌧LH corresponding to 300 time steps. As the amplitude of fluctuations
exponentially increases, nonlinear e↵ects come into play, and instabilities reach
saturation at t = 5 � 10 ⌧LH , Fig. 6. The nonlinear saturation has been monitored
via the ”energy-like” functionals Ef ⌘ E[f(x, y)] =

R
f(x, y)2dxdy, where f = (n,� )

and the integration is performed over the whole domain. In the saturated state, the
energy input into the system due to the equilibrium density gradient and E⇥B flow
(which are the main sources of the instability) are balanced by the sink due to the
dissipation and hyperviscosity. We have confirmed in simulations with di↵erent time
and spatial resolution that the average amplitudes of fluctuating quantities: density,
velocity potential � and electrostatic potential �, as well as the average value of the
nonlinear electron current are not a↵ected by initial conditions nor by the value of
the hyper-viscosity. We do observe a slow secondary growth of quadratic En and E�

integrals, more pronounced for En rather for E� in Fig. 6. The nature of this slow
growth is being investigated now in longer simulations with increased resolution. One
can expect that the kinetic energy of ions Ei = mi

R
n (r�)2 dxdy , and electrons

Ee = mec2/B2
0

R
n (r�)2 dxdy should form the basic quadratic conserved quantities.

It is interesting that for cold electrons, the nonlinear terms in potential vorticity
equation (42) conserve the enstrophy like integral I =

R
⌘2dxdy, where ⌘ = n+r2�

is the potential vorticity for cold electrons. The structure of the quadratic conserved
quantities in the nonlinear system (40)-(42) and their relations with physical energy
integrals will be investigated further.

Nonlinear cascade creates modes with high wave numbers. The small-scale modes
below the smallest spatial length scale in the simulations have to be removed from the
system to avoid numerical instability. The standard approach in nonlinear turbulence
simulations is to introduce an artificial hyper-viscosity terms to damp such modes.
We have varied the magnitude of the hyper-viscosity D and have found that for the
broad range of the values of the hyper-viscosity D  10�4 the saturation level and
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Figure 6: (a) Evolution of energy-like integrals during linear stage of the instability
and nonlinear saturation. (b) Normalized anomalous current in nonlinear simulations.
The standard moving average (SMA) is also shown, averaging is done over 10 !�1

LH
.

linear growth region are not a↵ected.
One of the important results of our simulations is the demonstration of the

anomalous electron current due to turbulent fluctuation. The anomalous current is
calculated as an average Jx =< eneVEx >= L�1

x
L�1
y

cB�1
0

R
n@y�dxdy . The value

of the turbulent current is shown in Fig. 6b in units of the classical collisional
current, Jc = en0⌫eE0/ (B0!ce). For the parameters of our nonlinear simulations,
the anomalous current Jx ' 102 Jc, corresponds to the e↵ective Hall parameter
⌦H ' 27, ⌦H = !ce/⌫eff . Thus the values of the anomalous current Jx in the range
of 50÷100 Jc, obtained in nonlinear simulations, Fig. 6b, correspond to ⌦H = 54÷27.
These values roughly correspond to the values obtained in experiments with Penning
discharges [23] and in PIC simulations [58].

As is shown in Fig. 6b, the turbulent current is highly intermittent in time and
space. Such intermittency may be related to the presence of coherent structures
in turbulence. Figs. 7 and 8 clearly show the relatively large structures of the
order of few ⇢LH moving in the azimuthal direction. The anomalous current is a
result of the phase shift between density and potential, Jx ⇠< en@e�/@y > . In
quasilinear regime this phase shift can be estimated from the linear growth rate: �en '
evE ·rn0. In the nonlinear regime the linear growth rate should be replaced with the
nonlinear broadening frequency, �!nl. In the nonlinear saturation state, the nonlinear
broadening frequency is of the order of the lower-hybrid frequency, �!nl ' !LH .

The resulting structure of the current in shown in Fig. 9. Note that, the current
in this figure is along the x� direction. It is easily observed that the maximum
of the turbulent current in Fig. 9 is well correlated with the density and potential
structures. In the saturated state, as shown in Figs. 7 and 8, the maximum amplitude
of the density fluctuations en/n0 ' 0.2 and the fluctuating electric field is slightly larger
than the equilibrium field, eE � E0.

The anomalous current and coherent structures observed in our simulations
are reminiscent to azimuthally rotating structures observed in Hall thrusters and
magnetrons [95, 96]. It has been confirmed experimentally that the signficant part
of the anomalous current is carried by the spoke [5]. The appearance of spokes in
Hall plasma turbulence was noted long time ago [97] and they remain to be regular
features of Hall thruster [98, 22, 21, 20] and magnetron operation [95, 96], however,
the mechanism of spoke formation is still not clear. The spoke could be a result of
turbulence nonlinear self-organisation rather than directly originate from some linear
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instability. It has been suggested that modulational instability of lower-hybrid modes
may result in large scale low frequency coherent modes [99]. The tendency toward
formation of coherent structures in our simulations may be associated with the above
noted conservation of the enstrophy like integral. This phenomena requires further
studies.

Figure 7: Perturbed plasma density at t = 30!LH = 300 time steps. (a) Colour coded
levels of constant ñ/n0. (b) The solid lines show levels of positive ñ/n0, dotted lines-
negative.

Figure 8: Normalized perturbed plasma potential at t = 30!LHshow levels of positive
e�/Te, dotted lines- negative.

Figure 9: Normalized turbulent current at t = 30!LH . (a) Colour coded levels of
constant J/Jc. (b) The solid lines show levels of positive J/Jc, dotted lines- negative.
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Figure 10: Generalized vorticity at t = 30!LH . (a) Colour coded levels of constant ⌘.
(b) The solid lines show levels of positive vorticity, dotted lines- negative, the absolute
values are as in colour bar in (a).

4. Summary

In this paper, an advanced fluid model for Hall plasmas with magnetized electrons and
unmagnetized fluid ions has been developed. A general overview of the instabilities in
partially-magnetized plasmas relevant to electric propulsion and magnetron devices for
material processing has been provided using this fluid model. The electron description
is based on the low frequency (! < !ce) reduction of the electron dynamics taking into
account electron inertia and gyroviscosity. The model extends the collisionless Simon-
Hoh instability into the short wavelength and higher frequency regimes that include
the lower-hybrid modes. It is shown that the lower-hybrid mode destabilized by the
density gradient is a natural extention of the Simon-Hoh instability. The gyro-viscosity
e↵ects, which are of the same order as the electron inertia, are important for plasmas
with finite electron temperature. The lower-hybrid modes in plasmas E⇥B drift can
be destabilized by the density gradient as well as electron-neutral collisions which are
especially e↵ective at shorter wave-lengths. The e↵ects of the gyroviscosity describe
the transition of the lower-hybrid waves into the ion sound waves for k2?⇢

2
e
� 1.

The reduced nonlinear fluid model has been implemented in the high performance
BOUT++ framework. Initial value simulations have been bench marked in the linear
regime against the results obtained by the eigenvalue solvers. In nonlinear simulations,
the saturation of turbulence and formation of the coherent structures have been
demonstrated. It is shown that the instability reaches the saturation in nonlinear
regime at a level which is independent of the initial state. Significant anomalous
current due to turbulent fluctuations has been found in the nonlinear state. The
anomalous (turbulent) current is strongly intermittent and the structures observed
in the current density are well correlated with density and potential structures. The
density and current structures are reminiscent of experimentally observed structures
(spokes) in Hall thrusters and magnetrons and the values of the anomalous Hall
parameter are consistent with experiments in Penning discharge and PIC simulations.

The nonlinear model and simulations presented in this paper provide the first
principles calculations of the anomalous electron current from turbulent fluctuations.
Further work will include expansion of the model to include ionization [61, 62] and
3D geometry e↵ects as well as self-consistent multi-scale simulations allowing for slow
evolution of background plasma parameters.
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