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Ion sound instabilities driven by the ion flow in a system of a finite length are considered by

analytical and numerical methods. The ion sound waves are modified by the presence of stationary

ion flow resulting in negative and positive energy modes. The instability develops due to coupling

of negative and positive energy modes mediated by reflections from the boundary. It is shown that

the wave dispersion due to deviation from quasineutrality is crucial for the stability. In finite length

system, the dispersion is characterized by the length of the system measured in units of the Debye

length. The instability is studied analytically and the results are compared with direct, initial value

numerical simulations. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4921333]

I. INTRODUCTION

Many natural settings of space and laboratory plasmas

often include equilibrium flows of ions and/or electrons. Such

situations occur in various plasma devices for electric propul-

sion, plasma diodes, plasma accelerators, plasma processing

devices, and emissive probe diagnostics. Plasmas permeated

by energetic beams are also typical situations in space and

astrophysics.1 Such plasmas represent a typical example of a

non-equilibrium system prone to instabilities due to presence

of free energy reservoir from stationary flows. One of the

simplest examples is the excitation of ion-sound waves when

the relative velocity between electrons and ions exceeds the

ion sound velocity, v0 > cs.
2–4 In infinite plasma, the instabil-

ity may occur as a result of the kinetic interaction of electrons

with the ion beam (inverse Landau damping). On the other

hand, a number of practical plasma configurations have the

finite length and it is of interest to investigate the

modification/new regimes of instabilities related to the

presence of boundaries. Instabilities due to accelerated ion

flows are of interest for the sheath region of the plasma-

material boundaries,5 plasma diodes,6,7 double layers,8–11 and

electric propulsion systems.12 In an infinite plasma, the sta-

tionary ion flow v0 results in the Doppler shift of the ion

sound waves frequency, x! x� kv0: It is shown in our

paper that in a finite length systems, the ion sound waves can

be destabilized due to reflections from the boundaries and

coupling with ballistic modes, x ¼ kv0; supported by the ion

flow. This instability is different from the above noted two-

stream type ion sound instability where the kinetic resonances

are important.

The Pierce plasma diode13 is a well studied case of the

instability driven by electron flow in a finite length system.

Various extensions of the instabilities in Pierce-like plasma

systems and related numerical and experimental studies have

been discussed in the literature.6,14–18 It is shown in our pa-

per that the problem of the ion sound waves in a system with

boundaries, in a special limit of strong dispersion, is formally

reduced to the Pierce like equations.

In our model, we consider only fluid (hydrodynamic)

effects; ions are assumed to be cold (to avoid Landau

damping) and have an uniform velocity with respect to

the electron component. Electrons are assumed to be in

Boltzmann equilibrium (electron inertia effects are

neglected). We employ analytical and numerical methods

to analyze the structure of unstable eigen-modes, deter-

mine the dispersion relations and conditions for the insta-

bility, and find the frequencies and growth rates of the

unstable modes.

II. OVERVIEW OF BASIC EQUATIONS AND
INSTABILITY MECHANISM

In this section, we present basic equations describing

the ion sound waves in a finite length system and give an

overview of the instability mechanism. The dynamics of

cold ions is described by linearized hydrodynamic

equations

@ni

@t
þ v0

@ni

@z
þ n0

@vi

@z
¼ 0; (1a)

@vi

@t
þ v0

@vi

@z
þ e

mi

@/
@z
¼ 0: (1b)

The electrons are assumed to be adiabatic and follow

Boltzmann relation assuming low frequency fluctuations,

x < kvTe

ne ¼
n0e

Te
/: (2)

The system is closed by the Poisson equation

@2/
@z2
¼ �4pe ni � neð Þ; (3)

where ni, ne, and / are the perturbations of the ion, the elec-

tron density, and the electrostatic potential, respectively,a)Electronic mail: koshkarov.alexandr@usask.ca
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n0—equilibrium density, e, mi—charge and mass of ions,

Te—electron temperature, v0—speed of ion flow, and

v2
Te ¼ 2Te=me—electron thermal velocity.

For the ion injection from the left boundary, the bound-

ary conditions similar to the Pierce problem13 are used

/ðz ¼ 0Þ ¼ /ðz ¼ LÞ ¼ niðz ¼ 0Þ ¼ viðz ¼ 0Þ ¼ 0; (4)

where L—length of the system. The important feature of

these boundary conditions is absence of density and velocity

perturbations from the emitting boundary, e.g., as in double

layer devices11 where accelerated ions are extracted from the

plasma source chamber.

Ion sound waves on the background of the equilibrium

ion flow are described in Eqs. (1)–(3). For infinite length sys-

tem (periodic boundary conditions), Eqs. (1)–(3) result in the

permittivity

e x; kð Þ ¼ 1þ 1

k2d2
e

�
x2

pi

x� kv0ð Þ2
; (5)

where d2
e ¼ Te=ð4pe2n0Þ is the Debye length and x2

pi

¼ 4pe2n0=mi is the ion plasma frequency, and x and k are

the frequency and wave number, respectively. The wave

mode energy corresponding to (5) is

E x; kð Þ ¼ x
@e
@x
jk/j2 ¼

2k2/2xx2
pi

x� kv0ð Þ3
: (6)

It follows that the Doppler shift due to the ion flow results in

negative energy perturbations for x < kv0: Coupling of neg-

ative and positive energy modes results in reactive instabil-

ities.19,20 In our case, the mode coupling occurs due to

boundary conditions on the left wall as illustrated in Fig. 1.

In Figs. 1(a) and 1(b), traveling wave packet arrives at the

left boundary and starts forming the reflected wave. Further

interaction of the reflected and original waves forms an

unstable mode with an increasing (in time) amplitude as is

shown in Figs. 1(c) and 1(d).

The right boundary (with impinging ion flow), where

only the potential is fixed, produces very little reflection, so

that the reflected wave amplitude is much smaller than that

of the incident wave (note the different scale in Fig. 2(c)).

There is no instability for the reflection from such a bound-

ary as is illustrated in Fig. 2.

In Secs. III–IV, we consider the analytical solution for

the unstable eigen-modes, investigate the instability condi-

tions, describe the numerical method, and compare the ana-

lytical and numerical results.

FIG. 1. Formation of unstable eigenfunction due to reflection of the wave packet from the emitting boundary on the left.
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III. ANALYTICAL SOLUTIONS FOR THE EIGEN-MODES

To study the linearized system (1) analytically, we seek

the solution in the form �e�ixt. Then, Eqs. (1)–(3) can be

reduced to a single equation in the form

v2
0/
0000 �2ixv0/

000 þ c2
s

d2
e

�x2� v2
0

d2
e

" #
/00 þ2ixv0

d2
e

/0 þx2

d2
e

/¼ 0;

(7)

where prime is a derivative with respect to z, and

c2
s ¼ Te=mi—the ion acoustic velocity. In the limit v0 ! 0;

for perturbations of the form �eikz; one obtains the disper-

sion equation for the standard ion acoustic waves

x2 ¼ k2c2
s

1þ k2d2
e

: (8)

General solution of (7) can be sought as a sum of the el-

ementary solutions / � Cie
kiz, which are the subject to the

boundary conditions (4). The characteristic equation for k
has the form

v2
0k

4 � 2ixv0k
3 þ k2 c2

s

d2
e

� x2 � v2
0

d2
e

" #
þ 2ixv0

d2
e

kþ x2

d2
e

¼ 0;

or in more convenient form

d2
e k� ix

v0

� �2

k2 � 1

d2
e

� �
þ c2

s

v2
0

k2 ¼ 0; (9)

which corresponds to Eq. (8) with Doppler shift.

A. Full quasineutrality case

The dispersion plays an important role in instability

mechanism. For the length scales much longer than the

Debye length, the charge separation is not important and one

can consider the fully quasineutral case, ni ¼ ne, correspond-

ing to the absence of the dispersion.

In this limit, the solution of system (1) can be obtained

in the form

/ zð Þ ¼ C1 exp
ixz

v0 þ cs

� �
þ C2 exp

ixz

v0 � cs

� �
: (10)

By imposing boundary conditions (4), we obtain the stable

eigen-modes with the real frequencies x

xn ¼ pn
v2

0 � c2
s

Lcs
; n 2 Z: (11)

It is worth to note that the formula (11) is not valid in

the zero electron temperature limit, Te ! 0; cs ! 0, because

in this case the solution for electrostatic potential will be dif-

ferent from (10)

/ zð Þ ¼ C1 þ C2zð Þe
ix
v0

z
; (12)

while boundary conditions will give us the frequency

xn ¼
2pn

L
v0; n 2 Z: (13)

Therefore, the non-dispersive waves are stable. As it

will be shown below, the wave dispersion is crucial for the

instability mechanism.

B. Weak dispersion case

In the long systems de � L, the dispersion is weak

kde � 1, where the wave number k � 1=L. Using dispersion

equation for plasma without flows (8), one gets the estimates

for the mode frequency

x � kcs or x � de

L
xpi: (14)

We solve (9) treating Debye length as a small parameter,

thus it has four roots where two of them are small �Oð1Þ
and two of them are large �Oð1=deÞ. The first pair coincides

with those in quasi neutral case

k1;2 ¼
ix

v06cs
þ O d2

e

� �
� O 1ð Þ: (15)

The second pair is

k3;4 ¼ 6
i

v0de

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

s � v2
0

q
þ ixc2

s

v0

1

c2
s � v2

0

þ O deð Þ � O
1

de

� �
:

(16)

Since all roots are different, we can write the general solu-

tion of (7) in this form

FIG. 2. Reflection from the boundary with free density and velocity perturbations (on the right).
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/ðzÞ ¼ C1ek1z þ C2ek2z þ C3ek3z þ C4ek4z: (17)

The perturbed ion velocity and density from the full system

(1) are found as

4peni ¼
/
d2

e

� /00; (18)

4pen0vi ¼
v0

d2
e

/þ c2
s � v2

0

ixd2
e

/0 � v0/
00 þ v2

0

ix
/000: (19)

The dispersion equation is obtained as a condition for the

existence of a nontrivial solution for C1, C2, C3, C4 in the lin-

ear system of equations (4)

D ¼ det

1 1 1 1

ek1L ek2L ek3L ek4L

k2
1 k2

2 k2
3 k2

4

l1 l2 l3 l4

0
BB@

1
CCA ¼ 0; (20)

where

lk ¼
c2

s

v2
0

� 1

 !
kk þ d2

ek
3
k : (21)

The dispersion equation (20) is difficult to solve analyti-

cally as there are numerous solutions on the whole complex

plane. However, we are interested only in those which have

the largest imaginary part, since these unstable modes will

dominate. The numerical solution of Eq. (20) for the long

system, with the length larger than the Debye length,

L ¼ 10de, is shown in Fig. 3(a). The mode frequency is con-

sistent with estimate (14).

For a fixed system length L, the instability growth rate

depends on the dimensionless ion flow velocity v0=cs. The

unstable regions are alternating with oscillatory (<ðxÞ 6¼ 0)

and aperiodic (<ðxÞ ¼ 0) zones. The boundaries of the

zones could be found analytically using the fact that at the

boundary the wave frequency is zero. Expanding (20) in

Taylor series

D xð Þ ¼ D 0ð Þ þ @D 0ð Þ
@x

xþ O x2ð Þ ¼ 0; (22)

and using that Dð0Þ � 0; @Dð0Þ
@x ¼ 0, one finds

v2
0

c2
s

¼ 1

1þ p2n2
d2

e

L2

where n ¼ 1; 2; 3:::; (23)

solutions to this Eq. (23) correspond to zones boundaries in

Fig. 3.

C. Strong dispersion case

In the short wavelength limit (kde � 1 or de � L), the

dispersion modifies the solution. In this limit, the ion sound

modes are reduced to the oscillations with the frequency of

the order of x � xpi. In this case, the reciprocal of the

Debye length (1=de) is considered as a small parameter.

Then, the roots of Eq. (9) are

k1;2 ¼ 0 and k3;4 ¼ i
x6xpi

v0

; (24)

and the general solution

/ zð Þ¼C1 exp i
xþxpi

v0

z

� �
þC2 exp i

x�xpi

v0

z

� �
þC3zþC4:

(25)

This situation becomes mathematically equivalent to the

Pierce instability. Imposing boundary conditions (4), one

obtains an homogeneous linear system, which has nontrivial

solutions when the following dispersion equation is satisfied:

2na 1� ein cos að Þ þ i n2 þ a2
� �

sin aein þ i
n2

a
n2 � a2
� �

¼ 0;

(26)

where n ¼ Lx=v0 and a ¼ Lxp=v0.

It was shown,13,21 that the dispersion equation (26) has

the following stability properties:

a < p –has stable solution; (27a)

ð2N � 1Þp < a < 2Np –has aperiodic instability; (27b)

2Np < a < ð2N � 1Þp –has oscillatory instability; (27c)

where N ¼ 1; 2; 3::::, with a maximum growth rate c � v0=L.

There are many roots of the dispersion equation (26) on

whole complex plane; as before, we choose only roots which

have the largest imaginary part. The solutions which meet

these criteria are shown in Fig. 4. The alternating aperiodic

and oscillatory instability zones exist similar to the weak dis-

persion case. Fig. 3 also shows the results of direct initial

value simulations described in Sec. IV.

FIG. 3. The alternating zones of aperiodic (<ðxÞ ¼ 0) and oscillatory

(<ðxÞ 6¼ 0) instabilities; (a) the solution of the analytical dispersion equa-

tion (20) and (b) results of numerical simulations.
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IV. NUMERICAL SOLUTION

To confirm our analytical results, we solve the system

(1) numerically. These equations have different structures

and we employ the following strategy. The first two equa-

tions of (1) are considered as an explicit initial value prob-

lem (IVP), and the third and fourth equations of (1) are

solved as a boundary value problem (BVP). These subsys-

tems are solved numerically in time and to obtain the time

dependent evolution of IVP and BVP they are solved itera-

tively. The Poisson equation in BVP is solved at the begin-

ning of each time step. The BVP system uses the given ion

density profile (either from the initial condition or from the

previous time step) to produce the electrostatic potential pro-

file. The known potential distribution allows us to solve IVP

in time. As the final step, we update the ion density and ve-

locity profiles obtained from IVP.

Common ways to solve a BVP22 are a family of shoot-

ing methods and finite difference schemes. We use shooting

methods due to their simplicity. We have selected multiple

shooting method (MSM)23 because it is easy to parallelize,

and it has no disadvantages of simple shooting methods

(e.g., limitations on a system length).

Our IVP is a system of hyperbolic partial differential

equations, which can be expressed in a conservative form,

because of the nature of the continuity and Euler equations,

which are conservative. This suggests to treat our system

with a class of finite volume methods.24 The simplest finite

volume method is an upwind scheme; however, we cannot

use this scheme for all situation because our physical

model contains the waves propagating in opposite directions

that will make the upwind unconditionally unstable.

Therefore, we have resorted to Harten, Lax, Van Leer

(HLL)25 belonging to the Godunov family methods. Such

schemes can be characterized by the solution of Riemann

problem on computational cells. There are two types of

Godunov methods: approximate and exact Riemann solvers.

We used one of the kind of approximate Riemann solves—

the HLL method.

For convenience, all further results will be expressed in

dimensionless units

n

n0

! n;
z

de
! z;

e/
Te
! /; txpi ! t;

v

cs
! v;

L

de
! L;

v0

cs
! v0: (28)

The results of numerical simulations are compared with ana-

lytical results for week and strong dispersion cases. We start

our simulations with initial conditions of a uniformly

distributed random noise and observe the evolution of the

following quantities:

N2¼
ðL

0

n2ðzÞdz; U2¼
ðL

0

/2ðzÞdz; V2¼
ðL

0

v2ðzÞdz: (29)

Depending on the value of input parameters (L; v0), damped

(stable) or growing (unstable) solutions were observed.

Unstable solution was fitted to the following curves:

N2;V2;U2 � cosð2<ðxÞtþ hÞe2ct; (30)

to determine the real frequency and growth rate.

When the length of the system exceeds the Debye length

(L � 10de), the week dispersion results are recovered.

Example of frequency and growth rate dependence as a func-

tion of the ion flow velocity v0 is shown in Figs. 3(b) and 5.

These graphs are similar to the analytical results shown in

Fig. 3(a). In fact, the difference of the analytical and numeri-

cal results is of the order of the magnitude of the small pa-

rameter of the analytical theory (de=L). Due to the increasing

density of the instability zones, very high resolution is

required to recover the singular part (v0 ! 0) of the analyti-

cal solution.

From the theory, we know that instability will not occur

in quasi-neutral case. In other words, charge separation is

crucial for the instability to occur. Because in the long sys-

tem charge separation is less prominent, we can expect

decreasing of instability growth rate with system length.

This is confirmed by simulations for L¼ 5 (Fig. 5) and

L¼ 10 (Fig. 3).

In the regime, when the length of the system is much

smaller than the Debye length (L � 0:1de), the difference

FIG. 4. The oscillatory (<ðxÞ 6¼ 0)

and aperiodic (<ðxÞ ¼ 0) instabilities

in strong dispersion case. The analyti-

cal solution of (26) and numerical sim-

ulations for L ¼ 0:1de.
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between analytical solution of strong dispersion approxima-

tion and numerical solution was less than few percent. This

comparison is shown in Fig. 4.

The number of zeros of unstable spatial eigenfunctions

of density, velocity, and electrostatic potential correlates

with the zone number (27) and is defined by the value of the

a parameter. In more general case, the stability of the system

is governed by two parameters (v0; L); however, in general

case the number of zeros correlates with a number of zone as

well, examples of eigenfunctions are shown in Fig. 6.

In aperiodic zones (where real part of frequency is

zero), the number of nodes does not change during the time

evolution. In oscillatory zones, some nodes disappear at later

times as shown in Fig. 7.

In weakly dispersive case (kde � 1), the addition of the

Doppler shift due to the ion flow velocity results in the main

order modification for the propagating modes velocities

v1;2 ¼ v06cs; (31)

which correspond the one pair of the of the roots of Eq. (9).

Two other roots describe the slow dispersion effects. We

have chosen very long system (L ¼ 1000de), so the disper-

sion is weak and two wave packets are well separated.

Gaussian function localized in the middle of the system was

chosen as an initial condition, Fig. 8(a). Fig. 8(b) shows the

Gaussian peak separated into two wave packets moving in

opposite directions with velocities v1;2 from Eq. (31). The

right wave packet meets the wall at the right and passes

through the wall with almost no reflection, as shown in Figs.

8(c) and 8(d). Instability occurs when the slow wave packet

meets the left wall (with Dirichlet boundary conditions for

all variables) and is reflected, Fig. 8(e). At a later time, the

reflected wave and dispersion tail overlap forming an unsta-

ble eigenfunction, Fig. 8(e).

In strong dispersion case, Eq. (8) implies that oscilla-

tions with the ion plasma frequency will occur. The short

system was chosen (L ¼ 0:1de) to demonstrate this re-

gime. Initial condition was chosen in the form of the

Gaussian function localized in the middle. The evolution

is shown in Fig. 9. First frame is an initial Gaussian peak

which travels with velocity of the ion flow (v0); at the

same time, another peak arises from the left border and

starts to travel with same velocity. Note that in case of

strong dispersion, the ions sound phase velocity is much

reduced ;x=k < cs. When the initial Gaussian peak meets

the right boundary (which has no boundary conditions

except the one for electrostatic potential), it passes

through, while another peak starts to transform to unstable

eigenfunction at the left boundary.

V. CONCLUSION

We have investigated the ion acoustic instability

induced by the ion flow in a finite length system; the

FIG. 6. Unstable spatial eigenfunctions of density, velocity, and electrostatic potential for L¼ 10, for different instability zones from Fig. 3. Zone numbers in

Fig. 3 are counted from the right, with the right outermost aperiodic zone as #1.

FIG. 5. Alternating oscillatory (<ðxÞ 6¼ 0) and aperiodic (<ðxÞ ¼ 0) insta-

bilities zones in the intermediate system length L¼ 5; numerical simulations

results.

FIG. 7. Unstable eigenfunctions of density, velocity, and electrostatic poten-

tial in the oscillatory zone #2 v0 ¼ 0:78, L¼ 10, at a later time.
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situation which is relevant to various plasma devices such as

electric propulsion and emissive probe diagnostics. It was

shown that the length of the system measured in units of the

Debye length and ion flow velocity measured in units of the

ion acoustic velocity are important parameters which control

the instability.

For long systems (de � L), the analytical dispersion

equation was obtained describing the aperiodic and oscilla-

tory instability zones. The boundaries of the instabilities are

defined by the condition (23). The instability criteria could

also be written in the form

1

1þ p2
d2

e

L2

>
v2

0

c2
s

: (32)

For short systems (de � L), the dispersion equation was

obtained in the form equivalent to the Pierce dispersion

equation. In this case, the following instability criteria has

been obtained

Lxpi=p > v0: (33)

FIG. 8. Evolution of the initial Gaussian pulse in the weak dispersion case: (a) initial condition; (b) initial perturbation splits into two traveling wave packets,

the one traveling to the right with v0 þ cs ¼ 1:9 and the one traveling to the left with v0 � cs ¼ �0:1; (c) the right wave packet is passing through the right

wall barely reflecting; and (d) the beginning of the reflection of the left wave packet from the wall and forming of the unstable eigen-function.
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Analytical theory was confirmed by the results of direct

initial value numerical simulations. We have investigated the

structure of the eigenfunctions in the unstable zones. It is

shown that the order of the instability zone correlates with a

number of nodes in the corresponding eigenfunction. Our

numerical simulations show that the instability occurs as a

result of the mode coupling mediated by the boundaries.

The instability mechanism in a finite length system is

different from the kinetic ion sound instability26 in infinite

plasmas. The dispersion equation for the latter can be written

in the form

1þ
x2

pi

k2c2
s

�
x2

pi

x� kv0

þ i

ffiffiffiffiffiffiffiffiffi
p
2

me

mi

r
x2

pix

k3c3
s

¼ 0: (34)

Treating � ¼
ffiffiffiffiffiffiffi
p
2

me

mi

q
as a small parameter, one obtains the

growth rate

c ¼ �kcs

2 1þ k2d2
e

� �2
�16

v0

cs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2d2

e

q� �
: (35)

The instability condition has a form

1

1þ k2d2
e

<
v2

0

c2
s

; (36)

which is complementary to the condition (32).

The excitation of large scale perturbation and soliton for-

mation was observed in a number of experiments.27,28 Similar

structures may be excited by ion flow due to the mechanism

identified in our paper which is operative in systems of a finite

length and in situations when the ion flow velocity is below

the ion acoustic speed. The excitation of ion sound waves in a

finite length system was observed in numerical particle-in-cell

simulations with emissive walls.29,30 The mechanism described

in this paper can also be relevant to the instabilities observed

in double layer experiments.10,31,32
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