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Abstract - The properties of an electrode boundary layer in a microwave discharge at a moderate pressure are
analyzed for electronegative gases. The structure of the electrode boundary layer depends on the ratio between
the attachment frequency of the electrons and the time of ion motion through the layer. When the attachment
frequency is very high or small, the electrode boundary layer is similar to the layer in a two-component plasma.
However, for highly electronegative gases, the intermediate case is more typical. This case is characterized by
the fact that the attachment frequency and the inverse time of the ion motion through the layer are comparable.
This corresponds to small layer thicknesses in comparison with those in electropositive gases. In this case,
the layer thickness grows proportionally to the current. The jumps or peaks in the ion density arise at the
plasma-layer boundary depending on the ratio between the ambipolar diffusion and the ion velocity in the layer.

1. INTRODUCTION

Microwave discharges are widely utilized in plasma
technology for deposition and etching of semiconduc
tor coatings. The properties of microwave discharges in
electropositive gases are well studied [1 - 3]. At the
same time, there are only a few papers [4 - 7] devoted
to the analysis of microwave discharges in electronega
tive gases, which are, as a rule, used in industrial appli
cations. These papers are mainly devoted to numerical

simulations. Here, we develop an analytical theory of
microwave discharges. This theory permits us to deter
mine the properties of the electrode boundary layer and
the profiles of charged particle densities in a plasma.
A microwave discharge with negative ions is described
by many parameters and, consequently, a large variety
of situations are to be studied. We investigate the most
typical cases and qualitative effects. For this purpose,
we use some assumptions to make our problem as sim

ple as possible and to study the discharge peculiarities

qualitatively.

The derived analytical solutions can be used for
comparison the results of numerical simulations. This
is especially important for such a complex system as
a microwave discharge with negative ions. For exam
ple, Meyyappan and Govindan [8] obtained an errone
ous stationary solution because the condition of the over
all balance for ions was not satisfied [see footnote 1 to
equation (4b)].

We will consider the discharge at moderate pres
sures when the electron distribution function is gov
erned by the local electric field, and the Townsend
approximation can be used for the ionization frequency

v,(E) = AV^Pexpi-BP/E), Vdr = beE, (1)

where A and B are constants, be is the electron mobility,
E is the electric field, and P is the gas pressure. Usually,
the energy threshold for attachment is considerably

lower than the ionization potential. Consequently, the
dependence of the attachment frequency va on the elec
tric field is less pronounced than that of the frequency v,.
For simplicity, we assume the attachment frequency to
be constant. We will consider that the discharge fre
quency go satisfies the following conditions:

xT1 < a) < x~\ (2)

where

x
7
'e =

47ifc( ,ene, fo
,

is the ion mobility, and ne is the

electron density. For simplicity, we will assume that the
mobilities of ions are equal. The time interval x, charac
terizes the ion drift through the layer (with a thickness L).

Using the Poisson equation, we estimate T,:

b,E b;E
t.—-— —— = 4neb.n..' L E/4nene

' '

If the first inequality from (2) holds in the layer, then
the densities of positive p and negative n ions in the
layer are weakly modulated with respect to time, and
we can use the time-averaged ion equations [2].
The second inequality permits us to neglect the dis
placement current in the plasma volume and keep only
the electron conductivity current. Also, we suppose that
the Debye radius is much less than the layer thickness
or, in other words, the voltage across the layers is much
more than e~xTe, where T

e is the electron temperature.
This allows us to separate the layer into the following
two regions: first, the plasma phase region, where the

quasi-neutrality condition p = n + ne is valid and, sec
ond, the region of the ion volume charge, where ne = 0

.

We shell ignore the influence of the ion density oscilla
tions on the electron density. According to the quasi-
neutrality condition, the electron density perturbations

8ne (neutralized by the oscillations of the ion volume
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MICROWAVE DISCHARGE 411

charge) can be comparable to the density itself ne due to
the large value of the ratio p/ne

8ne bp - 5n 8(p — n)p
(3)

although the relative perturbation of the ion densities is
small [6]. Below, we will see that, in most cases, the ion
density perturbations can be ignored. Therefore, in the
layer, the quantity ne = ne(x) = p{x)

- n(x) is a time-
independent electron density in the plasma phase.

2. THE BASIC EQUATIONS

The mentioned assumptions substantially simplify
the basic equations [2]. These equations are reduced to
the time-averaged ion equations and the Poisson equa
tion. The ion equations take the form

dn.
)

nedx

dTn _ d I dnt
dx dx \ nedx
= (v,nt)-$np-\/i.

(4a)

(4b)

where V = b,{I?) is the time-averaged velocity of ions in
the volume-charge phase, D = b,Tele is the ambipolar
diffusion coefficient, P is the ion-recombination coeffi
cient, and vd is the frequency of the electron detach
ment from the negative ion. For the sake of simplicity,
we consider moderately high pressures, when micro
wave diffusion can be neglected [2], and ignore the ion
diffusion, because Te > 7J. The ambipolar diffusion is
important only in the plasma and in a small part of the
layer next to the plasma [2]. The boundary conditions
for equations (4) are determined by the direction of the
ion motion. In the center of the discharge, the fluxes are
zero r„ = Tp = 0 due to the symmetry of the considered
problem. At the electrode, we have r„ = 0 because neg
ative ions are drawn in the plasma region, and the sur
face plasma recombination at this electrode is high.
From the boundary conditions, it follows that the inte
gral of the right-hand side of equation (4b) should be
zero over the entire discharge.1

In the volume-discharge phase, the current in the layer
is transported by the displacement current and the arising
field is shielded by the positive ion volume charge. If the
current density depends on time as j(t) = -ysincor, then the
field in the layer is determined as follows:

471/
E(x, t) = — (cos cor - cosz(x)), (5)

1The mentioned condition is not satisfied in [8]. This yields an
erroneous result.

where z(r) is the current phase corresponding to the
motion of a sharp plasma-layer boundary. At a certain
instant, the electric field at the electrode should be
small in order to emit the electrons at the electrode and
to neutralize the current of the positive ions (the current
of negative ions at the electrode is zero). Consequently,
the phase z = n corresponds to the electrode (we assume
that x increases toward the electrode) [2]. Using z,
we can write the Poisson equation in the form

dz
sinz-r = — n.(x),dx j "*(*) = p-n. (6)

Here, we take into account that the quasi-neutrality
condition holds in the plasma phase. The boundary
conditions for the Poisson equation are the following:
x = L and z = n at the electrode and x = 0 and z = 0 at the
layer boundary. Using the phase z, we can easily aver
age equation (4) over time [2]:

4/
<£>(*) = (sinz-zcosz),

1/2
ft.

exp (-— )

xerfc
it n.

1/2-1

(7)

(8)

<Vfl*,> = vane ( 1
- z/n) , n0 = j/ebeBP. (9)

Let us consider the case when the ion density p° and

nc in the column is much larger than the electron one

nt (va > pV, vd). The plasma region or the electrode
boundary regions in which n > ne, will be referred to as
the ion-ion region (IIR) and the regions in which n < ne
will be referred to as the electron-ion region (EIR).
In the electrode boundary layer, the negative ions drift
from the electrode toward the plasma. Because the neg
ative-ion density near the electrode is close to zero,
there should exist a region with a small negative-ion
density, specifically, an EIR. Below, we will see that the
intermediate region, where n ~ ne, is fairly narrow, and
the jumps in n and p arise there. Consequendy, the
introduced definitions are convenient. For simplicity,
we restrict ourselves to the case, when an interelectrode
gap is so large that a uniform column can exist.

3. THE STRUCTURE OF THE ELECTRODE
BOUNDARY LAYER

Depending on the discharge parameters, the elec
trode boundary layer consists of only EIR or of both
regions, namely, IIR and EIR. This depends on the
growth rate of the negative-ion density governed by the
attachment frequency. The IIR arises in the layer if the

2We consider the column to be a discharge region, in which the
particle densities are uniform and the right-hand sides of equa
tions (4) vanish.
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Table 1

vat,i < 1 v«ta > 1

I V 0.63 ( 4 Jt);*,.

cov„

2/

e(One

Pel
c

vJAnebi

u 87t/ 0.97 x 8it/ 8tc/
i —

eco n,vatn
2 c

ecu nt
2 c

tn
= (4nen>,.)_1 ti2

= (47cepcfe,.)_I

Here, L is the layer thickness, pei is the value of the positive ion den
sity at the electrode, U is the maximum voltage across the layer, and
j is the amplitude of the current density.

time of ion motion through the EIR xa = (4ltefr(n^)
1 is

larger than the time v"1 required for the ion and elec

tron density relaxation up to the establishment of the

equilibrium densities pc, nc, and ne in the column.
At first glance, it is not evident that the electron-attach

ment time v"1 governs the establishment of the ion pro
file. However, this follows from the quasi-neutrality
condition because, at a given p, the variation of ne yields
the change in the density n (in accordance with ne).

As a result, the time v"1 governs the characteristic time

of the establishment of the ion profile. Below, we will
see that the electron density in the layer can signifi

cantly vary from the value on the order of ne to the

value ~pc. As a result, the quantity t, also varies from

x,, = (47te£>,-n^)-1 to xa = (Anebjf)'*. Hence, the struc

ture of the layer depends on the values of the products
vaT„ and \axa.

3.1. The Case of a Low Attachment Frequency

VA, < 1. (10)

In this case, the negative-ion density is low over the
entire layer and the theory developed by Smimov and
Tsendin [2] can be applied to a two-component plasma.
Because the quantity v, depends strongly on the electric

field determined by the electron density in the plasma

phase, this density varies slightly, that is, ne = nt.

The quasi-neutrality condition yields p =* ne =* ne.
The negative-ion density in the layer

L

j<vane)dx

"(*) =
'
V(JC)

- v.Tnii; (11)

is low almost everywhere except for the small values
of jc, because the ion velocity V(jc) decreases sharply
with x —>- (+0), and this density grows sharply when
passing from the electrode boundary layer to the
plasma. The layer properties turn out to be similar to
those for the discharge in electropositive gases (see the
table). For example, the thickness of the layer is L ~
2Vdr/(a, where Vdr = bj? is the drift velocity of the elec
tron in the column. This situation was observed in
numerical calculations carried out by Boeuf [5]. Figure 1
illustrates the results of this paper. The parameter vaTn
is 0.08. The electron density in the layer is shown to be

close to ne. Correspondingly, for a 0.6-cm-thick layer,
an estimate made according to the formula from the table
gives fairly good agreement, specifically, 0.45 cm.

3.2. The Case of a Very High Attachment Frequency

v.tq §> 1 (12)

is also simple. In this case, the BR occupies the bulk of
the layer. Below, we will prove that the negative-ion
density in the bulk of the layer is close to the positive
ion density pc. In a small near-electrode layer with
a thickness of about V(L)/vfl <^ L, the EDR arises in
which the negative-ion density is low and the electron
density is on the order ofp° (see Fig. 2). Because, in the
plasma phase, the quasi-neutrality condition pc = n + ne
holds, the electron density decreases with the negative-
ion density growth due to the attachment.

In the BR, the electron density is close to ne
because, in this region, the ionization maintaining the

density ne = ne is important. Despite the large ion

charge in the EIR (about pc), an integral volume charge

in this region J (p - h) dx is small (on the order of
pcVI\a < nj^ ~ j/(0) by virtue of inequality (12). Hence,
in the EDR., the field is slightly shielded. Let us show that
the positive ion density in the layer is nearly p°. We have
n ~ p > (p - n) for the BR. Because the ion diffusion is
small, the absolute values of the ion fluxes satisfy the
similar relationships

rn~rp>rp-rn. (13)

If the ratio nip varies slower than the quantities n and

p themselves, then — (Tp - T„) < Tp „. This means

that the equation (r,, - Tn) =-0 is valid in the BR. Sub
stituting the expressions for the derivatives of fluxes (4)
in this equation, we find

<(va + v,K> = 2p> + \dn. (14)

Because v, depends strongly on ne, the density ne in

the layer differs slightly from ne . Consequently, the field

profile in the layer is the same as in the Subsection 3.1.
It is easier to determine the ion density profiles from the
equation for negative ions (4b). We can neglect the left-
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Fig. 1
. The spatial profiles of the electric field and charged particle densities at four times of the microwave period for the parameters

corresponding to Subsection 3
.
1 (vaTn = 0.08), model electronegative gas based on helium [5],/= 10MHz, and U= 500 V. (I) layer,

(II) region of the jump-like transition from EIR to IIR (corresponding to the ion-density jump), (III) nonuniform plasma region, and
(IV) column, (1) p, (2) ne, (3) n.

hand side of this equation because dV/dx < |3
p

+ vd

[this inequality is equivalent to (12)]. This circumfer
ence, along with expression (14), means that the quan

tities p and n are close to pc and rf. In the EIR, the pos
itive ion density also changes insignificantly owing to
the slow variation of both the ion flux and the ion veloc
ity. The main layer parameters are listed in the table.

3.3. In the Intermediate Case, when the Inequalities

< <va< x"1 (15)

hold, the ratio pclne can be very large (on the order

of 102 - 103) for the strongly electronegative gases, for
example, Cl2 and SF6. Hence, this case is typical for the
discharges in such gases [4, 6 - 8]. In the cases
described above, the EIR occupied either the entire
layer (see Subsection 3.1) or a small part of the layer
(see Subsection 3.2). Numerical simulations carried out
by Shveigert [6] for the intermediate case show an
almost exact coincidence of the EIR with the electrode
boundary layer. The boundary between the EIR and IIR
practically coincides with the plasma-layer one.
The positive ion density near the electrode pe, and in the

7 P
i

L

3 if

Layer

V 2 <

hJ
0 Vl\a L

Fig. 2. The profiles of the charged-particle densities for
v0x,7 > 1

.
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ne min Pel nt

Fig. 3. The plot of the function 4* = (v,<ne) + va)ne.

layer turns out to be such that the time of the ion drift

through the layer x, - (4rc6,€pt;)~' is comparable to v~'
and the condition pel ~ vaxapc < pc is satisfied. This
effect stems from the strong coupling of the Poison
equation with the ion equations [9].

We will prove that the transition from the EIR to
the HR is really possible only near the plasma-layer
boundary. Using reductio ad absurdum, we propose
that this boundary lies somewhere inside the layer.
The left inequality from (15) means that the EIR arises
inside the layer. In the opposite case, the layer structure
would be similar to that considered in Subsection 3.1.

Because, in this case, the condition ne ~ p = nt should

be satisfied, the ion drift time (through the layer)
determined by the quantity xn is larger than the time

v"1 (x,-, > v"1) for which n becomes >ne. This contra

dicts the basic assumption. On the other hand, the right
inequality from (15) shows that the positive ion density
pel near the electrode and in the main layer region

should be much less than p°. In the EIR, we have ne =

p> ne (see below), and the ionization is exponentially
low. Consequently, the positive-ion flux varies insignif
icantly. In the EIR with a thickness of ~V/va, the aver
age volume charge of the ions can be estimated as

4nej (p -n)dx~ 4nepelV/va
= ^ePelbi{Etl)/\a = Inep^bfi^/v^

where is the maximum value of the field at the
electrode. The relationship between the charge and

Emax yields

Pel<P=PC/vaxi2 < pc.

However, the quantity pe, cannot be much lower

than p. Actually, when pel < p, the average volume

charge in the EIR is small, and the field in the layer
should be shielded in the HR (as in Subsection 3.2).
Because ne = n\ < pel in the EDR, the thickness of the DR

should be larger than that of the EIR, and the layer

should mainly consist of the IIR (as in Subsection 3.2).
Also, the positive ion density in the EIR should be
almost uniform. In this case, summing the ion equa
tions (4) yields

^-Vnt
= {{y^va)ne)-2^peln-nvd. (16)

In the EIR, we have n = peI - n,and equation (16)
describes both the growth in n and the decrease in ne
(from the electrode toward the UR) with a characteristic
scale V/vfl. In the IIR, the condition p = n> ne holds
and equation (16) is reduced to equation (14) determin
ing the dependence ne(p). This equation has the solution
only when p > p^. Actually, let us consider the func

tion *F(nt) = <(v, + va)ne) having two branches (Fig. 3).3

For the large values ne> ne, we have v, <^ va, and the
function ¥ = \jie grows with ne. For the small values
of ne, when v, > va, the function ¥ decreases exponen
tially with the growth in ne. From the form of T, we find
that the root of equation (14) exists only when p > p^,
where p^ is determined by the minimum of the func

tion ¥ - 4*,,^. We have =»
l/2vane due to the strong

dependence v(<ne). When vd = 0, this yields p^ =

p*l Jl. In the general case, the quantity p^ - pc.
An interesting peculiarity of equation (16) for \d = 0

is that the point of transition from the EIR to the UR
coincides with nemiB and p^, where *¥(neniJ = T^.
Actually, the left branch of the function *F(n,) corre
sponds to the UR, in which the ionization is important.
In the EIR, the quantity ne should decrease from the
large values on the order of pel down to the values ne <

w«min
~
ne at the left branch. It is impossible to pass

from the right branch to the left one because, in the IIR,
the density p increases toward the plasma and away
from the left branch (see Fig. 3). Numerical simulations
using the model velocity dependence on the coordinate
confirm the fact that, in the region of transition from the

EIR to the UR, the positive ion density is pc/ J2.
Hence, it is possible to pass to the UR only if the

density ptl is on the order of pc. This fact contradicts the

initial assumption pel < pc. Consequently, the relation

ship pel ~ p should be satisfied and the layer consists
mainly of the EIR. The velocity in the EIR varies sig
nificantly, and the transition to the IIR occurs at a low
value of the ion velocity Vu ~ (Peilp^lViL) < V(L) near
the plasma-layer boundary. In contrast to the cases con
sidered in Subsections 3.1 and 3.2, in this case, the depen
dence of all the densities on x is important in the layer.

According to (8) and (9), the quantity <(v, + va)ne) depends not only

on ne but also on the coordinate [by virtue of the dependence zix)].
However, we can show that only the values z > nil can determine
the boundary between the EIR and the IIR when this dependence
is very weak.
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From equation ( 16), we can find the exact value of
pe, and the profiles of p{x) and ne(x). Expressing the
derivatives with respect to the coordinate through the
derivatives with respect to z and using the Poisson
equation, we obtain

dn"V
= ^[<(va+v,K)-2p>-v,«]. (17)

dz

In the EIR, the last three terms in equation (17) are
small and the flux of positive ions to the electrode is
determined by the integration of the first term in square
brackets

T = pelV(L) = -J- smzdz =
ecoJ n. e(£>

(18)

where z* < 1 corresponds to the boundary between the
EIR and the HR. Note that the same expression for the
negative-ion flux at the EIR boundary has been obtained
in Subsection 3.1. Using (7), we substitute the expres
sion for the velocity at the electrode in formula (18) and
find the quantity pel:

Pel = va/4neb,. (19)

The system of equations (17) and (18) allows us to
determine all the layer parameters. The table lists the
results of integration. Figure 4 shows the results of
numerical simulations carried out by Shveigert [6],
which correspond to Subsection 3.3. The parameter
values are vflTn = 9 and vflx(1 = 0.03. The value of pel cal
culated according to formula (19) is 3 x 109 cm-3,
whereas simulations [6] give the value 2.6 x 109 cm-3.
In [6], the quantity v, was calculated as a function of the
average energy. To incorporate the nonlocal effects, the
equation for the average energy with allowance for the
electron thermal conductivity was solved. However, the

theory is also valid for these effects because, in deriving
equation (18), we use only the condition of a strong
dependence of v, on ne .
In the considered case, the layer thickness is propor

tional to the current and is inversely proportional to the
attachment frequency. This explains the small layer
thickness in strongly electronegative gases observed in
numerical calculations [4, 6, 7]. For low currents and
large values of va, we must take into account the finite-
ness of the Debye radius (as it was done in [6]), because
the layer thickness can become comparable to this

radius.

4. THE ION AND ELECTRON DENSITY
PROFILES IN THE IIR

The negative ion flux induced by the electron
attachment in the EIR should fall off to zero when pass
ing to the column. Consequently, a nonuniform plasma
region, in which the charge particle densities approach
the equilibrium values in the column, should exist.
When the attachment velocity is very high (see Subsec-

p, n, 200/1,. x 1010, cm-3

20 h

13

10

1 Pc, nc

0
j j I 0.2 I 0.4 0.6 x, cm

Fig. 4. The profiles of the charged-particle densities for tT
j

va S Tq. The results of modeling a discharge in SF6 [6]: P =

0.13 torr, j=2 mA/cm2, /= 13.6 MHz, vaTfl = 9.0, and
vaTa = 0.03; (7) positive ions, (2) time-averaged electron

density (ne), the dash-dotted curve corresponds to the nega
tive-ion density. (I) Layer, (II) region of the jump-like transi
tion from the EIR to the DDR(corresponding to the ion-density
jump), (IH) nonuniform plasma region, and (IV) column.

tion 3.2), this transition occurs at the layer near the
electrode. In the cases considered in Subsections 3.1
and 3.3, the transition region can arise in the plasma or
in the layer near the plasma-layer boundary, in which
the velocity V= b/jE) [see also (5) and (7)] is low.

If the densities approach the equilibrium values in
the plasma, then only the diffusive terms on the left-
hand sides of equation (4) are nonzero. The same situ
ation arises when the transition to the column occurs in
the layer near the plasma-layer boundary, in which the
diffusive terms in (4) are larger than the convective
ones (in [2], this layer is referred to as the 5-layer).
In this case, the velocity vu at the boundary between the
EIR and the ETR is governed only by diffusion, specifi
cally, by the flux, which is proportional to the gradient
of ne in (4). At this boundary, the diffusive flux is larger
than the convective one if

emn.
(20)

where v. =
d\n\.{ne)

d\s\ n„
In this case, the negative-ion

flux decreases in the plasma and the ion-density jumps
arise near the plasma-layer boundary (see the results of
computations carried out in [6, 7

,

10]). The nature of
these jumps, which has been analyzed in [11 - 13], is

related to the strong nonlinearity of the equation for neg
ative ions when n > ne. In the region of a jump, the parti
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p, n, 50ne x 10, cm

900 h

600 h

300

pc, nc

0.2 0.4 x, cm

Fig. 5. The formation of the ion density peaks. The condi
tions are the same as in Fig. 4 except P = 1.33 torr and j =
100 mA/cm2.

cle fluxes are practically constant, and the ion densities

increase sharply toward the column (region II in Figs. 1
and 4 corresponds to the location of the jumps) and
reach values comparable to those in the column. Rela
tionship (14), coupling n and ne, holds to the right of the

jumps because nc > ne . Because ne depends weakly on p,
the equation for negative ions in this region can be simpli

fied by neglecting the small terms on the order of l/v( :

d (Dpdne\ c 2

ax ax j (21)

Equations (14) and (21) together with the negative-
ion flux (18) at the plasma-layer boundary govern the
properties of a nonuniform EIR, in which the negative ion
flux arising in the layer falls off to zero. The negative-
ion flux should fall off toward the column; hence, the
right-hand side of equation (21) should be negative.
The ion density should be higher than that in the col

umn (see Figs. 1, 4, and 5) because, in the IIR, ne = n\.
Formula (21) implies that the thickness of the nonuni

form ion-ion plasma region is / ~ [D/(2pp + vd)v(.]1/2,
and the excess value of the ion density to the right of the

jump is Ap = r*[v, /D(2fip + vd)]l/2. For example, for the
conditions of Fig. 4: / = 5 mm and Ap = 5 x 1010 cm-3,
numerical simulations [6] give 1 = 2 mm and Ap = 5.2 x

1010 cm"3.

For moderate pressures (when v; > 1), the jump

arises at the plasma-layer boundary because the ion
velocity in this region is low and the flux r„ is suffi
ciently large and the ion density grows sharply when

passing from the layer to the plasma. The case of low
pressures is to be analyzed separately because the ion

velocity in the plasma can be close to the velocity in

a layer due to a large value of the diffusion coefficient,

and the flux Tn is small due to the small value of va .
Also, the nonlocality of the electron distribution
becomes important. Roughly speaking, this corre
sponds to the case when v, does not depend on ne [14].
Accordingly, the jump can arise in the plasma at a dis
tance on the order of (Z)/vu)1/2 from the plasma-layer
boundary. This distance is inversely proportional to the
pressure and can be large at low pressures. At this dis
tance, the negative ion velocity falls off abruptly as in the
positive column of the constant current discharge [11].
This situation was observed in numerical simulations
carried out in [10].

The structure of the jump can be found by analogy
with [11, 13]. Because this region is very narrow, we

can ignore the variation of ne in comparison with
dnjdx. Also, we can neglect recombination and
detachment and keep only attachment and ionization
because p,n< pc, nc. The growth in the ion densities is
related to the decrease in the ion velocity V =

-(D/ne)dne/dx. Using formula (16) to express the
change in the velocity, we estimate the jump width:

dv r*
8/~V(£Ll) =_(v+v)

dx n ' "

P<lL< ^L~^L.
(22)

v. + vo n

The jump width (22) is much less than the layer
thickness because the ratio pellpF is small. For example,
under the conditions corresponding to Fig. 4, the ratio
is Palp0 ~ 0.03 and the transition is practically jump-like.
The width of this jump can be increased by the ion diffu
sion; one can find the corresponding expressions in [1 1].

If the inequality opposite to (20) holds, then all the
negative ion flux should recombine in a small region of
the electrode boundary layer near the plasma-layer
boundary because, in the absence of diffusion, the
velocity at the plasma-layer boundary is zero. The HR
arises at small values of z = z*, specifically, V(z*) =

T*lnc = V(z = n)(vaTl7). Similarly to the previous case,
the ion density in this region is higher than the equilib
rium one. The growth rate of the ion density determined
by the derivative of the velocity dV/dx [see also (6) and
(7)] turns out to be higher than the value of (fin + v^).
This gives rise to the formation of narrow peaks in the
ion density. Analyzing the ion equation for = 0,

we obtain the expressions for the density maximum
and for the peak width L. Because dn/dx = 0 at a max
imum, we have dV/dx ~ ftp^ from system (4).
This yields

= P
3
1/2
1

(-) —V 71

-1/2

■VI a (23)
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Because the negative ion flux from the layer should

recombine in the peak, we have P/?maxL
- T* and

i = (24)
e(0ne

The formation of peaks was found by Shveigert [6]
in modeling a discharge. Under the conditions of Fig. 5,
expression (23) gives p^ = lpc, whereas the calcula
tions carried out in [6] give - 3.3pc. This difference
is likely to be connected with the incorporation of both
the ion diffusion and the influence of the ion oscilla
tions on the average field.

As mentioned, the ion oscillations under the action
of a microwave field can significantly affect the aver
age field, primarily, in the region of a strong nonunifor-
mity of the ion density, because the electron density
perturbations (3) due to these oscillations can be high.
The analysis of the nonuniformity region shows that the
ion density oscillations arise in the vicinity of the
plasma-layer boundary. The excitation of these oscilla
tions can yield some interesting effects. For example,
the numerical calculations [6] show that the harmonics
with frequencies 2oo/3 and co/3 can arise under certain

conditions. However, these oscillations are unlikely to
have an important impact on the average parameters of
the discharge because they are localized in a narrow

region near the plasma-layer boundary.
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