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We also developed analytical model for the transition of 
the arc operation from low-ablation mode to high-ablation 
mode observed in our previous experiments11. The model 
can be used to self-consistently determine the profiles of 
the electric field, electron density and electron 
temperature in the near-anode region of the arc discharge.  
Simulations of the carbon arc predicted that in the low-
ablation mode, the arc current to anode is driven mainly 
by the electron diffusion to the anode12. Reference [13] 
proposed theoretical explanation for the transition from 
high-ablation mode to low-ablation mode as follows. In 
the high-ablation mode the anode sheath voltage is high 
(positive anode sheath), close to the ionization potential 
of anode material, therefore providing high heat flux and 
high ablation flux from the anode. While for the low-
ablation mode the anode voltage is low (negative anode 
sheath) an order of magnitude smaller than the ionization 
potential of anode material; hence the heat flux to the 
anode is small and ablation rate is low. 

3. Summary 
The developed mathematical model of the short arc was 

used for prediction of nanomaterial synthesis. The model 
did not use simplifying assumptions as previous models, 
such as the local thermodynamic equilibrium (LTE) (the 
same temperature for the electrons and heavy species), 
and the ionization and recombination balance (the Saha 
equation). The new model also accounts for the heat 
losses in ablation processes and heat generation in carbon 
deposition processes; as well as space-charge sheathes 
near the electrodes12. The model was implemented into 
the commercial 3D code ANSYS CFX. 

With the newly developed code, comprehensive 
parametric simulation study of the carbon arc in helium 
atmosphere was performed for various arc currents, 
diameters of the electrodes and inter-electrode gap sizes. 
The simulation results were used for interpretation of the 
experimental data6,7. 

For benchmarking of the arc model, an additional 1D 
code that resolves the sheath regions was written and 
simulations were performed to compare with results of 
previous numerical studies,5 and complete agreement was 
achieved4. We also developed analytical arc model that 
can readily predict the heat fluxes to the electrodes, near-
electrode voltage drops, total arc voltage, temperature 
profile, etc3.  
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simulations of synthesis processes were supported by the 
US Department of Energy (DOE), Office of Science, 
Basic Energy Sciences, Materials Sciences and 
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