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ABSTRACT

We study, by numerical and analytical means, the evolution of a collisionless plasma initiated between absorbing walls. The ensuing flow
is described by rarefaction waves that travel inward from the boundaries, interact, and eventually vanish after crossing through, leading
up to the asymptotic stage of the decay. Particle simulations indicate that the kinetic evolution strongly resembles one found in isentropic
gas dynamics. Namely, a very gradual density profile forms in the expanding central region where the rarefaction waves interact, with an
accompanying linear velocity profile. Asymptotically, the density falls off as 1=t. The density and the flux at the boundary show little
variation over the period when rarefaction waves still exist. Plasma potential, on the other hand, drops quite rapidly (on the underlying
ion-acoustic timescale) to less than initial electron temperature Te when over 70% of the particles still remain in the system. This is due to
electron kinetics being governed by conservation of adiabatic invariant in a slowly varying potential well. Analytical model of the velocity
distribution is presented to explain the simulations. The results have implications for afterglow plasmas used in material processing and
also for ion-extraction devices. One property of potential interest is good uniformity of the decaying plasma that occurs after approxi-
mately one ion-acoustic time.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0021833

I. INTRODUCTION
A. Prior work

Collisionless decay of plasmas bounded by material surfaces,
as well as a similar problem of plasmas with a sharp edge expand-
ing into vacuum, has been a long-standing subject of interest, e.g.,
in connection with laser-produced plasmas. Other established
applications include expanding plasmas in astrophysics and plane-
tary physics, including planetary wakes, as well as wakes behind
orbiting satellites.1 The simplest case examined early on was that
of a semi-infinite plasma.2 Suppose the plasma is initially at x> 0.
Then in the quasineutral approximation, the flow at x> 0 is in the
form of a self-similar rarefaction wave propagating into the unper-
turbed state at the ion-acoustic speed cs0. This solution is also valid
if at x¼ 0 there is an absorbing boundary.3 In that case, the rare-
faction wave can be viewed as an expanding pre-sheath. In such
flow, the Bohm condition at x¼ 0 is automatically satisfied. For
Boltzmann electrons and cold ions, the flow is identical to that of
isothermal gas in a semi-infinite pipe when a piston on one end
of it is being withdrawn at the speed of sound. An example of

experimental observation of self-similar rarefaction flow is the
work by Chung et al.4 Certain kinds of non-equilibrium electron
velocity distributions, e.g., bi-Maxwellian with sufficiently different
temperatures, can result in a shock formation behind the rarefac-
tion front,5,6 which itself is always a weak discontinuity.

There is a also a large body of work on plasmas of finite size
expanding into a vacuum.7–12 The aforementioned studies focus pri-
marily on the edge structure of freely expanding plasma cloud where
quasi-neutrality is violated and ions accelerate, and/or self-similar sol-
utions valid for t � L=Cc0, where L is the initial size of the plasma.
The latter solutions do not carry information about the initial structure
of the plasma cloud.

Examples of recent work on the evolution of bounded plasmas
are in the areas of arc-plasma switches,13 plasma-immersion implanta-
tion,14 and ion extraction.15 All three works are studies of pulsed-
plasma processes. We note that if a high potential difference is
imposed, a time-dependent Child–Langmuir sheath typically occurs
between the negatively biased electrode and the quasineutral plasma.16

Adiabatic motion of electrons would still occur in the resulting non-
symmetric potential well. The present discussion is focused on
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presenting the relevant physics on a simple, symmetric model with
floating (or, equivalently, grounded) walls.

B. Scope of the study

In the present work, we concentrate on the expansion (decay) of
a plasma confined between absorbing walls. The essential physics of
the process is similar to that of the inner flow in free expansion, specif-
ically at the initial stage when the electron distribution is not yet
strongly modified by the shrinking ambipolar potential well. At the
same time, the solution also involves a Debye sheath at the wall. In the
quasineutral approximation we employ, the Debye sheath is repre-
sented by a potential jump, the magnitude of which should be consis-
tent with particle conservation. The electron kinetics of freely
expanding finite plasma was previously studied by Mora and
Grismayer10 who pointed out the role of adiabatic modification of the
electron velocity distribution. In their simulations, performed with
adiabatic-Vlasov code, a flattening of the initial Maxwellian distribu-
tion was observed as the rarefaction waves moved in from the bound-
aries. Mora and Grismayer also noted that the acoustic speed in the
unperturbed state (where the ions are not yet moving), i.e., the speed
of the rarefaction front, would change due to the adiabatic compres-
sion of trapped electrons. Those authors qualitatively characterized the
flattened velocity distribution as a super-Maxwellian of the form
exp ð�ðjvj=vTÞnÞ. Without account for adiabatic behavior, the plasma
possesses a local equation of state and the quasineutral solution is
given by gas dynamics. For Maxwellian electrons, it was done, e.g., by
Medvedev11 who also compared the solution with the result of a direct
particle simulation.

Presently, using numerical (particle-in-cell) simulations as a
starting point, we introduce a simple piecewise-linear parametrization
of the evolving potential well. It allows to give an explicit expression
for the adiabatic invariant as a constant of motion, and therefore an
expression for the electron velocity distribution function (EVDF).
Such analytical expression is in good agreement with the EVDF found
in simulations. We also bring attention to the fact that the kinetic evo-
lution of the decaying plasma still retains essential properties found in
ordinary gas dynamics, and long-term asymptotic behavior corre-
sponds to a gas with the value of the adiabatic index c equal to 3.
Finally, we direct particular attention at the time dependence of the
plasma potential. Due to the flattening of the EVDF, the potential falls
off to much lower values compared to that for a steady floating sheath,
even as the fraction of the plasma remaining in the system is still large.
Also, the potential scales with initial electron temperature, without a
factor depending on the ion mass (because, unlike in a Debye sheath
with a stationary plasma at infinity, the evolving potential corresponds
to the number of electrons still confined in the system at a given time).

C. Highlights

It is already seen from general considerations that adiabatic mod-
ification of the EVDF is essential in the process at hand. At the initial
stage, the ions (assumed cold) around the center plane will not start
moving until the rarefaction front arrives, bringing a non-zero electric
field. Therefore, the electron density near the center must also remain
equal to the initial value n0. On the other hand, in the collisionless
regime, high-energy electrons from the tail are being depleted (with
resulting flux equal to that of the ions). The center density n0 is

maintained because the trapped electron population is actually com-
pressed by the same electric field in rarefaction waves which causes the
acceleration of ions. The plasma potential sets at the value required to
maintain quasineutrality. Once the wave fronts have passed through
the center and an ion velocity profile has formed, adiabatic heating
(of the trapped electrons by counter-propagating wave fronts) is suc-
ceeded by cooling. Combined with the continued tail depletion, this
process returns the EVDF back to the initial shape, but is cut off at a
decreasingly smaller energy. Thus in the final, asymptotic phase, the
EVDF can be considered as a flat-top. We recall and demonstrate that
for a flat-top EVDF the plasma flow is identical to that of a gas with
c ¼ 3. The expansion process at the asymptotic stage is inertial with a
flat density profile and a linear x/t profile of ion velocity; the density
falls off as 1=t and the potential as 1=t2. The case with initial flat-top
EVDF is also simulated numerically, besides the Maxwellian case, to
demonstrate that the known analytical solution is recovered. It should
be noted that the 1=t density decay is universal in gas dynamics, except
for isothermal case for which the leading-order time dependence is
1=ðt ln tÞ.

D. Structure of the article

The article is organized as follows: Section II presents the physical
model and some aspects of its numerical implementation. In Sec. III,
numerical results are presented. To validate the numerical model, we
begin with the case of a flat-top EVDF which is identical (apart from
transient behavior) to rarefaction flow in c ¼ 3 gas dynamics, with a
known elementary solution. The Maxwellian case is considered next.
Analytical model based on conservation of adiabatic invariant is intro-
duced in Sec. IV. Quantitative analysis is given based on piecewise-
linear approximation of the evolving ambipolar potential well. We also
extend the comparison with rarefaction flow in isentropic gas dynam-
ics (which is summarized for reference in the Appendix). The model,
in particular, yields a quantitative expression for the EVDF that agrees
with the numerical results. Conclusions and goals for future work are
stated in Sec. V.

II. PHYSICAL AND NUMERICAL MODEL

We consider a one-dimensional plasma composed of electrons
and single-charged ions, initially at rest between plane absorbing
boundaries at x¼ 0 and x ¼ 2L, with L� kD, where kD is the Debye
scale (it will be seen that L� kD decreases as t�1=2 in the long run).
Due to symmetry, the boundaries can be treated as either floating or
equipotential. Numerically, the resulting evolution is followed by
means of a particle-in-cell simulation. Apart from the initial formation
of Debye sheaths and/or transient oscillations, the characteristic time-
scale of the problem is t0 ¼ L=cs0, where cs0 is the ion-acoustic speed
in the uniform initial state. With time normalized by t0, the evolution
will not depend on the chosen value M of the ion mass. In what fol-
lows, time will be given in normalized units although different values
of M were used to verify the scaling. One can also use artificially low
ion mass (say, a fraction of a.m.u.) to speed up the simulations. Most of
the simulations presented here were performed with deuterium ions.

Well-proven numerical code EDIPIC17 was employed to
perform particle-in-cell simulations of the plasma decay. It utilizes
a semi-implicit algorithm for advancing the particles and solving
the Poisson equation for the electrostatic potential. To follow long-
term evolution of the system, sufficient spatial resolution and
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number of macroparticles need to be maintained at t=t0 � 1 as the
plasma becomes strongly depleted while the Debye scale, as can be
shown, decreases as t�1=2. These considerations were taken into
account.

III. PARTICLE SIMULATION RESULTS
A. Flat-top electron velocity distribution

We begin with presenting the results of a kinetic simulation for
the case with a flat-top initial electron velocity distribution (also
known as “waterbag” or “top hat”). In this case, the quasineutral
kinetic model behaves exactly as a gasdynamic model with the value of
adiabatic index c equal to 3. Additionally, the c ¼ 3 rarefaction flow
problem has a straightforward analytical solution (given in the
Appendix). Therefore, studying this case helps with overall under-
standing of the process and also allows us to validate the simulation
code. Figure 1 shows several successive density profiles for the plasma
with flat-top electron distribution. The timescale t0 equals L=cs0, where
L is the half-size of the plasma. In this case, cs0 ¼ vmax

ffiffiffiffiffiffiffiffiffiffiffi
m=M

p
, where

m is the electron mass and vmax is the maximum (cutoff) velocity for
the distribution existing at t¼ 0. Rarefaction waves are seen to emerge
from the boundaries and propagate with the velocity cs0. The plasma
density nw at the sheath edge (at the wall in the quasineutral approxi-
mation) remains unchanged over the period 0 < t=t0 � tcross ¼ 2, at
the value equal to nw ¼ n0=2. The time tcross marks the instant when
the rarefaction fronts have traveled all the way across to the opposite
edge; in the case of flat-top EVDF, their propagation speed does not
change as the waves interact. The values of tcross and nw will depend on
the initial EVDF but qualitatively, the evolution of the decaying plasma
will remain similar between different cases. We note that a flat density
profile forms in the region between the two rarefaction fronts after
they pass through the center, with nðtÞ ¼ n0ðt0=tÞ for t � t0. These
results agree with the analytical solution for c ¼ 3 (valid in the quasi-
neutral approximation) presented in the Appendix.

Next in Fig. 2, we show successive profiles of the particle flux. As
long as self-similar rarefaction-wave flows are still present in the vicin-
ity of the walls for t � tcross, the wall flux remains constant; in this
case, it is equal to (1=4Þn0cs0. At the boundary, the flux has a station-
ary point, consistent with maintaining constant density. The flow
velocity at the boundary equals local acoustic speed, in this case
ð1=2Þcs0.

For t=t0 > 2, the flux falls off as 1=t2 because both the density
and the velocity at the wall fall off as 1=t. As the density profile
becomes flat, the velocity profile becomes linear in x of the form x/t.
This is free inertial “red shift” decay. Such long-time asymptotic
behavior, which does not depend on the initial EVDF, is an exact solu-
tion for the flat-top EVDF case.

Time dependencies of the potential at the center x¼ L, and of the
wall flux (at x¼ 0 or x ¼ 2L) are plotted in Fig. 3. Both analytical and
numerical results are shown. Good agreement is observed between the
two sets of data. Transient oscillations are also seen in the numerical
results due to the initial formation of an ion-matrix and then the
Debye sheath. While the flux evolution is qualitatively universal with
respect to the initial EVDF (excluding unstable distributions with a
negative @p=@q), the constant value of the plasma potential over the
period t=t0 � 1 is specific to the flat-top distribution case. Indeed, in

FIG. 1. Density evolution for the case of waterbag electrons (EVDF is initially flat-
top, making it such at all times). These results are in agreement with the c ¼ 3
gasdynamic solution (shown in Appendixes) which applies in this case within the
quasineutral approximation. Note the formation of a flat density profile with exact
1=t time dependence of the magnitude.

FIG. 2. Successive snapshots of the flux profiles for the case with a flat-top initial
distribution. Note the stationary sonic point at the boundary.

FIG. 3. Time dependencies of the plasma potential (right y-axis) and the wall flux
(left y-axis) for the waterbag case. The potential is normalized by the maximum
energy in the initial distribution and the flux is normalized by n0cs0. Good agreement
with the gasdynamic solution is observed.
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this case, the electron velocity distribution remains flat and depends
on the potential U locally through the cutoff velocity which is propor-
tional to U1=2. Therefore, n / U1=2; p / U3=2, and the collisionless
plasma is characterized by a local equation of state with c¼ 3.

Finally for the flat-top EVDF case, successive profiles of the
potential in the plasma are shown in Fig. 4. Consistent with Fig. 3, the
potential in the unperturbed region remains constant in space
(equal, in energy units, to the maximum energy of electrons at t¼ 0).
After the rarefaction fronts pass through the center, the potential pro-
file in the wave interaction region becomes flat and falls off as 1=t2.
There are also transient plasma oscillations seen to exist over a fraction
of ion-acoustic time, forming standing waves. There is no Landau
damping for the flat-top distribution. The amplitude is small
compared to the ambipolar potential and the wavelength is large
compared to the Debye scale. The effect of these oscillations on the ion
motion can be neglected, and thus quasineutrality still holds on the
ion-acoustic timescale. It needs to be mentioned that formally,
quasineutrality is violated at the rarefaction front, which in that
approximation is a weak discontinuity where a d-function charge sheet
is present. In particle simulations, as seen in the presented figures, the
discontinuity is smoothed over many Debye scales with no large peaks
in charge density.

The case of a flat-top EVDF demonstrates sufficiently well the
overall evolution of a decaying plasma bounded by walls. As stated, an
analytical solution exists in the quasineutral approximation, making
this case particularly useful for validating the simulation code. Next we
proceed with the case of a Maxwellian distribution. The main interest,
and the central point of the paper, is that the Maxwellian case shows
non-trivial adiabatic evolution of the EVDF, unlike the flat-top case
where the EVDF, as a function of the adiabatic invariant, is still a
constant.

B. Maxwellian electrons at t¼0

Numerical results for the case with initial Maxwellian distribution
of electrons are visualized in Figs. 5–8. Figure 5 shows time dependen-
cies of the plasma potential at the center and of the escaping flux in
the same format as Fig. 3 for the flat-top case. The flux is very high
over the short period of initial sheath formation due to the presence of
an energetic tail. The time of the formation of quasineutral rarefaction
waves can be designated as the moment t=t0 � 0:1 at which the nor-
malized flux equals exp ð�1Þ, the value found in isothermal gas

dynamics (referenced in the Appendix). Between this moment and the
time the rarefaction waves cease, the normalized flux varies within a
narrow range between exp ð�1Þ and 0.3. This behavior is similar to
isentropic gas dynamics in which the wall flux is initially constant. We

note that the flow velocity is normalized by cs0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Te=M

p
, whereas

the acoustic speed itself varies with time due to the adiabatic compres-
sion of trapped electrons. Indeed as seen in Fig. 5 from the variation of
the plasma potential, the rarefaction waves reach the center x=L ¼ 1
at t=t0 � 0:85 and not at t=t0 ¼ 1 (variation of the potential will be
addressed in more detail further on). The normalized time for the rar-
efaction fronts to cross over to the opposite wall is approximately twice
that value at 1.7. Thus, the observed wave front traveling speed is
approximately 1:2cs0. If the normalized flux at t=t0 ¼ 1:7 is re-scaled
by this value, it will be equal to 0.25 which actually corresponds to the

FIG. 4. Snapshots of the potential profiles for the flat-top initial EVDF. The normali-
zation unit is the maximum electron energy in the distribution at t¼ 0 which equals
the initial plasma potential. The horizontal lines at 1 and at 0.25 mark the analytical
values at t¼ 0 and at t ¼ 2t0 found under the quasineutral approximation.

FIG. 5. Time-dependent plasma potential (normalized by Te, right y-axis) and wall
flux (normalized by n0cs0, left y-axis) for the Maxwellian case. The behavior resem-
bles that of a gasdynamic solution, with slowly varying wall flux before entering iner-
tial decay. The potential falls off to just below Te at t ¼ t0 when density n0 is still
maintained at the center and 70% of the plasma remains in the system according
to the corresponding density profile in Fig. 6.

FIG. 6. Density profiles for a plasma with Maxwellian electrons for t � t0, where t0
is the observed time for the rarefaction front to reach the center. Note the slowly
time-varying density value at the sheath edge of about 0:4n0.
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case c ¼ 3 considered in Sec. IIIA. However, an effective value of the
adiabatic index is difficult to assign because the shape of the EVDF,
which determines it, varies both in time in space. For example, the
snapshots of density profiles, plotted in Fig. 6, show that the plasma
density at the sheath edge stays at the value of approximately 0:4n0.
We note that in a numerical study13 of the post-conduction phase in a
plasma-arc switch such value of density at the sheath edge was indeed
observed on the anode side. A flat density profile with n ¼ 0:4n0 was
seen to form and then gradually decay. We note that for a gasdynamic
rarefaction wave in which the density at the wall equals 0:4n0, the
value of the adiabatic index c would be approximately 1.4. Note that in
Figs. 6–8, unlike previously, the time argument is normalized by the
actual time for the wave front to travel the half-length L of the

bounded plasma. For clarity, the snapshots cover only this phase of
the plasma decay and not the subsequent interaction of the rarefaction
waves. This interval is also sufficient to discuss the adiabatic evolution
of the EVDF in Sec. IV since at later times, as the rarefaction fronts
move apart, the adiabatic evolution is simply reversed and the EVDF
becomes progressively closer to a cutoff Maxwellian.

We now return to the time variation of the plasma potential,
plotted in Fig. 5. The important fact is that at the moment when the
rarefaction fronts meet at the center, the plasma potential already falls
to the value of 0:9Te, and this value is still sufficient to maintain elec-
tron density equal n0. Besides being slightly smaller than Te, this value
also does not depend on the ion mass M. At this moment, approxi-
mately 70% of the plasma is still left in the system, as seen from Fig. 6.

Successive snapshots of the potential profiles in the Maxwellian
plasma with rarefaction waves are shown in Fig. 7. It is seen that the
potential profiles between the sheath edge and the rarefaction front
and are approximately linear. Such would actually have been the case
for an isothermal gas (i.e., plasma with Boltzmann electrons) even
though the observed potential variation is not consistent with isother-
mal rarefaction wave where it equals to Te. This observation will be
utilized in Sec. IV to propose a piecewise-linear approximation of the
potential well.

For the plasma flux profiles, the snapshots are shown in Fig. 8. In
similarity with the previously discussed c ¼ 3 case and isentropic gas
dynamics in general, over the period when the rarefaction waves are
present, the wall flux shows slow variation in time and there is a sta-
tionary point located at the wall or in close vicinity. At larger times,
1=t2 asymptotic dependence is seen for the wall flux: the value at t¼ 4
is 1/4 of the value at t¼ 2. Finally, the asymptotic behavior of both the
wall flux and plasma potential is the same as seen in the case of a flat-
top EVDF, namely, both fall off as 1=t2. No data fitting was applied to
produce the asymptotic curves; each is based on a single data point
from the simulation. We can now proceed with analyzing the simula-
tion results.

IV. ANALYSIS

To analyze the particle simulation results, we utilize an easily
tractable model with piecewise-linear profile of the potential. The adia-
batic invariant can be easily calculated in this case. A fully self-
consistent solution is not presented although the required set of equa-
tions is specified. The simplified model of the potential well is suffi-
cient to gain good insight into the process and, in particular, obtain a
quantitative expression for the EVDF that shows good agreement with
the simulation data. Also, the resulting analytical expressions for the
local plasma density and for the total number of particles (per unit
area of the wall) allow, in principle, to impose constraints on the
parameters specifying the potential profile at a given state of the
system.

We introduce the following notation: L is half-width of the
plasma slab, X ¼ XðtÞ is the position of the rarefaction front relative
to the boundary (before or after passing through the center),
U ¼ Uðx; tÞ is the electrostatic potential, andU ¼ �eU is the electron
potential energy, with U¼ 0 at the center x¼ L of the decaying
plasma. The time-depending Hamiltonian is H ¼ Uðx; tÞ þmv2=2.
The symmetric potential Uðx; tÞ ¼ Uð2L� x; tÞ is assumed to be flat
in the region between the rarefaction fronts (before or after they cross
the middle plane), vary linearly in the quasineutral rarefaction wave,

FIG. 7. Potential profiles for the Maxwellian case. Only the initial profile depends on
the ion mass. The Debye sheath potential is smaller than Te for each of the subse-
quent profiles shown, and the full potential falls to 0:9Te at the instant of the rare-
faction fronts meeting at the center.

FIG. 8. Flux profiles for the Maxwellian case. Note that until the waves pass
through, the flux has a stationary point near the wall, corresponding to the sonic
point in a gasdynamic solution. This explains why the density at the wall changes
slowly and the overall solution is structurally similar to propagation of self-similar
rarefaction waves.
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and also have sheath jumps at the boundaries x¼ 0 and x ¼ 2L, of
negligible width. Specifically, to the left side 0 < x < L of the symme-
try plane x¼ L,

Uðx; tÞ ¼
0; XðtÞ < x � L;

UwðtÞ 1� x=XðtÞ½ �; 0 < x � XðtÞ;
UmaxðtÞ; x ¼ 0:

8><
>: (1)

It is seen that Umax is the total depth of the potential well and Uw is the
ambipolar potential variation in the plasma. The sheath potential is
Umax � Uw. Electrons trapped in the potential (1) with energies above
Uw but below Umax bounce off the negligibly thin potential barrier pre-
sented by the wall sheath.

Since the shape and the magnitude of the ambipolar potential
vary on the ion-acoustic timescale which far exceeds the bouncing
time of electrons, the adiabatic invariant

I ¼ IðHÞ ¼
þ
vdx ¼

þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
m

H � Uðx; tÞð Þ
r

dx; (2)

where the integral is taken over a bouncing period, is conserved, and
so is the electron velocity distribution function fv ¼ fvðIðHÞÞ
¼ fv

�
I
�
mv2
2 þ U

��
. The subscript “v” indicates that the normalization

is defined by integration over velocity. Conservation of adiabatic
invariant for trapped electrons was originally considered by
Gurevich.18 We recall that I(H) equals the phase area enclosed by the
given orbit. In particular, the number of confined particles (per unit
area of the wall) with energy values up toH is given by

NðHÞ ¼
ðIðHÞ
0

fvðI0ÞdI0: (3)

Figure 9 illustrates the adiabatic evolution of an electron orbit. The tra-
jectories correspond to several successive positions of the rarefaction

fronts, showing energy gain as the fronts travel inward. The process is
reversed after the fronts cross the symmetry plane. The velocity distri-
bution fv expresses explicitly as a function of I if at the initial moment
the potential well is rectangular (variation in the negligibly thin wall
sheath only)

fvðIÞ ¼ fv;0
I
4L

� �
: (4)

To proceed further, let us introduce the scaling parameters and non-
dimensional variables as follows: u ¼ U

T ; h ¼ H
T ; umax ¼ Umax

T ; uw

¼ Uw
T ; T ¼

mv2T
2 ; ~nðx; tÞ ¼ n

n0
; a ¼ aðtÞ ¼ XðtÞ

L . Here, vT is the charac-
teristic velocity for the initial distribution and T is the corresponding
energy. For a Maxwellian distribution, vT can be taken as the thermal
velocity, with T ¼ Te as a result, but the treatment is not restricted to
the Maxwellian case. The adiabatic invariant is normalized as J ¼ I

4vTL

and the velocity distribution is given as

fvðIÞ ¼
n0
vT

g Jðh; a; uwÞð Þ; (5)

where

2
ð1
0
gðJÞdJ ¼ 1: (6)

Note that the two normalizations (3) and (6) are consistent. The
dependence upon the potential maximum Umax is omitted in Eq. (5);
it is in the form of a step function. For the potential given by Eq. (1),
the normalized invariant J expresses as follows:

Jðh; a; uwÞ ¼
ffiffiffiffiffiffi
uw
p ~I

h
uw
; a

� �
; (7)

where h < umax and

~Iðe; aÞ ¼ e1=2ð1� aÞ þ 2
3
a e3=2 �Hðe� 1Þðe� 1Þ3=2
� �

: (8)

In the above expression, e is the ratio H=Uw of the electron energy H
to the ambipolar potential variation Uw and H is the Heaviside step
function. The velocity distribution, as a function of the total energy h
in the potential well at a given time (on the “slow” ion-acoustic scale
of quasineutral evolution), is expressed via Eqs. (5), (7), and (8). The
EVDF mapping for a given shape of the potential well is illustrated in
Fig. 10. Figure 11 shows a comparison of the above distribution with
the one computed from particle simulation data. The presented case is
for a¼ 1, that is, the moment for the rarefaction fronts to reach the
center. The known values of the density at the center and at the wall
(the latter from simulations) impose, through Eq. (9) below, two con-
ditions on the ambipolar potential uw and on the total potential umax,
both of which can thus be determined. Those values, which also agree
with the simulations, were used in calculating the predicted distribu-
tion according to Eq. (5). Also, the fraction of the plasma remaining in
the system is consistent with that predicted by Eq. (3). The latter speci-
fies to N ¼ erfðJðumax; a; uwÞÞ in accordance with Eqs. (3) and (7).

We introduce the following non-dimensional expressions for the
electron density, the local acoustic speed ~cs , and the pressure ~p. The
acoustic speed is normalized by 1

2
M
m v2T , whereM is the mass of the ion

species, and the pressure is normalized by n0T ¼ n0
mv2T
2 (reminding

FIG. 9. Illustration of the adiabatic evolution in one-dimensional phase space. In
the potential (1), the orbits are composed of straight and parabolic segments and
there are also reflections at the step representing the sheath. The enclosed area is
preserved under the mapping. The parameter a is the relative distance XðtÞ=L trav-
eled by the rarefaction fronts toward the center. The electron in this example
escapes when the plasma potential falls to 0:05Te.
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that vT was introduced as the scale velocity for the electron distribution
and T as the corresponding energy),

~nðu; a; uw; umaxÞ ¼
ðumax

u
dhðh� uÞ�1=2gðJðh; a; uwÞÞ; (9)

~cs
2ðu;a;uw;umaxÞ ¼

~nðu;a;uw;umaxÞ
gðumax;a;uwÞ
ðumax � uÞ1=2

�
ðumax

u

dh

ðh� uÞ1=2
dg
dJ
@J
@h

;
(10)

~pðu; a; uw; umaxÞ ¼ 2
ðumax

u
dhðh� uÞ1=2gðh; a; uwÞ: (11)

The effective adiabatic index ceff is found as

ceff ¼ ~cs
2 ~n

~p
: (12)

Equation (12) makes it clear that a unique value of the adiabatic index
cannot be assigned due to the non-local response of the electrons to a
perturbation of the potential. In Appendix B, we consider, as an exam-
ple, the value of ceff for a Maxwellian at the bottom of a potential well
with a finite depth U. It varies in the range from 1 to 3 depending on
the ratio U=Te.

In Eqs. (9)–(12), the x-dependence is through the potential
u ¼ uðx; a; uwÞ as defined by Eq. (1). Equation (10) is the known gen-
eral expression for ion-acoustic speed in the long-wave limit. The
energy derivative of the distribution is taken by applying the chain
rule. Note that @J=@h is the normalized bouncing period, obtained by
differentiating Eq. (7). The boundary contribution (d-function term) is
present in Eq. (10) due to the jump of g to zero at u ¼ 6umax. Such
terms, arising in wave dispersion equations for cutoff distributions, are
sometimes not accounted for in published studies.

Differentiating Eq. (11) with respect to x shows that for electrons
the pressure is balanced by the electric field. This condition was
expected although it was not used explicitly.

We note briefly that Eq. (9) provides a non-local quasi-neutral
closure to the standard fluid equations for a plasma with cold ions

@n
@t
þ @

@x
nVð Þ ¼ 0;

@V
@t
þ V

@V
@x
¼ � e

M
@U
@x

:

(13)

An applicable numerical scheme would use some type of iterative solu-
tion for the nonlinear integral equation (9) to find the potential profile
(including the jump at the wall) at each step and then advance the
ions in the electric field. Ions in such scheme could also be treated as
particles if their thermal spread needs to be accounted for. Such fully
self-consistent quasineutral numerical model will not be pursued at
this time. If the above equations are applied to the case of a flat-top ini-
tial velocity distribution (the scaling parameter vT can be chosen as the
maximum velocity), in which case g(J) is also flat, it is seen that the ion
fluid behaves as a gas with c ¼ 3 and therefore the quasineutral evolu-
tion is governed by the respective set of equations of gas dynamics,
with electrostatic potential; as a result, it is proportional to density
squared. The gasdynamic solution is addressed in the Appendix. The
main properties of the gasdynamic solution are as follows: Initially, it
is in the form of self-similar rarefaction waves propagating symmetri-
cally inwards from the boundaries. The ions at any given position
begin to move after the rarefaction front passes through. The density
and the flow velocity (equal to the local acoustic speed) at the wall
remain constant; for c ¼ 3, they both equal 1/2 of the respective value
in the unperturbed state. After the rarefaction fronts pass through the
center (which can also be viewed as reflection of the rarefaction
waves), a flat density profile and a linear velocity profile form in the
expanding central region. For c ¼ 3, this behavior is exact, but the
flow is qualitatively similar for other values of the adiabatic index.
After the wave fronts have traveled all the way across, the density

FIG. 10. Mapping of the EVDF at x=L ¼ 1 defined by the conservation of the adia-
batic invariant. In the initial state (rectangular potential well), the normalized invari-
ant J equals v=vT . The function Jðv=vT Þ for a¼ 1 (rarefaction fronts meeting at
the center) is shown in the bottom right quadrant. A Maxwellian EVDF maps into
the distribution shown on the top. Expressed as a function of total energy, this distri-
bution applies for 0 < x=L < 2. The evolving distribution is cut off at the velocity
corresponding to the depth of the potential well; it maps into v ¼ v0;max at t¼ 0
which allows to evaluate the lost fraction of the plasma.

FIG. 11. Comparison between analytical and numerical EVDFs. No fitting was per-
formed; the parameters of the potential well were calculated based on the observed
maximum value and the density at the sheath edge. At the moment when the wave
fronts meet at the center, such calculation gives umax ¼ 0.95 and uw ¼ 0:67.
These are, in units of Te, the potential maximum and its variation along the rarefac-
tion wave. Thus the Debye sheath potential is 0:28Te.
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profile becomes flat (at 1/2 the initial value for the flat-top EVDF, or
approximately 0:4n0 in the Maxwellian case) and then decays iner-
tially as 1=t. The flux to the boundary remains constant up to the
moment when the wave fronts cross the plasma slab and falls off as
1=t2 further on, so does the plasma potential. Such asymptotic behav-
ior is universal because the electron distribution becomes cut off at
velocities much lower than thermal, that is, it becomes a flat-top distri-
bution in the long run.

V. CONCLUSIONS AND FUTURE WORK

We have investigated, numerically and analytically, the colli-
sionless rarefaction flow of a plasma bounded by planar walls.
Qualitatively, the evolution of the system in certain ways resembles
that in gas dynamics. Specifically, rarefaction waves are launched
from the boundaries and interact in the center region. The density
and the flux at the wall show little variation in time until the rare-
faction waves pass across and cease to exist. A flat density profile
forms in the center and extends to the boundaries as the rarefac-
tion fronts pass travel through. At later times, the density decays as
1=t and the flux falls off as 1=t2. The kinetic description of the
process is based on the conservation of adiabatic invariant for elec-
trons that are trapped in the system at any given moment. An
interesting consequence of such evolution is the resulting low value
of the potential in the plasma, for example 0:9Te at the moment
when the rarefaction fronts reach the center of the plasma slab. At
that instant, the density at the center still equals the initial value
and 70% of the plasma still remains in the system. The numerical
model and analysis of the results can be applied to an arbitrary ini-
tial distribution of electrons (as long as c2s > 0). The formation of a
flat density profile and low plasma potential may be of interest in
material processing applications where uniformity is important
and low ion energies are often desired. One example of a process
where uniformity is essential is Raman amplification of short laser
pulses where the required tolerance is within few percent.19

At present, we have not developed a fully self-consistent solution
for the quasineutral adiabatic model of the rarefaction flow, but we
have presented an analysis which predicts the EVDF in good agree-
ment with simulations. Developing a fully self-consistent solution will
be a subject of future work. The task at hand would be to formulate a
scheme for solving the corresponding set of integrodifferential equa-
tions (hydrodynamic equations for the ions with quasineutrality clo-
sure based on the adiabatic EVDF).
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APPENDIX A: RAREFACTION FLOW IN GAS
DYNAMICS

The purpose of this section is to aid in interpreting the results
of our particle simulations. Basic understanding of the decay of a
bounded plasma can be gained from considering a gasdynamic
(fluid) approximation of the problem with appropriate boundary
conditions. Specifically, the outflow velocity should equal the local
acoustic speed at the sheath edge. On the quasineutral timescale,
assuming the Debye sheath to form instantaneously at t¼ 0, the ini-
tial phase of the process is a self-similar rarefacton wave. Such solu-
tion in the case of plasma was originally obtained for a semi-infinite
configuration with Boltzmann electrons (corresponding to isother-
mal gas with electrostatic potential playing the role of enthalpy).2 In
a finite plasma bounded by planar walls, the ion-flow regions also
spread inward initially as rarefaction waves. The two rarefaction
fronts meet at the symmetry plane and pass through each other,
forming an expanding region where the rarefaction waves interact.
The solution in the interaction region is relatively simple to obtain
for specific rational values of the adiabatic index c20 and is also
known in general implicit form,21–23 less suitable for numerical
computation. An analytical solution for c ¼ 2 was given, for exam-
ple, by Startsev and Davidson24 who also noted the 1=t asymptotic
time dependence of the density field. In this section, a full solution
will be given, for reference, only for a gas with c ¼ 3, in which case
it is elementary and at the same time exact for a flat-top initial elec-
tron distribution, as stated in the main text. Further, the long-time
asymptotic behavior (“red-shift decay”) such solution displays is
correct for the initial electron velocity distribution of sufficiently
general shape (e.g., monotonic with a smooth maximum at zero
velocity). Since a specific value of the adiabatic index cannot be
assigned to a plasma with adiabatically evolving electron distribu-
tion, we also plot gasdynamic solutions for c ¼ 1 and c ¼ 2. In the
kinetic model with Maxwellian EVDF, the effective adiabatic index
ceff calculated as c2s ðq=pÞ, Eq. (12), is observed to vary in the range
between 1 and 3 (with spatial and temporal variation); therefore
presenting the gasdynamic solutions should help with qualitative
understanding of the process.

In what follows, the gas with adiabatic index c is assumed to
be initially at rest within a slab region 0 < x < 2 with initial density
and acoustic speed both equal to unity. The rarefaction fronts prop-
agate into the unperturbed gas with velocity 1. For t � 1, the solu-
tion in the left half 0 < x < 1 for velocity u(x, t) and density n(x, t)
has a self-similar form, with n ¼ x=t

uðx; t; cÞ ¼ 2
cþ 1

n� 1ð Þ; (A1)

nðx; t; cÞ ¼ 2þ ðc� 1Þn
cþ 1

	 
 2
c�1

: (A2)

The solution for c ¼ 1 is found by taking a respective limit and
yields

nðx; t; 1Þ ¼ exp ðn� 1Þ; (A3)

uðx; t; 1Þ ¼ n� 1: (A4)

The ambipolar potential Uðx; tÞ, in units of p0=n0, is found from
the pressure balance for electrons and it varies as nc�1, apart from
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an additive constant. The isothermal case (i.e., Boltzmann electrons)
yields a familiar result U / ln n. Note that in the gasdynamic
model, the potential in the unperturbed region for 1 < t remains
constant because it is a local function of n. Another useful property
of the rarefaction-wave flow is the relation between the velocity and
local acoustic speed,

cs ¼ 1� c� 1
2
juj: (A5)

The gas at t < x < 2� t remains unperturbed. At t> 1, the rarefac-
tion fronts will travel past the center plane. The front velocity no
longer equals the equilibrium value of 1 and the trajectory can be
found by the method of characteristics20 (in terms of which, the

front trajectory is a line separating two types of flow). For
1 � c � 3, the wave front accelerates at t> 1; for c ¼ 3, it continues
to travel at the constant speed of 1. The moment for the wave front
to reach the opposite boundary depends on c; trajectories are plot-
ted in Fig. 12. Until the wave fronts have traveled all the way across,
there is still a region adjacent to the boundary on each side where
the flow is represented by the self-similar solution at n ¼ 0 for a
given c. The velocity u (equal to the local acoustic speed), the den-
sity n, and the wall flux C ¼ nu maintain constant values. Also note
that at the boundary @C

@x ¼ 0. The solution in the interaction region
for t> 1 is specifically simple in the case of c ¼ 3 (Fig. 13): the den-
sity between the spreading wave fronts equals 1=t and the velocity
profile is linear, matching up to the self-similar solutions outside.
At t> 2, the density profile becomes constant (flat) and continues
to fall off as 1=t. The potential, accordingly, varies as 1=t2. As an
asymptotic solution, such behavior is universal for collisionless sys-
tems evolving inertially. The solutions for c ¼ 1 and c ¼ 2 are quali-
tatively similar to the c ¼ 3 case up until the moment the wave
fronts cross the plasma. The 1=t asymptotic decay of the density is

FIG. 12. Rarefaction front trajectories for c ¼ 1; 2; 3: For plasma with adiabatic
electrons, the acoustic speed in the center is changing even when ions at x¼ 1 are
still at rest.

FIG. 13. Successive density profiles for c ¼ 3, exact solution. Flat profile forms at
t¼ 2 and continues to decay as 1=t.

FIG. 14. Density profiles at t ¼ 0:75L=cs0 and t ¼ 1:25L=cs0 for three values of
the adiabatic index c. Note the constant values at the boundary as long as self-
similar flow regions are present.

FIG. 15. Velocity profiles at t ¼ 1:25L=cs0 for three values of c. Inertial-decay pro-
file is forming in the center.
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also reproduced although it is not the 1=t2 asymptotic decrease in
the sheath potential. In what follows, we illustrate the gasdynamic
solutions for c ¼ 1; 2; 3. The inner solutions for c ¼ 1; 2 in the
interaction region are obtained by a suitable approximation based
on the conservation of mass. The density profile is parabolic and
the velocity profile is linear. This approximation works quite well
for a bounded plasma where the scale length does not vary with
time. The plotted curves are indistinguishable from those represent-
ing exact solutions. Figure 14 shows the density profiles for
c ¼ 1; 2; 3 at two different times, one (cs0t=L ¼ 0:75) prior to the
wave fronts reaching the center plane and the other (cs0t=L ¼ 1:25)
after the rarefaction waves have met. Velocity profiles in the second
state are plotted in Fig. 15. Successive profiles of the ion flux given
by the analytical solution for the c ¼ 3 case are plotted in Fig. 16.

APPENDIX B: EFFECTIVE VALUE OF ADIABATIC
INDEX

In the regime when collisions can be neglected, electron
response to a local variation of electrostatic potential is deter-
mined by the EVDF in the entire system. As a result, the effective
adiabatic index ceff defined in Eq. (12) depends on the global
structure of the ambipolar potential and the corresponding EVDF.
In this section, we present a brief example to illustrate this
statement.

Consider Maxwellian electrons trapped in a potential well of
finite depth Umax ¼ jejUmax. For simplicity, let us evaluate the value
of ceff at the bottom of the well where the distribution is symmetric,
with a cutoff at the kinetic energy equal to Umax. In Fig. 17, the
value of ceff at the bottom of the well (U¼ 0) is plotted vs Umax=Te.
It is seen that the effective adiabatic index takes values in the range
from 1 to 3, depending on the depth of the potential well. In a very
general sense, the evolution of a plasma confined between absorbing
boundaries can be represented by moving from right to left along
the curve in Fig. 17.

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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