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It is shown that ion acoustic waves in plasmas with E0 �B0 electron drift become unstable due to the

closure of plasma current in the chamber wall. Such unstable modes may enhance both near-wall

conductivity and turbulent electron transport in plasma devices with E0 �B0 electron drift and

unmagnetized ions. It is shown that the instability is sensitive to the wall material: a high value of the

dielectric permittivity (such as in metal walls) reduces the mode growth rate by an order of magnitude but

does not eliminate the instability completely.
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Introduction.—It has long been noted that collisional
transport of magnetically confined plasma is strongly
affected by the closure of the parallel (along the magnetic
field) electron current in the chamber walls. This is the so-
called Simon short circuit effect [1]; for recent work on this
subject, see Refs. [2,3] and references therein. In this work
we show that plasmas with E0 � B0 electron drift and
unmagnetized ions can be destabilized by the electron cur-
rent admitted into thewall.Thewall current, self-consistently
determined from sheath boundary conditions, provides the
positive feedback mechanism that renders the instability.

Devices with a stationary, externally applied, electric field
E0, which is perpendicular to a moderate amplitude mag-
netic field B0, are common in magnetically controlled plas-
mas [4,5]. The electric field produces a stationary current
due to the E0 �B0 electron drift, while ions do not feel the
magnetic field due to their large Larmor radius. High interest
applications involve Penning-type plasma sources [6,7],
magnetrons and magnetic filters [8,9], and electric space
propulsion [4]. For typical parameters, classical (collisional)
transport is too low to explain the experimental data on
plasma current and heating in these devices, so that plasma
instabilities [10] are suspected as a reason for anomalous
electron transport [11,12]. The exact nature of the fluctua-
tions responsible for this anomalous behavior, however,
remains unknown. Significant experimental evidence [13]
suggests that the electron cross-field transport is affected by
the properties of the wall material (e.g., metal vs dielectric
wall). This fact points to the near-wall conductivity due to
electron collisions with the walls, which is sensitive to the
sheath structure [14], as a possible mechanism responsible
for the anomalous transport. On other hand, various unstable
modes that may lead to the turbulent transport in bulk
plasma have been identified in the past [15–20]. Some
experimental data and numerical modeling suggest [11]
that a combination of both bulk turbulence mobility
and near-wall conductivity is required to satisfactorily
describe the observed experimental behavior. The physical

mechanism proposed in this Letter, which is based on the
coupling of E0 � B0 driven sound waves in bulk plasma
with sheath fluctuations at the dielectric boundary, will
result in fluctuations affecting both the turbulent mobility
of bulk electrons and the near-wall conductivity.
Collisional destabilization of ion sound waves in

plasmas with E0 � B electron drift.—To underly the
physical mechanism of the discussed instability, we first
consider the simple case of ion sound modes in an infinite
plasma with collisions, applied magnetic field B0 ¼ B0ẑ,
and external electric field E0 ¼ E0 x̂.
In absence of collisions, the electrons have large mobil-

ity along the magnetic in the ẑ direction and electron

inertia can be neglected in the limit !< kzvTe, vTe ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Te=me

p
. This results in the Boltzmann distribution for

the perturbed electron density

~ne ¼ e ~�

Te

n0; (1)

where n0 is the equilibrium plasma density. It is important
to note that the electron density is not affected by the
Doppler shift due to the E0 �B0 drift. Unmagnetized
cold ions with Ti ¼ 0 have a local ion density response
in the form

~ni ¼
ðk2y þ k2zÞc2s

!2

e ~�

Te

n0; (2)

where cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Te=mi

p
is the ion sound velocity, kz and ky are

the wave vector components along the applied magnetic
field and in the perpendicular direction, respectively. The
quasineutrality condition, along with Eqs. (1) and (2),
results in the dispersion relation for the ion sound waves

!2 ¼ ðk2z þ k2yÞc2s ; (3)

which is not affected by the magnetic field nor by the
Doppler frequency shift (ions are not magnetized). It is
assumed that kx ¼ 0.
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In this model, the parallel electron current along the
magnetic field does not appear explicitly, although obvi-
ously such current is finite. A silent feature of the electron
parallel current is the Doppler phase shift with respect to
the electron density perturbations

~Jke ¼ eð!�!0Þ~ne=kz: (4)

The phase shift is due to the electron drift v0 ¼ cE0 �
B0=B

2
0, !0 ¼ k � v0. In an infinite (along z) plasma and in

the absence of collisions, the parallel electron current is not
constrained and thus the electron flow v0 does not affect the
wave dynamics. The situation changes when the feedback
occurs between the parallel current and the electron density
(and the electric potential fluctuations). The simplest feed-
back is created by electron collisions, which couple the
Doppler shifted electron current to the potential and den-
sity fluctuations. The electron parallel momentum balance
relates the parallel current to the potential and density
fluctuations as follows:

kz

�
~�� Te

e

~ne
n0

�
þme�e

e2n0
~Jke ¼ 0: (5)

The perturbed electron density, which is found from Eq. (5)
and the electron continuity equation, now has a finite phase
shift with respect to the potential fluctuation

~ne
n0

�
1� ð!�!0Þ�e

k2zv
2
Te=2

�
¼ e ~�

Te

: (6)

Using the modified electron density response in Eq. (6),
along with Eq. (2) and the quasineutrality condition, the
dispersion relation for unstable ion sound waves is
obtained in the form

!2 ¼ k2c2s � i
k2c2s
k2zv

2
Te

�eð!�!0Þ; (7)

where k2 ¼ k2z þ k2y. The instability growth rate from

Eq. (7) is then � ’ �kcs�eð!�!0Þ=ð2k2zv2
TeÞ. The insta-

bility occurs for fluctuations moving with a phase velocity
lower than the equilibrium electron flow, !<!0.
Fluctuations with !<!0 have negative energy and are
destabilized by dissipation due to collisions [21]. A similar
mechanism is responsible for the enhancement of the
plasma-beam instability due to collisions [22]. In a dy-
namical picture, the instability is due to the component of
the parallel current that is directed into the regions of
positive potential perturbation, and then reinforces the
initial perturbation, as illustrated in Fig. 1(b). This current
is created via a combination of collisions and the Doppler
phase shift.

Boundary conditions and sheath impedance.—The
above mechanism illustrates the role of the positive feed-
back loop between the parallel current and the density and
potential fluctuations. In a finite length plasma, like the one
shown in Fig. 1(a), a similar feedback is created by the

sheath boundary conditions, which couple the parallel
current with the potential and density fluctuations. We
consider a plasma between two symmetric material walls.
The equilibrium magnetic field B0 ¼ B0ẑ is normal to the
wall, and the y axis is in the direction parallel to the wall.
The equilibrium electric field E0 ¼ E0 x̂ is in the axial
direction, so that the electrons drift along the azimuthal
direction y.
The plasma parallel current is closed by the current into

the sheath, Fig. 1(b), so that Jk has to be matched to the

sheath current in each component (electron and ion).
The sheath current is determined by the perturbation of
the standard ion Bohm current Ji0 ¼ en0cs and the current
of the electrons in the tail of the distribution function with
energies above the potential drop across the sheath: Je0 ¼
n0vTe exp½�eð�p ��wÞ=Te�=ð2

ffiffiffiffi
�

p Þ, where �p is the

plasma potential at the plasma-sheath edge, �p is the

wall potential, and v2
Te ¼ 2Te0=me. In the stationary state,

the total current is zero: J0e þ J0i ¼ 0. For perturbations,
the current is finite. The perturbed ion current in the sheath
is related to density perturbation, ~Jik ¼ e~ncs; the electron
current is ~Jek ¼ �e~ncs þ ~Jsh, and ~Jsh is the total sheath

current in the perturbed state

~Jsh ¼ e2n0cs
Te

ð ~�p � ~�wÞ: (8)

For an ideal metal wall, ~�w ¼ 0, and the total sheath
current appears as a dissipation for the bulk plasma. This
was called sheath resistivity [23–26]. For the dielectric

(a)

(b) (c)

FIG. 1 (color online). (a) Geometry of the plasma bound by the
dielectric walls; (b) Perturbed parallel current in infinite plasma.
The wave fronts are oblique with respect to the magnetic field,
k ¼ ðky; kzÞ; (c) Perturbed current in bound plasma. In (b) and

(c) the instability is driven by the component of the perturbed
parallel current that is directed into the regions of positive charge
(shown with þ), thus enhancing the initial perturbation.
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wall, ~�w � 0. The dielectric wall boundary conditions
can be derived similarly to Refs. [24,27]. From current
conservation, it follows that the plasma conductive current
at the sheath edge is equal to the displacement current in
the dielectric ~Jd ¼ ð4�Þ�1"@EzD=@t, where EzD is the
electric field at the dielectric boundary (inside), " is the
dielectric constant. The displacement current is closed
inside the dielectric. From the Laplace equation,
r2� ¼ 0, one finds for the potential in the thick dielectric:
�¼�wexpðikyyÞexpð�jkyjzÞ, and EzD¼jkyj�wexpðikyyÞ,
where�w is the potential at the wall. Equation (8) together
with the condition ~Jsh ¼ ~Jd determine the amplitude of the
potential fluctuations at the wall

~�w ¼ ~�p

1

1� i"!jkyjcs=!2
pi

: (9)

The total current into the sheath can finally be written in
terms of the amplitude of the plasma potential fluctuations

~Jsh ¼ � e2n0cs
Te

~�p

iK

1� iK
: (10)

In the case of the dielectric wall, the sheath response
becomes reactive for low frequency perturbations, K �
"!jkyjcs=!2

pi < 1; for K � 1 this boundary condition

becomes equivalent to the case of a metal wall [24] with
dissipative sheath response. The regime K � 1 occurs for
high frequency short wavelength fluctuations, ky�D � 1,

or metal walls (" ! 1).
Sheath induced modes in the long-wavelength regime.—

It is instructive to consider first the simpler case of
long-wavelength modes with weak variations along the
magnetic field (global modes), H@=@z � 1. In this limit,
one can use averaged (along the magnetic field lines)
equations with the sheath current as boundary conditions
that couple plasma potential, current, and electron and ion
densities. Together with the quasineutrality condition,
these constraints result in a component of the parallel
current that is directed into the regions of the positive
charge, thus feeding the initial perturbation and leading
to the instability, as schematically illustrated in Fig. 1(c).

Consider the magnetic field line tube between z ¼ �H
and z ¼ H and introduce the averaged potential and den-

sity �n � ð2HÞ�1
R
H
�H ~ndz, �� � ð2HÞ�1

R
H
�H

~�dz. The in-
tegrated electron and ion continuity equations take the
form �ið!�!0Þ �n� JkeðHÞ=ðeHÞ ¼ 0, and �i! �nþ
ien0k

2
y
��=!mi þ JkiðHÞ=ðeHÞ ¼ 0, where JkeðHÞ and

JkiðHÞ are the electron and ion currents at the sheath

boundary, described in the section titled ‘‘Boundary
conditions and sheath impedance,’’ and which depend
on the density and potential fluctuations. Thus, the
electron density response acquires a phase shift due to
the Doppler frequency: �ne=n0 ¼ ðe ��=TeÞ�shK=
½ð1� iKÞð!�!0 þ i�shÞ�, where �sh ¼ cs=2H [compare
with Eq. (6)]. The ion response is insensitive to the electron

E0 � B0 drift: �ni=n0 ¼ ðe ��=TeÞk2yc2s=½!ð!þ i�shÞ�.
Applying the quasineutrality condition results in the
following dispersion relation (for K < 1)

!2ð!þ i�shÞ ¼
jkyjcs!2

pi

�sh

ð!�!0 þ i�shÞ; (11)

which has an unstable root for !<!0, � ’ !r ’
ð�!0jkyjcs!2

pi="�shÞ1=3. The unstable mode has the real

part of the frequency smaller than !0, !<!0, corre-
sponding to the reactive instability of the negative
energy mode [21]. For the metal wall, K � 1, in the limit
of large !0 > �sh, the instability becomes of the dissi-
pative type, with the complex frequency given by

! ¼ 	ði!0k
2
yc

2
s=�shÞ1=2.

Small scale modes.—In general, the sheath modes have
an eigenmode structure that depends both on the z (along
magnetic field) and on y (perpendicular) coordinates. A
general solution for density and potential perturbations can
be obtained as a sum of the mode with the z-dependent
field structure, 
�0 expð�i!tþ ikyyþ ikzzÞ, and the

boundary induced mode which has only y dependence,

�b expðikyyÞ,

nðz; y; tÞ ¼ e

Te

n0

�
�0e

ikzz þ�b

k2yc
2
s

!2

�
eiðkyy�!tÞ; (12)

� ¼ ½�0e
ikzz þ�b�eiðkyy�!tÞ: (13)

The frequency! in these expressions has to satisfy the sound
wave dispersion relation in Eq. (3), where ky is a free

parameter, defined by periodic boundary conditions, but kz
is an eigenvalue that has to be determined as a solvability
condition for the system of the ion and electron continuity
equations closed with the sheath currents and the quasineu-
trality condition. This solvability condition has the form

tanðkzHÞ
kzH

�
!0 �

k2yc
2
s

!
� i!ð!�!0Þ

�sh

�
1� k2yc

2
s

!2

�

þ i!

�
!2

k2yc
2
s

� 1

�
K

1� iK

�
þ

�
!�!0 þ �sh

1� iK

� �sh

!2

k2yc
2
s

K

1� iK

�
¼ 0: (14)

Solving this last equation, together with the dispersion rela-
tion in Eq. (3), one finds the eigenvalues for !.
In the long-wavelength limit, kzH � 1, local variations

in� and n can be neglected, �� ¼ �ðHÞ and �n ¼ nðHÞ, and
one then recovers the dispersion relation in Eq. (11).
The growth rate and real part of the frequency of the

unstable modes in Eqs. (11) and (14) are shown in Fig. 2(a)
as a function of !0, for Te ¼ 10 eV and xenon plasma,
length scale H ¼ 1 cm, and the lowest wave vector ky ¼
0:2 rad=cm. The real part of the frequency is negative,
which corresponds to a rotation in the direction of the
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E�B drift. Figure 2(b) shows the convergence of the
eigenvalues for the small scale modes to the long-
wavelength limit of Eq (11). Figure 3, where the growth
rate and frequencies are plotted as a function of ", dem-
onstrates that with an increase in ", both the frequency
(whose absolute value is shown) and the growth rates
decrease, reaching asymptotic values that correspond to
the case of a metal wall (" ! 1).

Summary.—The E0 �B0 flow of magnetized electrons
is a powerful source of free energy in plasmas with unmag-
netized ions. The electron perturbations with phase veloc-
ities below v0 ¼ cE0 � B0=B

2
0 reduce the total energy of

the system resulting in dissipative and reactive instabilities
of negative energy modes. We have derived the sheath
current closure relations for the dielectric wall and have
shown that the sheath current boundary conditions lead to
the positive feedback that destabilizes the ion sound waves
in plasmas with E0 �B0 electron drift. It follows from
Eqs. (11) and (14) that the frequency and growth rate of the
unstable mode increase with electron temperature. The
sheath boundary conditions derived in this Letter show
that the unstable modes are sensitive to the nature of the
wall material. A generic dielectric wall provides a reactive
response, while the response is dissipative for the metal
wall. Unstable modes are shown to exist in the form of
coupled oscillations of the bulk plasma and the sheath.
If present, such fluctuations would strongly influence
both bulk plasma transport and near wall conductivity.
Sheath oscillations have been observed in some simula-
tions [28,29], although direct experimental detection of
sheath fluctuations in Hall plasma devices is difficult.
Experimental observations in Ref. [30] demonstrate the
strong sensitivity of the amplitude of the fluctuations to
the wall material. In particular, it was shown [30] that metal
walls suppress the fluctuations. Our analytical results show
a similar result, namely that the instability growth rates for
the metal wall are reduced by an order of magnitude, which
is generally consistent with experimental observations
[30]. The saturation of streaming instabilities driven by
E0 � B0 flow is likely to lead to strong turbulence regimes.
In the latter case, as a simple estimate of the effective
collision frequency due to turbulent fluctuations, one can
use the growth rate of the instability [31]. For typical
plasma parameters [30], the unstable modes have � ’
108 rad=s (see results in Fig. 3), which is a typical value
used in empirical simulations of anomalous effects [32].
A number of previous studies dealt with instabilities of

E0 � B0 Hall plasmas, caused by the equilibrium electron
flow in combination with density and magnetic field gra-
dients [15,20,33], resistive effects [18,19], and electron
cyclotron resonances [16]. These instabilities may also be
affected by sheath closure effects.
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FIG. 2 (color online). Growth rate and real part of the fre-
quency for the global and local modes are shown: (a) as a
function of the length H, ky ¼ 0:2 cm�1; (b) as a function of
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