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Abstract

This paper makes use of the Vlasov–Maxwell equations to describe the electron–ion two-stream instability driven by
the directed axial motion of a high-intensity ion beam propagating through a stationary population of (unwanted)
background electrons in the acceleration region or beam transport lines. The ion beam is treated as continuous in the

z-direction, and the electrons are electrostatically confined in the transverse direction by the space-charge potential
produced by the excess ion charge. The analysis is carried out for arbitrary beam intensity, consistent with transverse
confinement of the beam particles, and arbitrary fractional charge neutralization by the background electrons. For the
case of overlapping step-function ion and electron density profiles, corresponding to Kapchinskij–Vladimirskij (KV)

electron and ion distributions in the transverse direction, detailed stability properties are calculated including parallel
kinetic effects over a wide range of system parameters for dipole perturbations with azimuthal mode number ‘ ¼ 1. The
instability growth rate is found to increase with increasing beam intensity, increasing fractional charge neutralization,

and decreasing proximity of the conducting wall. For space-charge-dominated beams, it is shown that Landau damping
associated with a modest axial momentum spread of the beam ions and background electrons has a strong stabilizing
influence on the two-stream instability. # 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction and theoretical model

Periodic focusing accelerators and transport
systems [1–4] have a wide range of applications
ranging from basic scientific research, to applica-
tions such as heavy ion fusion, spallation neutron
sources, and nuclear waste transmutation. At the
high beam currents and charge densities of
practical interest, it is increasingly important to

develop an improved theoretical understanding of
the influence of the intense self-fields produced by
the beam space charge and current on detailed
equilibrium, stability and transport properties. For
a one-component high-intensity beam, considerable
progress has been made in describing the self-
consistent evolution of the beam distribution
function fbðx; p; tÞ and the self-generated electric
and magnetic fields in kinetic analyses [5–9] based
on the Vlasov–Maxwell equations. In many
practical accelerator applications, however, an
(unwanted) second charge component is present.
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For example, a background population of elec-
trons can result by secondary emission when
energetic beam ions strike the chamber wall, or
through ionization of background neutral gas by
the beam ions. When a second charge component
is present, it has been recognized for many years,
both in theoretical studies and in experimental
observations [10–21], that the relative streaming
motion of the high-intensity beam particles
through the background charge species provides
the free energy to drive the classical two-stream
instability, appropriately modified to include the
effects of DC space charge, relativistic kinematics,
transverse beam dynamics, presence of a conduct-
ing wall, etc. A well-documented example is the
electron–proton two-stream instability observed in
the Proton Storage Ring [16–18], although a
similar instability also exists for other ion species,
including (for example) electron–ion interactions
in electron storage rings [19–21].

In a recent theoretical calculation [10,11] that
focuses on the moderate-intensity ion beams
characteristic of proton linacs and storage rings,
we developed a detailed kinetic description of the
electron–ion two-stream instability based on the
Vlasov–Maxwell equations. While that analysis
[10,11] incorporated the effects of finite transverse
geometry and transverse kinetic effects, it ne-
glected the (stabilizing) influence of an axial
momentum spread of the interacting charge
components. In this paper, building on the
techniques developed in this earlier work [10,11],
we examine two-stream stability properties in the
space-charge-dominated regime characteristic of
heavy ion fusion, and incorporate the important
effects of an axial momentum spread on detailed
stability behavior.

The present analysis considers a high-intensity
ion beam with distribution function fbðx; p; tÞ, and
characteristic radius rb and average axial momen-
tum gbmbbbc propagating in the z-direction
through a background population of electrons
with distribution function feðx; p; tÞ. The ions have
high directed axial velocity Vb ¼ bbc in the
z-direction, and the background electrons are
assumed to be nonrelativistic and approximately
stationary with zero average axial velocity,R
d3pvzfe ’ 0 in the laboratory frame. In the

smooth-focusing approximation, the ion beam is
assumed to be continuous in the z-direction, and
the applied transverse focusing force on a beam ion
is modeled by

Fb
foc ¼ �gbmbo2

bbðx #xx þ y#eyÞ ð1Þ

where x? ¼ x#ex þ y#ey is the transverse displace-
ment from the beam axis, ðgb � 1Þmbc

2 is the
characteristic directed ion kinetic energy, mb is the
ion rest mass, c is the speed of light in vacuo, and
obb ¼ const: is the effective betatron frequency for
transverse ion motion in the applied focusing field.
For the background electrons, assuming that the
ion density exceeds the background electron
density, the space-charge force on an electron,
Fs
e ¼ er?f, provides transverse confinement of

the background electrons by the electrostatic
space-charge potential fðx; tÞ. It is further assumed
that the ion motion in the beam frame is
nonrelativistic, and that the transverse momentum
components of the beam ions and the character-
istic spread in axial momentum are small com-
pared with the directed axial momentum. The
space-charge intensity in the present analysis is
allowed to be arbitrarily large, subject only to
transverse confinement of the beam ions by the
focusing force in Eq. (1). Finally, the present
analysis is carried out in the electrostatic and
magnetostatic approximations, and the self-gener-
ated electric and magnetic fields are represented as
Es ¼ �rfðx; tÞ and Bs ¼ rAzðx; tÞ 	 #ez, where the
electrostatic potential fðx; tÞ is determined self-
consistently from Poisson’s equation. Treating the
axial velocity profile of the beam ions as approxi-
mately uniform over the beam cross-section,
Vzbðx; tÞ ’ bbc ¼ const:, and assuming that the
electrons carry zero axial current in the laboratory
frame, the z-component of vector potential Azðx; tÞ
is determined self-consistently in the magnetostatic
approximation from r2Az ¼ �4pZbebbnb. Here,
þZbe is the ion charge, and nbðx; tÞ ¼

R
d3p

fbðx; p; tÞ is the ion number density.
Making use of the assumptions outlined above,

collective interactions between the beam ions and
the background electrons are described by the
nonlinear Vlasov–Maxwell equations for the
ion and electron distribution functions, fbðx; p; tÞ
and feðx; p; tÞ, the space-charge potential
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fðx; tÞ, and the combined potential
cðx; tÞ ¼ fðx; tÞ � bbAzðx; tÞ. We obtain [10,11]

@

@t
þ v 


@

@x
� ðgbmbo2

bbx? þ Zber?cÞ 

@

@p?

�

�Zbe
@f
@z

@

@pz

�
fb ¼ 0 ð2Þ

@
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@x
þ erf 


@

@p

� �
fe ¼ 0 ð3Þ

r2f ¼ �4pe Zb

Z
d3pfb �

Z
d3pfe

� �
ð4Þ

r2c ¼ �4pe
Zb

g2b

Z
d3pfb �

Z
d3pfe

� �
ð5Þ

where v ¼ p=gbmb in Eq. (2), and v ¼ p=me in
Eq. (3). In Eqs. (2) and (3), we have assumed that
the electrons are confined in the transverse
direction by the (excess) space charge of the beam
ions, and that the electrons are axially stationary
in the laboratory frame with neVze ¼

R
d3pvzfe ’

0: As a consequence, there is no average focusing
force on the electron in Eq. (3) due to the applied
quadrupole focusing field, i.e., obe ¼ 0 is assumed.

Eqs. (2)–(5) constitute a complete description of
the collective interaction of the beam ions with the
background electrons based on the Vlasov–Max-
well equations. In the present analysis, we further
assume that the beam propagates axially through a
perfectly conducting cylindrical pipe with radius
r ¼ rw. Enforcing ½Es

y�r¼rw
¼ ½Es

z�r¼rw
¼ ½Bs

r�r¼rw
¼ 0

readily gives fðr ¼ rw; y; z; tÞ ¼ 0, and
cðr ¼ rw; y; z; tÞ ¼ 0. Here, the constant values of
the potentials at r ¼ rw have been taken equal to
zero.

Finally, under equilibrium conditions ð@=@t ¼ 0Þ,
the analysis assumes that ion and electron proper-
ties are spatially uniform in the z-direction with
@=@z ¼ 0. However, the stability analysis assumes
small-amplitude perturbations with z- and
t-variations proportional to expðikzz � iotÞ, where
kz is the axial wavenumber, and o is the (complex)
oscillation frequency, with Imo > 0 corresponding
to instability. For present purposes, the stability
analysis assumes perturbations with sufficiently
long axial wavelength and high frequency that

k2
zr

2
b51 ð6Þ

where rb is the characteristic beam radius.
Consistent with Eq. (6), we approximate r2 ’
r2

? ¼ @2=@x2 þ @2=@y2 in Eqs. (4) and (5), and
neglect to leading order the contributions propor-
tional to ð@=@zÞ df in the linearized versions of
Eqs. (2) and (3). Our previous investigations of the
electron–ion two-stream instability [10,11] were
carried out in the limit of cold beam ions and
background electrons in the axial direction. An
important feature of the present analysis is the
incorporation of the effects of a (small) axial
momentum spread on detailed stability behavior.

2. Equilibrium properties and dispersion relation

Under quasisteady equilibrium conditions with
@=@t ¼ 0, we assume axisymmetric beam propaga-
tion ð@=@y ¼ 0Þ and negligible variation with axial
coordinate ð@=@z ¼ 0Þ. It is readily shown from
Eqs. (2) to (5) that the equilibrium distribution
functions ð@=@t ¼ 0Þ for the beam ions and back-
ground electrons are of the general form

f 0b ðr; pÞ ¼ FbðH?bÞGbðpzÞ

f 0e ðr; pÞ ¼ FeðH?bÞGeðpzÞ ð7Þ

where r ¼ ðx2 þ y2Þ1=2 is the radial distance from
the beam axis, the distributions in axial momen-
tum are normalized according toR1
�1 dpzGjðpzÞ ¼ 1, for j ¼ b; e, and H?b and H?e

are the single-particle Hamiltonians defined by

H?b ¼
1

2gbmb
p2? þ

1

2
gbmbo2

bbr
2 þ Zbe½c

0ðrÞ � #c
0
�

H?e ¼
1

2me
p2? � e½f0ðrÞ � #f

0
�: ð8Þ

Here, for @=@y ¼ 0 ¼ @=@z, H?b and H?e are exact
single-particle constants of the motion in the
equilibrium field configuration, and the constants
#c
0
� c0ðr ¼ 0Þ and #f

0
� f0ðr ¼ 0Þ are the on-axis

ðr ¼ 0Þ values.
There is wide latitude in specifying the

functional forms of the equilibrium distribution
functions [9,10]. Once FbðH?bÞ and FeðH?eÞ are
specified, however, the equilibrium self-field
potentials and density profiles can be calculated
self-consistently from Eqs. (4) and (5) with
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@=@y ¼ 0 ¼ @=@z. For our purposes here, we
specialize to the case of electrons and ions
described by the Kapchinskij–Vladimirskij (KV)
distributions [1,10,11,22]

FbðH?bÞ ¼
#nb

2pgbmb
dðH?b � #T?bÞ

FeðH?eÞ ¼
#ne

2pme
dðH?e � #T?eÞ: ð9Þ

In this case, it is found that the density profiles
n0j ðrÞ, j ¼ b; e, correspond to overlapping step-
function profiles. Here, #nb and #ne � fZb #nb are
positive constants corresponding to the ion and
electron densities, f ¼ const: is the fractional
charge neutralization, and #T?b and #T?e are
constants corresponding to the on-axis ðr ¼ 0Þ
values of the transverse ion and electron tempera-
tures, respectively. Without presenting algebraic
details [10], some algebraic manipulation of
Eqs. (4), (5), and (7)–(9) gives the step-function
density profiles n0j ðrÞ ¼ #nj ¼ const:, for 04r5rb,
and n0j ðrÞ ¼ 0 for rb5r4rw, and j ¼ b; e. Here, the
beam radius rb is related to other equilibrium
parameters by #n2br

2
b ¼ 2 #T?b=gbmb and

#n2er
2
b ¼ 2 #T?e=me, where for monoenergetic ions

and electrons, the (depressed) betatron frequencies
#nb and #ne are defined by

#n2b ¼ o2
bb �

1

2

1

g2b
� f

� �
#o2
pb ¼ const:

#n2e ¼
1

2

gbmb

Zbme
ð1� f Þ #o2

pb ¼ const: ð10Þ

where #o2
pb ¼ 4p #nbZ2

be
2=gbmb is the ion plasma

frequency squared. The inequalities, #n2b > 0 and
#n2e > 0, are required for existence of the equili-
brium.

For small-amplitude perturbations about gen-
eral equilibrium distributions, FjðH?jÞ and GjðpzÞ,
j ¼ b; e, and corresponding self-field potentials, c0

ðrÞ and f0ðrÞ, a stability analysis proceeds by
linearizing Eqs. (2)–(5). Perturbed quantities are
expressed as dcðx; tÞ ¼ d #c

l
ðrÞ expðilyÞ expðikzz�

iotÞ, dfbðx; p; tÞ ¼ d #f
l

bðr; pÞ expðilyÞ expðikzz � iotÞ,
etc., where l is the azimuthal mode number, and
Imo > 0 is assumed, corresponding to instability
(temporal growth). The linearized Vlasov equa-
tions are formally integrated by using the method
of characteristics [1,10,23] to integrate along the

unperturbed trajectories, x0?ðt
0Þ and p0?ðt

0Þ, in the
equilibrium field configuration. For present pur-
poses, we specialize to the choice of KV ion and
electron distributions in Eq. (9), and the corre-
sponding step-function equilibrium density pro-
files with n0j ðrÞ ¼ #nj ¼ const:, for 04r5rb, and
n0j ðrÞ ¼ 0, for rb5r4rw. Derivation of the kinetic
dispersion relation from the linearized Vlasov–
Maxwell equations closely parallels the analysis in
Ref. [10]. Without presenting algebraic details, for
surface-wave perturbations with azimuthal mode
number ‘ and axial wavenumber kz, we obtain the
dispersion relation [24]

2

1� ðrb=rwÞ
2‘
þ

#o2
pb

‘g2b #n
2
b

G‘
bðoÞ

" #

	
2

1� ðrb=rwÞ
2‘
þ

#o2
pe

‘#n2e
G‘
eðoÞ

" #

¼
#o2
pe

‘#n2e

#o2
pb

‘#n2b
G‘
eðoÞG

‘
bðoÞ

ð11Þ

where #o2
pe ¼ 4p #nee2=me, #o2

pb ¼ 4p #nbZ2
be

2=gbmb,
and #nb and #ne are the (depressed) betatron
frequencies defined in Eq. (10). The ion and
electron susceptibilities, G‘

j ðoÞ, j ¼ b; e, occurring
in Eq. (11) are defined by [24]

G‘
j ðoÞ ¼ �

1

2‘

X‘

m¼0

‘!

m!ð‘ � mÞ!Z 1

�1
dpz

ð‘ � 2mÞ#njGjðpzÞ
½ðo� kzvzÞ � ð‘ � 2mÞ#nj�

ð12Þ

for general azimuthal mode number ‘, and (yet
unspecified) distribution in axial momentum
Gjð pzÞ. In carrying out the integration over pz in
Eq. (12), Imo > 0 is assumed [23,24].

Eq. (11) is the final form of the kinetic disper-
sion relation, derived from the linearized Vlasov–
Maxwell equations for small-amplitude perturba-
tions about the monoenergetic equilibrium
distributions in Eq. (9) and the corresponding
step-function density profiles. As such, Eq. (11)
can be used to determine the complex oscillation
frequency o over a wide range of system para-
meters, including normalized beam intensity
ð #o2

pb=2g
2
bo

2
bbÞ, fractional charge neutralization
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ð f ¼ #ne=Zb #nbÞ, azimuthal mode number ð‘Þ, axial
wavenumber ðkzÞ, choice of Gjð pzÞ, etc., subject to
the simplifying assumptions summarized earlier in
this paper. In the absence of electrons ð #ne ¼ 0Þ, the
dispersion relation (11) supports stable collective
oscillations of the ion beam. When background
electrons are present, however, Eq. (11) supports
unstable solutions ðImo > 0Þ with instability
resulting from the axial streaming ðVb 6¼ 0Þ of the
beam ions through the background electrons, at
least in the limit where the ion and electron axial
motions are ‘cold’ [10,11], with Gbð pzÞ ¼ dð pz �
gbmbVbÞ and Geð pzÞ ¼ dð pzÞ.

The pz-integration in Eq. (11) can be carried out
for a variety of choices of GjðpzÞ ranging from a
shifted Maxwellian, to a step-function distribu-
tion, to a Lorentzian distribution. For analytical
simplicity, we consider here the case of Lorentzian
distributions with

Gbð pzÞ ¼
Db

p½ð pz � gbmbVbÞ
2 þ D2

b�

Geð pzÞ ¼
De

pð p2z þ D2
eÞ

ð13Þ

where Dj ¼ const: > 0 is a measure of the axial
momentum spread, and pz and vz are related by
pz ¼ mevz for the electrons, and pz ¼ gbmbvz for
the beam ions. Note from Eq. (13) that Vb ¼R1
�1 dpzvzGbðpzÞ and 0 ¼

R1
�1 dpzvzGeðpzÞ, which

corresponds to the beam ions streaming axially
through a stationary electron background. Sub-
stituting Eq. (13) into Eq. (12) and integrating
over pz for Imo > 0 readily gives the simple
expression

G‘
j ðoÞ ¼ �

1

2‘

X‘

m¼0

‘!

m!ð‘ � mÞ!

	
ð‘ � 2mÞ#nj

½ðo� kzVj þ ijkzjvTjzÞ � ð‘ � 2mÞ#nj�
:

ð14Þ

Here, Ve ¼ 0 for the electrons, and vTjz is a
measure of the characteristic axial thermal speed,
defined by vTbz ¼ Db=gbmb for the beam ions, and
vTez ¼ De=me for the background electrons. Sub-
stituting Eq. (14) into Eq. (11), the resulting
dispersion relation can be used to investigate the

effects of an axial momentum spread on detailed
properties of the electron–ion two-stream instabil-
ity for general azimuthal mode number ‘ over a
wide range of system parameters.

3. Dipole-mode stability properties

A careful examination of Eq. (11) for #ne 6¼ 0
shows that the strongest instability (largest growth
rate) occurs for azimuthal mode number ‘ ¼ 1,
corresponding to a simple (dipole) displacement of
the beam ions and the background electrons. For
‘ ¼ 1, we substitute Eq. (14) into Eq. (11), and
introduce the electron and ion collective oscillation
frequencies, oe and ob, defined by

o2
e � #n2e þ

1

2
#o2
pe 1�

r2b
r2w

� �

¼
1

2

gbmb

Zbme

#o2
pb 1� f

r2b
r2w

� �

o2
b � #n2b þ

#o2
pb

2g2b
1�

r2b
r2w

� �

¼o2
bb þ

1

2
#o2
pb f �

1

g2b

r2b
r2w

� �
ð15Þ

where #o2
pe has been expressed as

#o2
pe ¼ ðgbmb=ZbmeÞf #o

2
pb. Substituting into

Eq. (11) and rearranging terms, the ‘ ¼ 1 disper-
sion relation can be expressed in the compact form
[24]

½ðo� kzVb þ ijkzjvTbzÞ
2 � o2

b�

	 ½ðoþ ijkzjvTezÞ
2 � o2

e � ¼ o4
f ð16Þ

where of is defined by

o4
f �

1

4
f 1�

r2b
r2w

� �2 gbmb

Zbme

#o4
pb: ð17Þ

In the cold limit (vTbz ¼ 0 ¼ vTez), and in the
absence of background electrons (f ¼ 0 and
of ¼ 0), Eq. (16) gives stable collective oscillations
of the ion beam with frequency o� kzVb ¼ �ob,
where ob is defined in Eq. (15). For f 6¼ 0,
however, the ion and electron terms on the left-
hand side of Eq. (16) are coupled by the o4

f term
on the right-hand side, leading to one unstable
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solution with Imo > 0 for a certain range of axial
wavenumber kz. The instability is two stream in
nature, and results from the directed ion motion
with axial velocity Vb through the (stationary)
background electrons. A careful examination of
Eq. (16) shows that the unstable, positive-
frequency branch has frequency and wavenumber
ðo; kzÞ closely tuned to the values ðo0; kz0Þ defined
by o0 ¼ þoe and o0 � kz0Vb ¼ �ob, or equiva-
lently, kz0 ¼ ðoe þ obÞ=Vb. This gives

o0

kz0
� Vb ’ �

ob

oe þ ob
Vb: ð18Þ

Because ob5oe in the regimes of practical interest
[Eq. (15)], it follows from Eq. (18) that the phase
velocity of the unstable mode is downshifted only
slightly from the directed beam velocity Vb, and
could be strongly affected by Landau damping by
the beam ions for modest values of vTbz=Vb 6¼ 0.
As reported previously [10], the instability growth
rate tends to increase with increasing fractional
charge neutralization ðf Þ, and increasing values of
rw=rb.

Returning to the full dispersion relation (16) for
vTjz 6¼ 0, it is important to recognize that Eq. (16)
is applicable over a wide range of beam intensity
and fractional charge neutralization consistent
with #n2b > 0 and #n2e > 0. That is, Eq. (16) can be
applied to the emittance-dominated, moderate-
intensity ion beams ( #o2

pb=2g
2
bo

2
bb90:1, say) in the

proton linacs and storage rings envisioned for the
Spallation Neutron Source and the Proton Storage
Ring [16–18]. On the other hand, Eq. (16) can also
be applied to the low-emittance, very high-
intensity ion beams envisioned for heavy ion
fusion [4].

At the high beam intensities of interest for heavy
ion fusion, the transverse beam emittance (which is
proportional to #T?b) is very low, and the normal-
ized beam intensity #o2

pb=2g
2
bo

2
bb can approach

unity in the absence of background electrons

ð f ¼ 0Þ. This follows from the inequality #n2b=o
2
bb ¼

2 #T?b=gbmbo2
bbr

2
b51 and the definition of #n2b in

Eq. (10). At such high beam intensities, it is
necessary to solve the full dispersion relation (16)
for the complex oscillation frequency o. Typical
results are illustrated in Fig. 1 (for vTbz ¼ 0 ¼ vTez)

and in Fig. 2 (for vTbz 6¼ 0, and vTez ¼ vTbz).
The system parameters in Figs. 1 and 2 corres-
pond to Zb ¼ 1, A ¼ 133 (Cesium ions),
ðgb � 1Þmbc

2 ¼ 4:5 GeV, rb=rw ¼ 0:5, and f ¼ 0:1.
Shown in Fig. 1, for vTbz ¼ 0 ¼ vTez, are plots

of ðImoÞ=obb and ðReo� oeÞ=obb versus
ðkz � kz0ÞVb=obb, where kz0 � ðoe þ obÞ=Vb,
obtained from Eq. (16) for the unstable branch
for several values of #o2

pb=2g
2
bo

2
bb ranging from

Fig. 1. Plots of (a) normalized growth rate Imo=obb, and (b)

normalized real frequency ðReo� oeÞ=obb versus shifted axial

wavenumber ðkz � kz0ÞVb=obb obtained from the dispersion

relation ð16Þ for the unstable branch with positive real

frequency. System parameters correspond to vTbz ¼ 0 ¼ vTez,

Zb ¼ 1, A ¼ 133 (Cesium ions), ðgb � 1Þmbc
2 ¼ 4:5 GeV;

rb=rw ¼ 0:5, and f ¼ 0:1. Curves are shown for several values

of normalized beam intensity #o2
pb=2g

2
bo

2
bb ranging from

0.1 to 1.0.
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0:1 to 1:0. At low beam intensities, the instability
growth rate in Fig. 1 is relatively small and has a
narrow bandwidth in kz-space, symmetric about
kz ¼ kz0. On the other hand, as the normalized
beam intensity #o2

pb=2g
2
bo

2
bb is increased to values

approaching unity, the instability bandwidth
increases significantly in Fig. 1, and the
growth rate becomes substantial, with
ðImoÞmax ’ 2:1obb.

To illustrate the stabilizing influence of parallel
kinetic effects on the two-stream instability, shown
in Fig. 2 are plots of ðImoÞ=obb and ðReo�
oeÞ=obb versus ðkz � kz0Þ=obb, obtained from
Eq. (16) for the unstable branch for fixed value
of the normalized beam intensity,
#o2
pb=2g

2
bo

2
pb ¼ 0:98, and values of vTbz=Vb ranging

from 0% to 0:36%. Furthermore, for purposes of
illustration in Fig. 2 we have fixed the axial
momentum spread of the electrons by the value
vTez ¼ vTbz. Because the characteristic phase velo-
city of the unstable mode is downshifted only
slightly from the directed beam velocity Vb

[Eq. (18)], it is expected that Landau damping by

parallel kinetic effects can have a strong stabilizing
influence at modest values of vTbz=Vb. That this is
indeed the case is evident from Fig. 2, which shows
a substantial reduction in maximum growth rate
and eradication of the instability over the in-
stability bandwidth as vTzb=Vb is increased from
0% to 0:36%.

The dispersion relation (16) can be used to
derive an analytical criterion for stabilization of
the two-stream instability by parallel kinetic
effects, valid for normailized beam intensity sb ¼
#o2
pb=2g

2
bo

2
bb ranging from moderate values

(sb50:1) of interest in proton machines, to the
space-charge dominated beams (sb ! 1) of interest
in heavy ion fusion. It is convienient to express
do ¼ o� oe and dkz ¼ kz � kz0, where
kz0 ¼ ðoe þ obÞ=Vb, oe and ob are defined in
Eq. (15). Because jdoj5oe [see Figs. 1 and 2, and
Eq. (15)] in the regimes of practical interest, it
follows that the dispersion relation (16) can be
approximated by the cubic equation for do,

ðdoþ ijkzjvTbz � dkzVbÞðdoþ ijkzjvTezÞ

	 ½1� ð2obÞ
�1ðdoþ ijkzjvTbz � dkzVbÞ�

¼ �
o4

f

4oeob
: ð19Þ

In analyzing Eq. (19), it is convenient to introduce
the dimensionless parameters, G2

0 and a, defined by

G2
0 �

o4
f

16oeo3
b

a � 1þ
27

2
G2
0 þ 3

ffiffiffi
3

p
G0 1þ

27

4
G2
0

� �1=2
" #1=3

:

ð20Þ

For purpose of illustration, we further consider the
case where vTez ¼ vTbz. From Figs. 1 and 2, it is
clear that the maximum growth rate occurs for
dkz ¼ 0 and vTbz ¼ vTez ¼ 0. Furthermore, as vTjz

is increased, it is clear from Fig. 2 that the
maximum growth rate is reduced, and that the
instability is completely stabilized over the entire
spectrum when the axial momentum spread
exceeds some critical value. We set dkz ¼ 0 and
vTez ¼ vTbz in Eq. (19), and solve for the growth
rate g ¼ Im do of the unstable mode (Im do > 0)

Fig. 2. Plots of (a) normalized growth rate Imo=obb, and

normalized real frequency ðRe doÞ=obb versus shifted axial

wavenumber ðkz � kz0ÞVb=obb obtained from Eq. (16) for the

unstable branch with positive real frequency. Here,

do ¼ o� oe. System parameters correspond to

#o2
pb=2g

2
bo

2
bb ¼ 0:98, vTez ¼ vTbz, Zb ¼ 1, A ¼ 133 (Cesium

ions), ðgb � 1Þmbc
2 ¼ 4:5 GeV; rb=rw ¼ 0:5, and f ¼ 0:1.

Curves are shown for several values of normalized ion thermal

spread vTbz=Vb ranging from 0% to 0.36%.
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as a function of increasing vTbz=Vb. Denoting
Dpzb=gbmbVb ¼ vTbz=Vb, where Dpzb ¼ Db is the
axial momentum spread [Eq. (13)], we find that the
two-stream instability is completely stabilized
(Im do40) provided the axial momentum spread
is sufficiently large that

Dpzb

gbmbVb
>

1ffiffiffi
3

p ob

oe þ ob
a�

1

a

����
���� � Dpzb

gbmbVb

� �
cr

:

ð21Þ

In the regimes of practical interest for heavy ion
fusion, the right-hand side of Eq. (21) is very
small, and only modest momentum spreads are
required to provide complete stabilization of the
two-stream instability.

Making use of the definitions of ob;oe;of and a
in Eqs. (15), (17) and (20) the stability criterion in
Eq. (21) can be applied over a wide range of
system parameters. As illustrative conditions for
heavy ion fusion, we take Zb ¼ 1; A ¼ 133
(Cesium ions), ðgb � 1Þmbc

2 ¼ 4:5 GeV;
rb=r ¼ 0:5, and f ¼ 0:1. Shown in Fig. 3 is the
corresponding plot of ðDpzb=gbmbVbÞcr versus
normalized beam intensity, sb ¼ #o2

pb=2g
2
bo

2
bb, for

sb in the interval 05sb41. Although the momen-
tum spread required for stabilization increases as

sb is increased, it is clear from Fig. 3 that only a
relatively modest spread ðDpzb=gbmbVbÞcr is re-
quired for complete stabilization in the space-
charge-dominated regime with sb ! 1. Further-
more, from Eqs. (20) and (21), at fixed value of sb,
the value of Dpzb=gbmbVb required for stabiliza-
tion decreases as the fractional charge neutraliza-
tion f is decreased.

4. Conclusions

For k2
zr

2
b51, the dispersion relation ð11Þ incor-

porates the leading-order effects of an axial
momentum spread in the ion and electron
components, and can be used to investigate
detailed stability properties over a wide range of
normalized beam intensity ð #o2

pb=2g
2
bo

2
bbÞ, frac-

tional charge neutralization ð f ¼ #ne=Zb #nbÞ, azi-
muthal mode number ð‘Þ, and axial wavenumber
ðkzÞ. For dipole perturbations ð‘ ¼ 1Þ, it has been
shown that Landau damping by parallel kinetic
effects can have a strong stabilizing influence on
the electron–ion two-stream instability. The con-
dition for complete stabilization of the electron–
ion two-stream instability by parallel kinetic effects
is given by Eq. (21) for the case where vTez ¼ vTbz.
The inequality in Eq. (21) corresponds to a
relatively small axial momentum spread at the
very high beam intensities of interests for
heavy ion fusion (see Fig. 3), where
sb ¼ #o2

pb=2g
2
bo

2
bb ! 1. It should also be empha-

sized that the present linear stability analysis is
carried out for surface-wave perturbations, focus-
ing on dipole-mode perturbations (l ¼ 1). For the
particular choice of KV distribution functions in
Eq. (9), body-mode perturbations with radial node
structure n ¼ 1; 2; 3; . . . ; may also exhibit instabil-
ity [1,5], depending on the value of l ¼ 0; 1; 2; . . . ;
and the normalized beam intensity sb.

Finally, if the beam ions and background
electrons are initially cold axially, it is expected
that a nonlinear consequence of the two-stream
instability would be to cause an increase in axial
momentum spread to a value comparable to
Eq. (21), thereby leading to a (quasilinear) stabi-
lization of the instability.

Fig. 3. Plot of ðDpzb=gbmbVbÞcr versus normalized beam

intensity sb ¼ #o2
pb=2g

2
bo

2
bb obtained from Eq. (21) for Zb ¼

1; A ¼ 133 (Cesium ions), ðgb � 1Þmbc
2 ¼ 4:5 GeV; rb=rw ¼

0:5 and f ¼ 0:1. Here, oe;ob;of and a are defined in Eqs. (15),

(17) and (20).
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