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ABSTRACT

A novel regime of the saturation of the Pierce-type ion-sound instability in a bounded ion-beam-plasma system is revealed in 1D particle-
in-cell simulations. It is found that the saturation of the instability is mediated by the oscillating virtual anode potential structure.
The periodically oscillating potential barrier separates the incoming beam ions into two groups. One component forms a supersonic
beam, which is accelerated to an energy exceeding the energy of the initial cold ion beam. The other component is organized as a self-
consistent phase space structure of trapped ions with a wide energy spread—the ion hole. The effective temperature (energy spread) of the
ions trapped in the hole is lower than the initial beam energy. In the final stage, the ion hole expands over the whole system length.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0016440

Plasma physics has yielded many important results in the theory
of nonlinear waves. Earlier theories of coherent nonlinear waves,
shocks, and solitons1 have been expanded to include nonlinear struc-
tures in phase space, such as Bernstein–Greene–Kruskal (BGK) states,2

electron and ion holes,3–9 and clumps.10,11 Such structures have been
identified as the nonlinear saturated states of the beam-like kinetic
instabilities in collisionless and weakly collisional plasmas when the
dynamics is dominated by a single coherent wave. The saturation
mechanism via the formation of long lived phase space structures is a
scenario alternative to the quasilinear saturation in the case of a wide
spectrum of overlapping modes resulting due to the flattening of the
distribution function. Phase space holes/clumps have been detected in
space plasmas11–15 and shown to be important for the saturation of
fast particle driven instabilities in fusion plasmas.10,16–19 Many numer-
ical experiments3,9,11,20–26 have demonstrated phase space structures
as a result of the saturation of bump-on-tail and Buneman instabilities.
Most analytical and numerical studies have dealt with periodic sys-
tems. In practical laboratory applications, however, plasmas are typi-
cally bounded by walls that introduce important constraints. In this
Letter, we present a novel mechanism of the nonlinear saturation of
the ion-sound instability in a bounded plasma penetrated by a cold
ion beam.

In a warm infinite plasma, the ion-sound instability of kinetic
nature27,28 occurs when the current drift velocity exceeds the phase
velocity of the ion sound waves v0 > cs=ð1þ k2k2DeÞ

1=2, where cs is the
ion sound velocity, kDe is the Debye length, and k is the wave number.
In a bounded plasma of finite length, there exists much stronger fluid
instability of the Pierce type for v0 < cs, which has been studied theo-
retically29–31 and has been observed in experiments.29 The linear stage
of the Pierce-type ion beam instability has been well studied theoreti-
cally. Experiments in double plasma devices have revealed complex
dynamics of Pierce instabilities induced by the ion and electron beams.
Nakamura et al.29 have observed ion sound waves and nonlinear har-
monics. The oscillations were experimentally identified by
Matsukuma and Kawai.32 In the electron-beam-plasma system, Iizuka
et al.33–35 have demonstrated large scale current oscillations, the virtual
cathode trapping ions, and the double-layer formation.

In this Letter, we show that a strong ion sound instability induced
by the ion flow in a bounded plasma saturates through the formation
of the virtual anode potential structure that exhibits coherent large
amplitude oscillations. The large amplitude periodic oscillations of this
localized potential, on one hand, accelerate a fraction of the ion beam
(initially subsonic) to supersonic velocity. On the other hand, the oscil-
lating potential barrier stops a fraction of the ion beam, resulting in
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the formation of a long-lived large scale ion hole with a negative
potential and a large population of trapped ions. Thus, a fraction of
the initial energy of the ion beammini0v20=2 with v0 < cs is channeled
to a higher energy creating a lower density supersonic beam with
velocity vb > cs, while the rest of the beam energy is spread to lower
energies forming the phase space vortex of trapped ions with a wide
energy spread with an effective temperature Ttr < miv2b=2, wheremi is
the ion mass and ni0 is the density of injected ions. In our case,
Ttr ’ miv2b=6.

A simplified 1D collisionless plasma model with a cold ion beam
injected into the system is studied using the 1D3V electrostatic direct
implicit particle-in-cell code (EDIPIC),36 which has been comprehen-
sively validated and benchmarked.37,38 We focus only on the ion
sound-type low frequency fluctuations x=k� vth;e, where vth;e is the
electron thermal velocity, so that Boltzmann-distributed electrons are
used while the ions are computed kinetically. Specifically, the move-
ment of ion superparticles is computed through integration of the
Newtonian equations of motion, while the electron density is calcu-
lated as ne ¼ neo exp ½euðxÞ=Te� as required in the Poisson solver,
where ne0 is the unperturbed electron density, uðxÞ is the electric
potential at the previous time moment, and Te is the electron tempera-
ture. In the Poisson solver, multiple iterations give the converged solu-
tion of neðxÞ at the present moment and also the electric field and
potential, which advance the ions and give the initial electron density
for iteration at the next time moment.

In the simulations, the grounded walls are set at locations x¼ 0
and x¼ d, with the electric potential uðx ¼ 0Þ ¼ uðx ¼ dÞ ¼ 0. Ions
with constant flux and velocity v0 are injected from the left wall.
The ions approaching the walls are absorbed. Initially, the electron
density is set to be ne0 ¼ 1014 m�3 and the (injected) ion density is
slightly different to produce a charge perturbation with the value
dn ¼ ðni0 � ne0Þ=ne0 � 60:1%. In this Letter, positive initialization
(dn > 0) was used, leading to the ion hole formation. For simplicity,
the ion massmi is set to be 1 in atomic units. The Debye length in the
simulations is calculated to be kDe ¼ 1:3mm and the simulation box
length is set as d ¼ 50kDe with the spatial resolution of Dx ¼ kDe=10.
Therefore, the simulation domain constitutes 500 cells and
d ¼ 6:5 cm. The time step is chosen as Dt ¼ 1� 10�11 s so that the
ion dynamics is resolved with a high resolution. The high frequency
mode damping in an implicit code can also be avoided because of the
small time step.39 Two thousand superparticles per cell are used.
The dynamics time scale of the ion wave studied here is much slower
than the time scale of the electron motion, and adiabatic electron
assumption is, therefore, satisfied. In this paper, electron temperature
Te ¼ 3 eV is used throughout this work.

In the linear regime, when the kinetic effects of ion trapping are
not important, our simulations recover the results of the analytical the-
ory and the fluid simulations of the ion sound instability in a bounded
plasma by Koshkarov et al.31 This is shown in Figs. 1(a) and 1(b),
which compare the growth rates and eigenmodes of the Pierce type
ion sound instability obtained from our PIC simulations and the linear
theory.31 In the simulations of Figs. 1(a) and 1(b), the system length is
d ¼ 10kDe. In Fig. 1(a), the growth rates as a function of the ion beam
velocity in the range of 0:4cs–1:0cs are compared between our simula-
tions and theory. In Fig. 1(b), the eigenmodes (including ion density,
velocity, and potential) are also compared when the ion beam velocity
is 0:86cs. The linear growth rates and eigenmodes obtained from the

simulations and theory, Figs. 1(a) and 1(b), are in reasonable agree-
ment, taking into account that the analytical theory is formulated for
the asymptotic limit of finite but small wave numbers, kkDe � 1, while
in our simulations kkDe ’ 1, see Fig. 1(b). We note that according to
the theory, the ion sound instability occurs only for v0 < cs, while the
case v0 > cs is stable for this type of instability.

As was shown analytically,31 the instability occurs in the alternat-
ing oscillatory [real part of frequency ReðxÞ 6¼ 0] and aperiodic
[ReðxÞ ¼ 0] zones as the ion beam velocity changes. In our nonlinear
simulations, Figs. 1(c)–1(e), the ion beam velocity is v0 ¼ 0:8cs. With
this value and d ¼ 50kDe, the instability occurs in the aperiodic zone,
and so the fluctuations grow as a standing wave as it is clearly seen in
Fig. 1(c) showing the spatial and temporal evolution of the potential.
Figure 1(e) shows the time evolution of the normalized potential
energy densityWpot ¼ 1=ðni0dÞ

Ð d
0 1=2�0E2dx, from which the growth

rate is calculated to be about 0:02xpi in the linear stage, consistent
with the fluid numerical calculation of the linear theory.

The linear growth and the transition to the nonlinear stage can
be seen in the ion phase space plane, potential, and ion density profiles
shown in Fig. 2 for different points in time. Initially, the potential is
uðxÞ ¼ 0 with a mono-energetic ion flow throughout the simulation
box. The absolute mode amplification starts at the left wall, as pre-
dicted by the linear theory. The exponential growth occurs after the

FIG. 1. (a) Linear growth rates and (b) linear eigenmodes of the ion sound instabil-
ity from PIC simulations and fluid theory.31 (c) Potential oscillations in linear and
nonlinear regimes. The color bar shows the scale of potential. The ions are injected
at the left wall (x¼ 0) and absorbed at the right wall (x ¼ d ¼ 50kDe). (d)
Coherent oscillations of the virtual anode potential structure [zoomed picture of (c)
close to the left wall] in the nonlinear regime. (e) The evolution of the potential
energy density as a function of time, showing the growth and saturation of the
instability.
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ion transit (over the box length) time, and the potential reaches 0:1V
near the left wall around 9:8ls. The ion velocity is still single valued at
this time, which suggests that the fluid description still holds. The tran-
sition from the linear regime to the nonlinear regime takes place when
the wave amplitude reaches a critical level at which the ions are
stopped by and trapped in the wave potential. With the cold ion beam,
the critical wave potential threshold is uth ¼ 1=2miv20=e, and accord-
ingly, uth ¼ 0:96V when v0 ¼ 0:8cs. One can see from Fig. 2 that
around t ’ 13:0ls, the potential perturbation reaches the threshold
value and forms a peaked structure (in the first half-wavelength) end-
ing in the singularity and subsequent multi-valued solutions, seen at
time t ¼ 13:8ls in Fig. 2. Multi-valued solutions occur due to the ion
reflection by the potential barrier structure, as illustrated in Fig. 2
(t ¼ 13:8 ls) by the appearance of the ions with negative velocities.
The potential barrier near the left wall (called below as a virtual anode)
oscillates in both time and space; the zoomed-in space-time profile of
the potential near the left wall is shown in Fig. 1(d). The virtual anode
oscillations are rather coherent in time with a frequency of the order
xpi corresponding to the ion sound oscillations in the short wave-
length regime, kkDe � 1.

The periodically oscillating potential barrier (oscillating virtual
anode) creates two related phenomena. In the raising stage, it acceler-
ates the beam ions to a velocity larger than the velocity of the initial

beam, i.e., vb > v0 (in this case, v0 ¼ 0:8cs). In fact, the fraction of the
original beam ions is accelerated to supersonic velocities of the order
of 1:3cs, see Fig. 3. On the other hand, the large potential barrier
breaks the flow of ions, decelerating and partially reflecting them. In

FIG. 2. The ion phase plane, potential, and ion density profiles at different times of the linear instability (t < 13 ls), wave breaking forming multi-valued solutions
(t > 13:8 ls) to the large-scale ion hole of the system size in the final stage t ¼ 57ls.

FIG. 3. The ion velocity distribution in the initial and final stages.
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the decaying stage of the potential, some decelerated ions are released,
forming the population of the trapped ions of a finite temperature,
which results in the ion hole. The formation of the ion hole is clearly
seen at t ¼ 23:93ls, Fig. 2. The trapped ions have a finite temperature
due to scattering from the periodically oscillating virtual anode.
Therefore, the oscillating virtual anode structure results in the acceler-
ation of some ions forming a supersonic beam with vb > cs > v0 and
the heating of other ions. In Fig. 3, this energy channeling is shown by
the evolution of the ion velocity distribution from the delta function of
the cold ions beam with vi ¼ v0 ¼ 0:8cs at t ¼ 0ls to the wide distri-
bution with a beam fraction of the order vi ¼ vb ¼ 1:3cs and the
trapped ion population with a finite temperature (effective mean
energy) Ttr ’ 0:8 eV at t ¼ 57ls. The trapped ions result in the ion
hole with negative potential, which eventually expands through the
whole system as shown in Fig. 2.

The ion trapping occurs in several stages as a result of consecu-
tive decelerating and scattering events. Several of such events are
shown in the ion phase plane, ion density, and potential profiles in
one snapshot t ¼ 23:93ls as shown in Fig. 4. One can see the local-
ized bunches (labeled as 1, 2, and 3) of increased ion density at the
locations of decreased ion velocity, which also correlate with the peaks
in the potential. The most recent bunch of decelerated ions (the arrow
3 position) is shown around the virtual anode location near the left
boundary. The bunch, which was released earlier, is scattered at the
location marked by arrow 2. The earliest bunch in this snapshot is
marked by arrow 1, where one can see the velocity depletion and
strong density enhancement at the location of large potential peak.
Effectively, this location corresponds to the ion hole boundary that
moves toward the right wall. The velocity of the ion hole expansion is
estimated here as the thermal (mean) velocity of trapped ions
hvtri ¼ 1

2 vb, and the temperature of the trapped ions is Ttr ¼ 1
6miv2b.

In the saturated stage, the fluctuation spectrum consists of the
Doppler shifted ion sound modes and the nonlinear harmonics of the
short wavelength ion sound x ¼ xpi for kkDe � 1, as illustrated in
Fig. 5 for the Fourier transform of ion density over the whole space

and in the time range of 45–70ls. The two lines in Fig. 5 are the dis-
persion relations of Doppler-shifted ion sound waves,

x=xpi ¼ kvb=xpi 6 kkDe 1þ ðkkDeÞ2
� ��1=2

: (1)

The sign 6 represents the two branches of the ion sound wave,
fast beam mode and slow beam mode. As mentioned in Fig. 3, the
beam velocity vb � 1:3cs. It is shown in Fig. 5 that the calculation by
Eq. (1) agrees well with the simulation. In addition, one can identify
the oscillations with ion plasma frequency and its multiple harmonics,
which are the typical feature of the oscillating virtual anode,40 also
reminiscent of the experimental observations in Ref. 29.

It is proposed in this Letter that the described nonlinear struc-
tures due to the ion sound instability are a general phenomenon in
bounded subsonic ion beam plasma systems. The instability is reactive,
of the type of the negative energy instabilities, and occurs as a result of
the coupling (mediated by plasma boundaries) of the ion sound waves
propagating in opposite directions. A supersonic ion beam in the
plasma with adiabatic electrons is stable and is not subject to the
Pierce-type ion sound instability, which was also predicted by the lin-
ear theory.31 The characteristics of the instability in our simulations,
e.g., perturbations of the plasma density, and ion velocity are in accord
with predictions of the linear theory: the instability type (aperiodic or
oscillatory) and growth rates. The nonlinear scenario described in this
Letter applies for both the oscillatory [ReðxÞ 6¼ 0] and aperiodic insta-
bility zones [ReðxÞ ¼ 0] with one exception. For the aperiodic insta-
bility with negative density initialization dn < 0, a different type of
coherent structure develops in the nonlinear phase. This asymmetry is
related to the preference (from the thermodynamic perspective) for
the ion hole formation and will be addressed in a separate study.

In summary, we report a novel mechanism of trapped ion phase
space hole formation in a bounded ion-beam-plasma system driven by
the Pierce-type ion sound instability due to the presence of boundaries.
Our simulations agree well with the linear theory of such an instability.
In the nonlinear stage, we observe an oscillating potential barrier struc-
ture (i.e., the virtual anode) splitting the ion beam and channeling

FIG. 4. Several decelerating/scattering events with enhanced density bunches
(labeled as 1, 2, and 3) are shown in the ion phase space plane, ion density, and
potential profile at the snapshot t ¼ 23:93ls.

FIG. 5. A Fourier transform of the ion density over the whole simulation box and in
the time range 45–70 ls shows the spectra of fluctuations. The two lines are the
theoretical prediction given by Eq. (1).
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energy to a population of the higher energy ions while heating the ions
at lower energies. The higher energy fraction of accelerated ions forms
the supersonic ion beam, while the group of decelerated ions forms a
system-long ion hole of trapped ions.

We note that the simulations with the warm ion flow of different
ion temperatures were carried out and also verified the results
described in this Letter. Please refer to the animation41 showing the
ion phase plane with warm ions (Ti ¼ 0:03 eV) flowing through the
bounded system. It would be of great interest to validate our simula-
tions and theory in experiments so that the non-1D effect and collision
effect can be further investigated. Like the experimental setup in the
work,29,42 it is suggested that the widely used double plasma device is
able to generate the desired subsonic ion beam in the source chamber
and expected to reproduce the wave-particle-boundary (grids) interac-
tions in the target chamber. It is noteworthy that only an electron
emitter should be used instead of the plasma generator in the target
chamber in order to avoid the presence of background ions.

A similar nonlinear phenomenon presented in this work can be
expected in material processing (atomic layer etching/deposition)
devices43,44 with low energy ions, as well as Hall plasmas,30 Q
machines,45 and inertial confinement fusion drivers46–48 when ion
beam Pierce instability30,49 is excited.
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