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Abstract

Magnetohydrodynamics (MHD), a fluid model of the low-frequency behavior

of magnetized plasma, provides the most successful framework for under-

standing the equilibrium and large-scale stability of magnetically confined

plasma. The success of this model is due in large part to its simplicity

relative to more complete models. Much of this simplicity comes at the ex-

pense of the omission of non-ideal effects, which include dissipation, two-fluid

and finite Larmor radius effects, micro-turbulence, and wave-particle interac-

tions, among others. Often, the inclusion of these effects leads to important

and unexpected phenomena. However, incorporating some of these effects,

which may occur on vastly disparate spatial and temporal scales, introduces

significant mathematical complexity and makes obtaining numerical solu-

tions substantially more difficult. This dissertation investigates methods for

numerically solving fluid models that have been extended to include some

of these non-ideal effects, and to use these methods together with analytic

theory to explore non-ideal effects on the steady-states and stability of mag-

netized plasmas.

An overview of the two-fluid model of a magnetized plasma is given. This

overview includes discussion of various methods of closing the fluid equa-

tions, and the physical effects included (or excluded) by each method. A

method for the solution of a generic set of collisional two-fluid equations is

described, and results from an implementation of this method, the numer-

ical code M3D-C1, are presented. The importance of two-fluid effects and
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gyroviscosity on the linear growth rate of three instabilities—the gravita-

tional instability, the magnetorotational instability, and the magnetothermal

instability—is demonstrated analytically. It is shown that gyroviscosity, in

particular, may play an important role in the stability threshold of these

instabilities. Toroidal axisymmetric steady-states of the two-fluid model are

obtained using M3D-C1 for magnetic configurations typical of the National

Spherical Torus Experiment (NSTX). These steady-states represent the first

such states obtained with self-consistently determined flow of a dissipative

model in realistic geometry. Resistively-driven radial flows are shown to be in

excellent agreement with Pfirsch-Schlüter theory. Qualitative and quantita-

tive agreement is found with comparable results for resistively-driven toroidal

edge flows. New results, including toroidal rotation and oscillation due to

gyroviscosity, are characterized and discussed.
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Chapter 1

Introduction

1.1 Magnetic Fusion Energy

The goal of magnetic fusion energy (MFE) research is to discover and op-

timize profitable methods for extracting the energy released from fusion re-

actions occurring in plasma confined by magnetic fields. To achieve this,

the plasma must be held at a high temperature continuously and without

disruption, in order to ensure the essentially uninterrupted power genera-

tion required of commercial power plants. The properties of the steady-state

must be such that the thermal energy of plasma is not rapidly transported

to the walls, as this transport would degrade the efficiency of the reactor by

necessitating the injection of power into the plasma to keep it at fusion tem-

peratures. Thus a major focus of MFE research is to optimize the stability

and transport properties of magnetically confined plasma steady-states.1

The confinement of plasma by magnetic fields is made possible by the

strongly anisotropic transport properties of a plasma in the presence of a

magnetic field. Since particles may travel rapidly along magnetic field lines,

1The term “steady-state” is used in favor of “equilibrium” because fusion plasmas, being

strongly driven by external sources of particles, energy, and momentum, are generally far

from thermal equilibrium.

1
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but are deflected by the Lorentz force when moving across field lines, the

plasma may be well confined by “magnetic surfaces”—roughly, surfaces in

space to which the magnetic field is everywhere tangent. Most magnetic

fusion reactor concepts employ magnetic field configurations having such

surfaces—configurations created either through currents in coils outside the

plasma, through inducing currents within the plasma, or a combination of

both methods.

Because the plasma must be at a much higher temperature than the wall

of the device, the plasma must be held far from a global thermal equilibrium,

with gradients in the thermal pressure balanced by the magnetic forces. Such

a steady-state may be unstable, in several different ways. The most danger-

ous type of instability are magnetohydrodynamic (MHD) instabilities, which

disrupt the magnetic field configuration on large scales. Such an instability

may cause the plasma to be rapidly lost to the walls, and may even terminate

the discharge. Some instabilities which saturate before the magnetic field is

greatly perturbed may still destroy magnetic surfaces, significantly increas-

ing the rate of energy transport to the walls. Other instabilities (micro-

instabilities), driven by gradients in the density and temperature, may lead

to the formation of turbulent convection cells which significantly enhance the

transport of energy across magnetic surfaces. A successful reactor must op-

erate sufficiently far from disruptive instability thresholds to minimize their

occurrence, while also minimizing the deleterious transport effects of micro-

instabilities.

There are several of types of toroidal magnetic fusion reactor concepts;

however, much of the work presented here is most relevant to tokamak re-

actors in general, and the National Spherical Torus Experiment (NSTX) [1]

in particular. The tokamak is the most well-developed fusion reactor con-

cept, both theoretically and experimentally, having been the primary focus of

fusion research in the United States over the past few decades. The interna-

tional fusion reactor, ITER, is a tokamak design [2]. Yet there remain many
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questions about the steady-states, transport, and stability of tokamak plas-

mas which must be answered before a commercial tokamak reactor can be

realized. To adequately answer these questions will require a more complete

model than ideal MHD.

One of the major such questions is an understanding of the H-mode (“high

confinement” mode) of tokamak operation [3]. The H-mode is characterized

by relatively stable, steep density and temperature gradients at the edge of

the tokamak plasma. This is in contrast to the L-mode (“low confinement”

mode), in which the gradients are relatively gentle and the edge is some-

what more turbulent. Because temperatures at the edge are kept relatively

low through thermal coupling with the wall, plasmas in H-mode are able to

achieve much higher temperatures in the core than in L-mode. Therefore

understanding how to achieve and maintain H-mode, as well as a capability

to predict the magnitude of the edge gradients, is crucial for successfully

operating and designing tokamaks.

An understanding of the L-H mode transition is far from complete, but

most present theories rely on the suppression of turbulent transport near the

edge by sheared flow [4, 5]. The transition is rapid, and is characterized by the

formation of a strongly negative (inward) radial electric field at the plasma

edge, which drives poloidal particle drifts. Some models of this transition,

such as those of Shaing [6] and Hassam [7], propose a bifurcation in the bal-

ance of poloidal torques, which may lead to a sudden onset of strong poloidal

rotation which suppress edge turbulence. Hinton has proposed that poloidal

rotation is driven by the ion thermal gradient, and that these flows reduce

turbulent transport, which in turn allows a steepening of the gradient [8]. In

any case, it appears that a model that is able to accurately describe the L-H

transition will likely require the capability of self-consistently determining

turbulent transport, flow, and thermodynamic profiles in the edge region.

Another important issue in tokamaks is edge-localized modes (ELMs),

which are instabilities found to occur periodically at the plasma edge when
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in H-mode operation, leading to bursts of enhanced transport at the plasma

edge [9, 10]. An understanding of these modes is of importance to the suc-

cessful operation of a tokamak reactor like ITER because the heat flux to

certain plasma-facing components during an ELM event may be greater than

that which can be safely absorbed by those components, which could result in

their rapid degradation and destruction. It has been suggested that fluid drift

effects or resistively driven edge flows could be stabilizing to ELMs [11, 12];

one might also suspect that the effect of finite Larmor radii (FLR) may play

some stabilizing role, as it been shown to do in other instabilities [13].

Various analytical plasma models have been developed in order to gain an

improved understanding of the stability and transport properties of tokamak

plasmas. In general, these models may be divided into two main categories:

fluid models, which consist of equations for the evolution of the lowest few

cumulants of the velocity distribution (particle density, mean velocity, tem-

perature, etc.); and kinetic models, which retain equations for the evolution

of velocity distribution itself in a five- or six-dimensional phase space. Due

to their lower dimensionality, the calculation of magnetohydrodynamic equi-

libria and large-scale stability tends to be much simpler in fluid models.

However, because fluid models derive from the moments of the Boltzmann

equation, which is nonlinear, they suffer from the well-known closure prob-

lem, which can be rigorously overcome only in certain asymptotic regimes.

This difficulty complicates the inclusion of non-ideal effects in many cases.

There are two major objectives of the work presented here. The first is

to develop methods for solving non-ideal fluid plasma models numerically.

These non-ideal models include effects such as collisional, two-fluid, finite

Larmor radius effects, as well as flows. The second objective is to show that

these effects may have important consequences for the stability and transport

properties of magnetized plasmas, even in cases where they are formally of

small order. In particular, the effects of non-ideal processes on the stability

of several instances of general stratified plasmas are considered, as are their
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effects on the axisymmetric steady-states of tokamak plasmas.

1.2 Computational Plasma Physics

In many cases of physical interest, both fluid and kinetic models are analyt-

ically intractable due to their nonlinearity, and must be solved numerically.

Obtaining such solutions poses significant challenges in many cases. These

challenges are due in large part to the vast disparities in temporal and spa-

tial scales present in the models. For instance, kinetic models describe both

plasma oscillations and drift waves; in NSTX, these phenomena have fre-

quencies of orders 1011 and 104 Hz, respectively. Thus a numerical solution

resolving both phenomena would have to involve at least 107 time steps. In

general, not all of these scales are of interest, and rapid fluctuations may be

removed from the models by making certain assumptions. For example, gy-

rokinetic models exclude gyrofrequency-scale physics by averaging over the

gyro-motion of particles; plasma oscillations may be excluded by the assump-

tion of quasineutrality; electromagnetic waves are excluded by the omission

of the displacement current in Ampère’s law.

There are cases where effects which are important only on very small

physical scales are crucial in determining the large-scale behavior. One im-

portant example of such a case in plasma physics is the tearing mode, where

resistive effects in a small boundary layer cause the magnetic field to “re-

connect” there, leading to topological changes in the magnetic field on large

scales [14]. Furthermore, two-fluid effects, which may be important only

within this boundary layer, may dramatically affect the rate of magnetic

reconnection [15]. Thus, even if one is only interested in the large-scale be-

havior of the plasma, it is necessary to resolve the physics occurring in this

thin boundary layer in order to obtain an accurate global solution.

In order to resolve these small scales the spatial discretization must be

made finer, which causes two problems when calculating numerical solutions.
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The first is simply that this increases the degrees of freedom present in the

discretized equations, which raises the computational cost of the calcula-

tion. The second is that the Courant-Friedrich-Lewy (CFL) condition—the

limit on the maximum stable explicit time step which may be taken—is pro-

portional to the spatial discretization scale length δx divided by the phase

velocity of the fastest wave in a hyperbolic system. This problem is made

even worse by the presence of dispersive waves, such as the whistler wave,

the phase velocity of which increases at smaller scales, resulting in a highly

onerous restriction on the maximum explicit time step size as the spatial

resolution is increased.

The solution to the first problem is to use a spatial discretization method

which has variable resolution throughout the spatial domain. For structured

meshes, this may be accomplished either by subdividing logical partitions of

the mesh [16] or by loosening the coupling between the logical structure of

the mesh and the physical coordinates [17]. The adaptation of structured

meshes is somewhat limited due to the constraint of their logical structure.

Use of an unstructured mesh allows mesh elements simply to be packed in

regions where resolution is needed, regardless of the shape of those regions or

the shape of the domain. This is the method employed by M3D-C1, described

in chapter 3.

The solution to the problem of the stability limit on explicit time step-

ping methods is to use an implicit method. A time-step method is considered

explicit if the difference between the solutions at the next time step and the

current time step is not a function of the solution at the next time step.

Implicit methods, where that difference depend on (as yet unknown) values

of the solution at the next time step, require obtaining a self-consistent solu-

tion to the discretized system of physical equations. This solution is typically

obtained by linearizing the equations about the current solution, leading to

a matrix equation which may be solved either by direct or iterative methods.

This linearization may be applied iteratively, as in a Newton method, to ob-
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tain a more accurate solution to the nonlinear equations. Implicit methods

do not suffer from the highly restrictive CFL condition and may therefore

allow much larger time steps than explicit methods. Even though an im-

plicit time step may be significantly more computationally expensive than

an explicit one, implicit methods may be more efficient if the CFL limit is

significantly shorter than the time scales of interest.

The focus of this work is on fluid plasma models. Many numerical codes

have been written for the solution of fluid plasma models, each employ-

ing different numerical methods and focusing on different physical models.

Some modern codes for time-dependent, nonlinear, non-ideal models include

CTD [18], M3D [19], NIMROD [20], and SEL [17]. A new implicit finite

element code, M3D-C1 [21], which employs a flux/potential scalar represen-

tation of the magnetic and velocity fields similar to that used in M3D, is

exclusively used for the results obtained in this work.

1.3 Overview

The two-fluid model is derived from velocity moments of a system of Boltz-

mann equations in chapter 2. The closure problem inherent in such a system

of moment equations is discussed, and some methods of closure are pre-

sented. In particular, the ideal MHD model and the Braginskii model are

examined, as well as methods of extending the fluid equations beyond the

short mean-free-path asymptotic regime.

In chapter 3, the numerical code M3D-C1, developed for the solution of

the time-dependent, nonlinear two-fluid equations, is presented. The numer-

ical methods and techniques employed by M3D-C1 are discussed. Several

benchmarks are presented. Some of these benchmarks and methods for an

earlier version of M3D-C1 have been previously published by Ferraro and

Jardin [21] and Jardin, Breslau, and Ferraro [22]; the content of chapter 3

extends this work to include significant enhancements to the numerical meth-
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ods, including an unstructured mesh, toroidal geometry, a more complete

physical model, and improvements to the time-stepping algorithm.

Applications in which linear stability may be significantly affected by

non-ideal effects are presented in chapter 4. These applications include the

stability of a magnetized plasma with an inverted density or temperature

profile, which may be unstable to a Rayleigh-Taylor-like instability (gravi-

tational instability), or the magnetothermal instability (MTI), respectively;

and astrophysical accretion disks, which may be unstable to the magnetoro-

tational instability (MRI). It is shown that the stability of these systems

may be strongly affected by two-fluid effects or, in particular, finite Larmor

radius (FLR) effects. The results regarding the gravitational instability have

been published by Ferraro and Jardin [21], and those regarding the MRI were

published by Ferraro [23].

Finally, M3D-C1 is used to calculate the axisymmetric steady-states of

plasma held in a magnetic configuration typical of NSTX. This is accom-

plished by time-integrating the two-fluid equations from an initial condi-

tion until steady-state is reached. Current is driven inductively. The self-

consistent steady-state flows are examined and compared with analytic the-

ory or comparable simulation results, where possible. Gyroviscosity is found

to lead to toroidal rotation and oscillation; these effects are considered in

some detail. This recent work is currently in preparation for publication.



Chapter 2

The Two-Fluid Model

2.1 Moment Equations

The basic equation describing the evolution of the probability distribution

functions fs(x,v, t) of a collection of one or more species s of indistinguishable

particles is a system of Boltzmann equations for each species:

∂tfs + ∂x · (vfs) + ∂v · (asfs) = Cs + Ss. (2.1)

In a basic model of a plasma in which the species are of immutable, electri-

cally charged particles, the acceleration as may be due to electric or magnetic

fields or other external forces F (such as gravity):

msas = qs

(

E +
v

c
× B

)

+ Fs, (2.2)

where ms is the particle mass, qs is the particle charge, and c is the speed of

light. The electric and magnetic fields may be due to electrical charge densi-

ties or currents within the plasma, or external sources, and evolve according

to Maxwell’s equations. The collision operator, Cs =
∑

s′ Css′ , represents

effects arising from correlations between particles of species s and s′, which

include scattering due to classical collisions and turbulence [24]. External

9
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sources of particles and heat are represented by Ss.

Equations for the evolution of thermodynamic quantities may be obtained

by taking velocity moments of equation (2.1). The first three such moments

represent conservation of particle number, momentum, and energy. Specif-

ically, the moments are formed by operating on equation (2.1) with
∫

dv,
∫

dv msv, and
∫

dv msv
2/2, respectively.

∂ns
∂t

+ ∇ · (nsus) = σs, (2.3a)

∂

∂t
(msnsus) + ∇ · (msnsusus) + ∇ps + ∇ · Πs =

qsns

(

E +
us

c
× B

)

+ nsFs + Rs, (2.3b)

∂

∂t

(

3

2
ps +

1

2
msnsu

2
s

)

+ ∇ ·
(

1

2
msnsu

2
sus +

5

2
psus + Πs · us + qs

)

=

(Rs + nsFs + qsnsE) · us +Qs +Q∆s.(2.3c)

The density, fluid velocity, scalar pressure, stress tensor, and heat flux density

are defined as:

ns =

∫

dv fs, (2.4a)

us =
1

ns

∫

dv vfs, (2.4b)

ps =
1

3

∫

dv ms|v − us|2fs, (2.4c)

Πs =

[∫

dv ms(v − us)(v − us)fs

]

− psI, (2.4d)

qs =
1

2

∫

dv ms|v − us|2(v − us)fs. (2.4e)

The temperature is defined to be Ts = ps/ns. The collisional sources of
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momentum density and heat density are defined as

Rs =
∑

s′

∫

dv ms(v − us)Css′ , (2.5a)

Q∆s =
1

2

∑

s′

∫

dv ms|v − us|2Css′ . (2.5b)

Collisions neither create nor destroy energy or momentum, but only transfer

energy or momentum between species. Assuming these collisions to be local

processes due to short-range forces, this conservation property requires

∑

s

Rs =
∑

s

Q∆s = 0. (2.6)

Formally, the external sources of particles and heat density are

σs =

∫

dv Ss, (2.7a)

Qs =
1

2

∫

dv ms|v − us|2Ss. (2.7b)

Consider now an electrically neutral system of two species, electrons and

ions, with electron charge qe = −e and ion charge qi = Ze, and masses

me and mi respectively, such that Zme/mi ¿ 1. On scales larger than the

Debye length quasineutrality is well satisfied, so n = ne = Zni. In order

that quasineutrality remain satisfied in the presence of particle sources, it is

required that the particle source be quasineutral, so σ = σe = Zσi.

Deviations from single-fluid motion are typically small on hydrodynamic

scales in most fusion devices, which are much longer and slower than the ion

gyroradius and ion cyclotron period. Therefore it is useful to combine the

ion and electron equations of motion to yield a single equation of motion for

the full plasma. This is typically accomplished by the following procedure:

• A change of variables is made from the electron and ion velocities,
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ue and ui, to the fluid (mass) velocity and current density, defined

respectively as

u =
meneue +miniui
mene +mini

; J = niqiui + neqeue.

• The ion fluid equation of motion is replaced by the total fluid equation

of motion, which is the sum of the electron and ion fluid equations of

motion.

• The electron fluid equation of motion may then be used to define the

electric field, which does not appear in the total fluid equation of mo-

tion.

• Similarly, the ion pressure equation is replaced by the total pressure

equation, which is the sum of the electron and ion pressure equations,

divided by the sum of the ion and electron mass.

Due to the restrictions of equations (2.5), one may define R = Re = −Ri

and Q∆ = Q∆e = −Q∆i, which drop out of the total momentum and total

pressure equations, respectively.

Terms of order Zme/mi may be dropped. By specializing to certain

regimes of interest, other terms may be shown always to be negligible. In

particular, by considering only systems in which the speed of light is much

greater than any characteristic speed of the system, the displacement current

may be neglected in Ampère’s law, which may then may be used as the

definition of J. Doing this imposes the restriction that ∇ · J = 0, exactly,

end eliminates electromagnetic waves from the model. Furthermore, when

considering time and length scales larger than the electron cyclotron period

and Larmor radius, the electron inertia will be small compared to the Lorentz

force and can be dropped from the electron equation of motion. After making
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these approximations, the resulting equations are:

∂n

∂t
+ ∇ · (nu) = σ (2.8a)

mn

(

∂u

∂t
+ u · ∇u

)

=
J × B

c
−∇p−∇ · Π + nF − σu (2.8b)

3

2

[

∂p

∂t
+ ∇ · (pu)

]

= −p∇ · u − 3

2

(

5

3
pe
∇n
n

−∇pe
)

· J

ne
(2.8c)

− Π : ∇u + Πe : ∇ J

ne
−∇ · q

+
1

2
σmu2 − nF · u + (nFe + R) · J

ne
+Q

3

2

[

∂pe
∂t

+ ∇ · (peu)

]

= −pe∇ · u − 3

2

(

5

3
pe
∇n
n

−∇pe
)

· J

ne
(2.8d)

− Πe : ∇
(

u − J

ne

)

−∇ · qe

− (nFe + R) ·
(

u − J

ne

)

+Q∆ +Qe

E +
u × B

c
=

1

ne

(

J × B

c
−∇pe −∇ · Πe + nFe + R

)

,(2.8e)

∂B

∂t
= −c∇× E (2.8f)

J =
c

4π
∇× B (2.8g)

where m = (mini +mene)/n ≈ mi/Z, p = pi + pe, Π = Πi + Πe, q = qi + qe,

Q = Qi +Qe, and F = (niFi + neFe)/n.

2.2 Closure and Transport Coefficients

Equations (2.8) are not a closed set of equations because the quantities Π, Πe,

R, q, qe, and Q∆ are undetermined (ignoring the issue of external sources).

In principle, these quantities may be determined by higher moments of equa-

tion (2.1). However, each moment of equation (2.1) will introduce a quantity
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which is determined by the next-higher moment, and therefore in principle

it is necessary to evaluate an infinite number of moments in order to retain

all the information of the Boltzmann equation. This is the well-known clo-

sure problem. This problem can be overcome by appealing to kinetic theory.

In certain asymptotic regimes, the closures take relatively simple forms, in

which case the resulting fluid equations retain a significant advantage over

the full kinetic system.

In particular, the closure relations may be written as (spatially) local

functions of the thermodynamic and magnetic fields in the limit of short

mean-free-path (kvts ¿ νs) or small gyro-radius and short parallel mean-

free-path (k⊥ρs ¿ 1 and k‖vts ¿ νs). (Here vts =
√

Ts/ms is the thermal

velocity of species s, νs is the collision frequency, ρs = vts/ωcs is the Larmor

radius, and ωcs = qsB/msc is the cyclotron frequency.) It is typical to term

plasmas satisfying the short mean-free-path condition “collisional,” and those

satisfying the small gyro-radius condition “magnetized.” The behavior of un-

magnetized plasmas may be very different than that of magnetized plasmas

due to the strong anisotropic transport properties of magnetized plasmas.

With the possible exception of hot fusion products, the plasma in most mag-

netic fusion reactors is well magnetized, and so here the unmagnetized limit

will not be considered. However, due to the strong temperature dependence

of the collision frequency, the core of a fusion plasma is collisionless, whereas

the colder edge region is (typically) collisional; therefore both collisionality

limits are of interest here.

2.2.1 Ideal MHD

The most basic closure is to set all unknown quantities to zero. This “trun-

cation” of the moment equations, together with the omission of the two-fluid

terms in equations (2.8c) and (2.8e), yields the ideal-MHD equations, which

model a perfectly conducting, inviscid, adiabatic plasma. Ideal-MHD is valid

in the highly collisional, strongly magnetized plasma limit, where the mean-
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free-path and gyro-radius are small compared to all length scales present in

the system, on timescales short compared to dissipative (resistive, viscous)

timescales.

The major advantage of ideal-MHD is its simplicity. The ideal-MHD

equations, linearized about a stationary equilibrium, may be cast into varia-

tional form [25],

∫

dV mn

(

∂ξ

∂t

)2

−
∫

dV ξ · LMHD(ξ) = 0 (2.9)

where the linear displacement perturbation ξ is defined by u = ∂ξ/∂t, and

LMHD(ξ) =
c

4π
[∇×∇× (ξ × B)] × B +

c

4π
(∇× B) × [∇× (ξ × B)]

+ ∇
(

ξ · ∇p+
5

3
p∇ · ξ

)

. (2.10)

The two terms of equation (2.9) are the perturbations to the kinetic and

potential energies, respectively. In this form, the question of the stability

of an equilibrium becomes a minimization problem for the potential energy;

a negative perturbation to the potential energy indicates a positive pertur-

bation to the kinetic energy and hence, linear instability. This formulation

therefore represents a powerful and relatively simple method of determining

the stability of ideal-MHD equilibria. However, it is only possible to cast

the equations in the form of equation (2.9) because L is self-adjoint. The

introduction of dissipative terms, for example, leads to a non-Hamiltonian

system of equations for which an energy principle is not applicable.

2.2.2 Braginskii Equations

Closures more sophisticated than truncation may be obtained by appealing to

the kinetic equations. In a collisional plasma, one may apply the Chapman-

Enskog procedure to obtain correction equations for perturbations to the
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distribution function expanded in some small parameter (typically the col-

lisionality and magnetization parameters) [26]. This method requires that

deviation of the distribution function from a Maxwellian (the solution to

the zeroth-order equation) to be relatively small, and so its applicability is

strictly valid only in the high-collisionality limit. Using this method, local

asymptotic expressions for the thermodynamic force/flux relations depend-

ing only on the thermodynamic and magnetic fields may be obtained, thus

solving the closure problem. This was carried out by Braginskii [27] using the

Landau form of the collision operator. Toroidally confined fusion plasmas in

this asymptotic regime are said to be in the “Pfirsch-Schlüter” regime.

Of some relevance to the results presented in later chapters are the gy-

roviscous and parallel viscous stresses, which are briefly described below.

These stresses represent corrections to the ideal-MHD equations to include

the lowest order effects of finite Larmor orbits and pressure anisotropy. If

the electrons and ions in a plasma have similar temperatures and veloc-

ity scale lengths, the ratio of the electron to ion collisional parallel vis-

cosity is νi/νe ∼
√

me/mi; the ratio of electron to ion gyroviscosity is

ωci/ωce ∼ me/mi; and the ratio of electron to ion collisional perpendicu-

lar viscosity is ω2
ciνe/ω

2
ceνi ∼ (me/mi)

3/2. Therefore the ion viscous forces are

generally dominant over the electron viscous forces.

Gyroviscosity

The gyroviscosity is defined as the components of the stress tensor Π which

do not depend on the collision frequency. These components form a tensor,

Π∧, which represents the FLR corrections to the fluid equations to lowest

order in the magnetization parameter δ = ρs/L0 ¿ 1. The form of Π∧ in the

“fast” or “MHD” ordering used by Braginskii, which assumes that us ∼ vts

and ∂t ∼ δ ωcs [28], is (for either species s)

Π∧s =
ps

4ωcs

{

b × Ws · (I + 3bb) + [b × Ws · (I + 3bb)]>
}

, (2.11)



CHAPTER 2. THE TWO-FLUID MODEL 17

where the rate-of-strain tensor is

Ws = ∇us + (∇us)
> − 2

3
I ∇ · us. (2.12)

In the “drift” ordering in which us ∼ δ vts and ∂t ∼ δ2ωcs, it is necessary to

modify this form to include the effects of the heat flux gradient in addition to

the velocity gradient [29]. The expression for the gyroviscous stress becomes

significantly more complicated when extended to allow strongly anisotropic

pressure [30]. The gyroviscosity is independent of the collision frequency, and

retains the same form in all collisionality regimes.

Gyroviscous Cancellation The Braginskii form of the gyroviscous force

may be written [30]

∇ · Π∧s = −msnsu∗ · ∇us −∇αs
−∇×

{

ps
ωcs

[

as +
1

2
(∇ · u − 3b · as)b

]}

(2.13)

+ B · ∇
{

ps
ωcs

b × [3as + b ×$s] +
αs
B

b

}

,

where

as = b · ∇us (2.14a)

$s = ∇× us (2.14b)

αs =
ps

2ωcs
b ·$s (2.14c)

u∗s = − 1

msns
∇×

(

ps
ωcs

b

)

. (2.14d)

A common approximation is to retain only the first term of equation (2.13),

which is valid in the limit of vanishing parallel gradients. The equation of
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motion for a species s may then be written (neglecting collisional forces)

msns

(

∂us
∂t

+ (us − u∗s) · ∇us

)

= nsqs

(

E +
us × B

c

)

−∇ps. (2.15)

Typically, the further approximation is made of replacing u∗s, the “magne-

tization velocity,” with the diamagnetic velocity, −∇ps × b/nsmsωcs. This

illustrates the “gyroviscous cancellation” effect: the cancellation of the ad-

vection of momentum due to the fluid magnetization velocity (or diamagnetic

drift) by gyroviscosity.

A simple, and possibly novel, explanation for this cancellation is as fol-

lows. The perpendicular fluid velocity may be obtained by neglecting inertia

in the perpendicular component of equation (2.15). Thus

us ≈ u‖sb + c
E × B

B2
− ∇ps × b

nsmsωcs
(2.16)

Braginskii has shown [27] that the drift velocity of guiding center motion,

averaged over a Maxwellian distribution, can be written as

〈vcs〉 = u‖sb + c
E × B

B2
+ v2

ts∇×
(

b

ωcs

)

(2.17)

and that the difference of the fluid and guiding center drifts is therefore

us − 〈vcs〉 ≈ − 1

msns
∇×

(

ps
ωcs

b

)

= u∗s. (2.18)

Thus the difference between the fluid velocity and the guiding center mo-

tion is approximately the magnetization velocity. Braginskii used this fact

to argue that the difference between fluxes calculated using the fluid and

guiding center drifts is purely due to considerations at the boundary, since

the integral over any surface or volume of equation 2.18 may be converted to

an integral over the corresponding boundary via Stokes’ theorem. However,
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equation (2.18) also suggests a physical explanation of gyroviscous cancel-

lation effect: namely, that the momentum flux represented by msnsu is ad-

vected by the motion of the guiding centers 〈vc〉, and not by the fluid velocity

u. This is made clearer by using equation (2.18) to write equation (2.15) as

msns

(

∂us
∂t

+ 〈vcs〉 · ∇us

)

= nsqs

(

E +
us × B

c

)

−∇ps. (2.19)

It should be noted that similar relation holds for the pressure equation.

In the Braginskii ordering, the component of q which is independent of the

collision frequency is

q∧s =
5

2

nsv
2
ts

ωcs
b ×∇Ts (2.20)

Again, Braginskii shows that

5

2
psus + q∧s =

5

2
ps 〈vcs〉 − ∇×

(

5

2

psv
2
ts

ωcs
b

)

, (2.21)

where the left-hand-side appears in the total heat flux in equation (2.3c).

Therefore

∇ ·
(

5

2
psus + q∧s

)

= ∇ ·
(

5

2
ps 〈vcs〉

)

. (2.22)

Thus q∧ acts to cancel the artificial convection of heat by fluid drifts which

are not particle drifts, in a way analogous to the gyroviscous cancellation

effect.

Parallel Viscosity

By definition, the parallel viscosity contains effects which regulate the parallel

transport of parallel momentum. Again considering the collisional limit, the

parallel viscosity takes the form

Π‖s
=
η0sps
2νs

(b · Ws · b) (I − 3bb) (2.23)
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where η0i ≈ 0.96 and η0e ≈ 0.73 [27], and Ws is the rate-of-strain tensor

defined by equation (2.12). Essentially, this describes the diffusion of mo-

mentum along the magnetic field lines. In the collisional limit, this diffusion

is due to a random walk along the field line having a “step size” equal to

the mean-free-path λs = vts/νs and “step frequency” equal to the collision

frequency νs, thus yielding a diffusion coefficient ∼ λ2
sνs/2 = v2

ts/2νs (and

hence a viscosity of ∼ msnsv
2
ts/2νs = ps/2νs). Note that the diffusion con-

stant becomes infinite in the limit νs → 0, and therefore must break down in

low collisionality regimes.

The parallel viscosity is related to deviations from pressure isotropy. In

the model of Chew, Goldberger, and Low (CGL) [31], the pressure tensor is

taken to be diagonal, but with separate scalar pressures for the parallel and

perpendicular directions:

Ps = ps I +
1

3
(p⊥s − p‖s)(I − 3bb) (2.24)

= ps I + ΠCGLs, (2.25)

where ps = (p‖s + 2p⊥s)/3. Note that ΠCGLs has the same tensor structure

as Π‖s
, with

p⊥s − p‖s =
3

2

η0sps
νs

b · Ws · b. (2.26)

Magnetic Pumping One important physical effect contained in the colli-

sional form of the parallel viscosity is “magnetic pumping” [32]. This effect

occurs when plasma is convected through a region of higher magnetic field.

When entering such a region, the perpendicular pressure of the plasma rises

due to the conservation of the magnetic moment of each particle. The pres-

sure quickly and irreversibly isotropizes (in the collisional regime), raising

the entropy at the expense of the kinetic energy in the plasma flow.

In a tokamak, the main effect of magnetic pumping is to damp the poloidal

flow as it carries plasma through the poloidally varying magnetic field. The
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true effect of a large collisional parallel viscosity is to reduce the magnitude

of b·W ·b, in order that the term −Π‖ : ∇u = 3µ‖(b·W ·b/2)2 becomes small

enough to reach balance with the other terms in the pressure equation. (This

can also be understood by noting that entropy production of the parallel

viscosity is proportional to −Π‖ : ∇u.) In the same way, the effect of a large

parallel thermal conductivity is to reduce the magnitude of b · ∇T .

2.2.3 Long Mean-Free-Path Effects

The Coulomb collision time of a charged particle with energy T scales as

T 3/2, and so as a plasma is heated, collisions become less frequent. Once

the short mean-free-path condition is violated, the fluid description becomes

significantly more complex. Because particles may travel a relatively large

distance along the magnetic field in this regime before thermalizing, the

transport coefficients are inherently nonlocal. The flux-averaged theory of

these coefficients has been worked out in some detail; see the review by

Hirshman and Sigmar [33], for example.

Magnetic Trapping An important effect which is not correctly treated

by collisional closures is magnetic trapping. Magnetic trapping occurs when

the conservation of energy and the magnetic moment exclude a particle orbit

from a region of high magnetic field, causing its path to reflect from that

region. At the point of reflection, the particle’s parallel velocity is zero and

the perpendicular velocity is maximized, and therefore one expects pressure

anisotropies there. In the long mean-free-path regime, the pressure is not

rapidly isotropized, and a trapped particle may bounce between regions of

strong magnetic fields many times before collisions lead to scattering of its

pitch angle sufficient for detrapping.

In neoclassical theory, the “banana regime” is defined by the condition

that the detrapping frequency is less than the bounce frequency of trapped

particles [34]. The transport properties in this regime differ somewhat from
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the those in the collisional Pfirsch-Schlüter regime. Furthermore, important

effects due to the interaction between trapped and passing particles arise.

In particular, the bootstrap current is an effect which arises from such an

interaction, and may be responsible for a significant fraction of the total

plasma current in tokamaks.

Since trapping effects are necessarily described by pressure anisotropy,

one approach to extending fluid models to include them is to evolve the

parallel and perpendicular pressures separately [31, 35, 36, 28, 37]. This ap-

proach requires additional closures for the parallel and perpendicular heat

flux density, and therefore does not solve the closure problem per se, though

closures for this model have been obtained [31, 35]. However, even truncation

of this fluid scheme, which gives the double-adiabatic theory of Chew Gold-

berger and Low, obtains magnetic trapping effects (though the condition of

adiabaticity is generally not well satisfied in the collisionless limit). Another

approach is to retain a single (isotropic) scalar pressure, and to modify the

parallel viscosities to include the effects of pressure anisotropy [38]. This ap-

proach is perhaps easier from the standpoint of calculating stationary states,

as the anisotropy is of course not changing in such state and so the extra dy-

namical equation for the anisotropy may be eliminated without introducing

time-dependent contributions to the viscosity.

As noted above, trapping effects are inherently nonlocal, and rigorous

closures must reflect that. Analytic expressions for these closures are gener-

ally given in terms of surface-averaged values of thermodynamic fluxes [33].

However, the poloidal dependence of these stresses is important in certain

applications; for example, neoclassical tearing modes depend on the local

perturbations to the bootstrap current resulting from local changes in the

pressure gradient. Closures which are local in space have been devised for

such purposes, but these are only approximate and not rigorously correct in

any asymptotic limit [39].
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Landau Damping Another issue arising in the collisionless limit is wave-

particle interactions whereby particles having velocities resonant with waves

in the system may exchange energy with those waves. This is not captured

by collisional closures because collisions act quickly to move particles out of

resonance and maintain a Maxwellian distribution in the collisional regime.

These wave-particle interactions are important for damping out certain waves

having phase velocities close to typical (thermal) particle velocities, such

as the ion acoustic wave. The inverse effect—where particles excite waves

resonant with their velocity—may also lead to instabilities, such as with the

toroidal Alfvén eigenmode instability.

In the fluid picture, Landau damping does not lead to the direct thermal-

ization of energy (as with collisional damping), but rather to the transfer of

energy from lower to higher fluid moments ad infinitum [40]. Despite being

a reversible processes, this damping can not be recovered though the intro-

duction of non-dissipative fluid closures, and can only be exactly modeled

in a set of fluid equations by the retention of an infinite number of mo-

ments [41]; a fluid model of Landau damping is therefore necessarily only an

approximation. Landau-fluid models have been developed to approximate

the effect of Landau damping by introducing an artificial parallel damping

term in the highest fluid moment equation [40, 35]. The closures involved

in the Landau-fluid model are local in wavenumber, as opposed to configu-

ration space, and may be interpreted as a reduction in the parallel viscosity

due to an enhanced collision rate—enhanced by “collisions” with perturba-

tions in the electric or magnetic fields [42]. (An interesting illustration of this

fact is the comparison of the calculation of linear growth rate of the mag-

netorotational instability from the Landau-fluid perspective [42, 43] and the

Braginskii perspective [44].) Early Landau-fluid models overestimated the

damping of axisymmetric Rosenbluth-Hinton flows, which are not damped

by collisionless processes [45, 46]; however, modifications to the Landau-fluid

closures were subsequently made to mitigate these errors [36].
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2.2.4 Turbulent Transport

Many fluid closures, including those of Braginskii, are derived under the

assumption of strong magnetization, where perturbations on the scale of

the gyro-radius are negligible. Micro-instabilities, defined as instabilities at

scale lengths such that k⊥ρ & 1, are therefore excluded from these models.

Micro-instabilities are thought to be important to the transport properties

of magnetically confined plasmas, as they may form convective eddies which

efficiently transport energy across magnetic surfaces.

It is possible to construct fluid models which allow k⊥ρ . 1. One method,

which has been used particularly to study edge plasma turbulence [47], is to

expand the fluid equations in the drift ordering. One may also carry out the

Chapman-Enskog procedure on the Boltzmann equation to higher order in

the small parameter k⊥ρ, to improve the accuracy as k⊥ρ→ 1 [48]. Another

method is to build a fluid model with the appropriate closures based on

moments of the gyrokinetic equations, which are valid for k⊥ρi ∼ 1, to yield

the gyro-fluid equations [41, 49]. Still another technique is to replace the

collisional transport coefficients in the two-fluid equations with values from

transport models based either on inference from kinetic simulations (such as

TGLF [50]), or from experiments. While this technique lacks the rigor of a

unified model, it may be more useful for obtaining results on hydrodynamic

timescales because turbulent fluctuations need not be resolved.

Finally, there are numerous other issues which are not naturally included

in the version of the two-fluid framework discussed above, but which may

be important in fusion plasmas. Among these are the issues of ionization

and multiple charge states, impurities, thermal fluctuations, radiation (either

from electronic transitions or bremsstrahlung), and plasma-wall interactions.

Some of these effects may be handled by allowing more than two species

(multiple charge states, impurities); others are more efficiently incorporated

at a phenomenological level than with a comprehensive unified physical the-

ory, due to the vast disparities of the scales on which they occur with the
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hydrodynamic scales of interest.



Chapter 3

The M3D-C1 Numerical Code

3.1 Overview

M3D-C1 is a numerical code for the time-integration of the nonlinear two-

fluid equations. This code has been designed with the purpose of obtaining

solutions on both MHD and transport timescales, with the physics associated

with both timescales accurately and self-consistently included.

The equations implemented in M3D-C1, which are nearly the complete

Braginskii equations described in chapter 2, are given in dimensionless vector

form in section 3.2. The numerical methods employed by M3D-C1, including

the time-integration and spatial discretization techniques, are described in

section 3.3. Ongoing efforts in the extension of M3D-C1 to allow three-

dimensional linear stability analysis are described in section 3.5.

3.2 Physical Equations

M3D-C1 equations (2.8) in dimensionless form, normalized to an arbitrary

characteristic density n0, magnetic field strength B0, and scale length L0. All

quantities in this chapter are normalized in this way, unless otherwise noted.

26
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The implemented equations are:

∂n

∂t
+ ∇ · (nu) = Σ (3.1a)

n

(

∂u

∂t
+ u · ∇u

)

= J × B −∇p−∇ · Π + F − Σu (3.1b)

1

Γ − 1

[

∂p

∂t
+ ∇ · (pu)

]

= −p∇ · u −∇ · q − Π : ∇u +
1

2
Σu2 (3.1c)

+ di

(

n∇Te
Γ − 1

− Te∇n+ R

)

· J

n
+ diΠe : ∇J

n

1

Γ − 1

[

∂pe
∂t

+ ∇ · (peu)

]

= −pe∇ · u −∇ · qe +Q∆ (3.1d)

+ di

(

n∇Te
Γ − 1

− Te∇n+ R

)

· J

n
+ diΠe : ∇J

n

∂B

∂t
= −∇× E (3.1e)

J = ∇× B (3.1f)

E + u × B =
di
n

(J × B −∇pe −∇ · Πe + R) (3.1g)

where di = c/L0ωpi (in cgs units) is the normalized collisionless ion skin

depth, and ωpi =
√

4πn0e2/mi (also in cgs units) is the characteristic ion

plasma frequency. The ratio of specific heats Γ has been introduced in equa-

tions (3.1c) and (3.1d); Γ = 5/3 recovers equations (2.8c) and (2.8d), whereas

Γ = 1 yields an isothermal equation of state. Here and henceforth it is as-

sumed that Z = 1, so that ni = ne = n.

The closures implemented in M3D-C1 mostly take the Braginskii [27]

form, which are appropriate for collisional plasmas. Descriptions of the clo-

sures implemented in M3D-C1 are given below. The choice to use collisional

closures is motivated by the difficulty of implementing the nonlocal closures

typical of plasmas in the long mean-free-path regime.
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3.2.1 Thermodynamic Forces

Friction

The collisional force term R represents the transfer of momentum from one

species to another through collisions. Due to conservation of total momen-

tum, this term does not appear in equation (2.8b). The collisional force

implemented in M3D-C1 is the frictional force in the Braginskii closure

R =
1

di
nηJ. (3.2)

The resistivity η is left as an arbitrary scalar field. Note that R contains a

factor of d−1
i , and is therefore remains present (and finite) in equation (3.1g)

in the limit that di → 0. This term is responsible for the Joule heating of

the plasma. The thermal force is not implemented.

Viscosity

The viscosity in M3D-C1 is implemented as the sum of three parts,

Π = Π‖ + Π∧ + Π◦ (3.3)

where Π‖ takes the form of the collisional ion parallel viscosity, Π∧ is the

Braginskii ion gyroviscosity, Π◦ is a generic isotropic viscosity. Since the

collisional perpendicular viscosity is smaller than the collisional parallel vis-

cosity by a factor of (ν/ωc)
2 ¿ 1, the isotropic viscosity may accurately be

used in place of the more complicated perpendicular viscosity.

Π‖ =
µ‖

2
(b · W · b) (I − 3bb) (3.4a)

Π∧ = di
pi
4

{

b × W · (I + 3bb) + [b × W · (I + 3bb)]>
}

(3.4b)

Π◦ = −µ
(

∇u + ∇u>
)

− 2 (µc − µ) I ∇ · u. (3.4c)
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Figure 3.1: Left : Evolution of the total kinetic energy and the rate of parallel
viscous damping in the magnetostatic test case, for various mesh resolutions.
The rate of damping rapidly drops before significantly affecting the kinetic
energy (which is due almost entirely to poloidal flows). Right : Rate of damp-
ing at t = τA0 versus the mesh resolution δx.

The coefficients µ‖, µ, and µc are left as arbitrary scalar fields. Note that

µc only damps compressional motion. The viscosities are constrained by the

positivity requirements µc >
2
3
µ and µ > 0.

As a test of the implementation of the parallel viscous term in M3D-

C1, linear simulations have been run, initialized in the same NSTX-like GS

equilibrium as the other simulations, but given a very small initial poloidal

rotation (∼ 10−10vA0). The system is then evolved keeping density, pres-

sure, and the magnetic field constant (i.e. only the momentum equation is

evolved). The results of this test are shown in figure 3.1. It is found that

(b · W · b)2 rapidly drops several orders of magnitude, as expected from the

argument given in section 2.2.2. The kinetic energy (which is due at all times

almost entirely to poloidal flows) is found not to damp significantly; this is

because the toroidal angular velocity is not constrained to remain constant

within magnetic surfaces in the absence of Ohm’s law in this test case. This

demonstrates that the implementation of the parallel viscosity damps b·W·b,

as it should, but not simply by damping the kinetic energy.
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Electron Viscosity

The electron stress tensor is taken to have the form

Πe = λn∇J, (3.5)

which has roughly the form of an isotropic electron viscosity. Its inclusion in

equation (3.1g) leads to a biharmonic operator on the magnetic field, which

may be called a “hyper-resistivity,” and the above form is chosen specifically

to yield this effect. This term has the effect of rapidly smoothing high-k fre-

quencies while leaving lower frequencies relatively unaffected. Presently this

term is included to improve numerical stability. In some nonlinear reconnec-

tion regimes, its inclusion is necessary to avoid mathematical singularity at

the x-point.

Heat Flux Density

The heat flux densities are taken to have the collisional form

q = −κ◦∇T − κ∧B ×∇T − κ‖bb · ∇T (3.6)

qe = −κ◦∇Te − κ∧B ×∇Te − κ‖bb · ∇Te. (3.7)

The transport coefficients κ◦, κ∧, and κ‖ are left as arbitrary scalar fields.

Collisional Heat Transfer

The heat transferred from ions to electrons through collisions is

Q∆ = 3
me

mi

νe(pi − pe). (3.8)
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3.2.2 External Sources

Particles

The term Σ is taken to have the form

Σ = σ +Dn∇2n (3.9)

where σ is an arbitrary quasineutral particle density source/sink field. The

scalar Dn is an “anomalous” diffusion coefficient which both provides nu-

merical stability and allows for the phenomenological modeling of enhanced

rates of particle transport due to micro-turbulent effects not resolved in the

MHD and transport-scale simulations considered here, such as ion tempera-

ture gradient modes.

Momentum

An external force of the form

F = − 1

R2
gR∇R− gZ∇Z (3.10)

is implemented in M3D-C1 which may be used to impose either a constant

downward gravitational acceleration, or a radial gravitational acceleration

which falls off as 1/R2. The corresponding external force on the electrons is

proportional to the electron mass and is dropped from equations (3.1d) and

(3.1g).

3.3 Numerical Methods

3.3.1 Finite Elements

Reduced quintic finite elements are used in M3D-C1. These elements are

triangular, fifth-order bivariate polynomial elements, constrained to enforce
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continuity of values and first-derivatives across element boundaries (this is

the C1 property). These finite elements have the advantage of having only

three degrees of freedom per node per field asymptotically [51], which leads

to a highly compact matrix representation of the discretized equations.

The discretized equations are obtained by application of the Galerkin

method. In this method, the equations are projected onto the space of finite

elements by taking their inner product with each finite element. For example,

the physical equation
∂∇2U

∂t
= µ∇2(∇2U) (3.11)

is discretized into the system of equations obtained by representing U as a

linear combination of the basis functions {ν},

U(x, t) =
∑

j

Uj(t)νj(x), (3.12)

and integrating over the computational domain:

∂Uj
∂t

∫

dA νi∇2νj = Uj

∫

dA νi∇2(µ∇2νj). (3.13)

This is the discretized “weak form” of equation (3.11). Thus an equation of

infinite dimension (equation (3.11) applies at each point in the domain) is

discretized into a finite set of one-dimensional equations for each combination

of νi and Uj. One advantage of the weak form is that equations having

high-order derivatives can be transformed using integrations-by-parts. For

example, equation (3.13) becomes

−∂Uj
∂t

∫

dA ∇νi · ∇νj = Uj

∫

dA µ∇2νi∇2νj. (3.14)

Due to the C1 property of the reduced quintic elements, the second derivative

of the finite element representation of any field remains well-defined even

at element boundaries, and so equation (3.14) may be computed directly.
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Therefore, physical equations containing up to fourth derivatives may be

computed directly using C1 elements. In contrast, in the case of C0 elements,

for which only the first derivative is well-defined at element boundaries, the

calculation of this equation would require the introduction of a new equation

to define an auxiliary variable $ = ∇2U , e.g.,

$j

∫

dA νiνj = −Uj
∫

dA ∇νi · ∇νj.

∂Uj
∂t

∫

dA ∇νi · ∇νj = $j

∫

dA ∇νi · ∇(µνj)

For an implicit time step, these two equations would have to be solved si-

multaneously in a single matrix equation, thereby doubling the rank of the

matrix.

Spatial Integration

In M3D-C1, the spatial integrations are now carried out numerically, not

analytically as in previous work [52, 21]. (Analytic integrations, while com-

petitive computationally when using a structured mesh in Cartesian geom-

etry, are not feasible on an unstructured mesh in toroidal geometry where

the Jacobian of each finite element is potentially different.) The numerical

integration is done using a Gaussian quadrature, where the integral (over an

individual element) is replaced by a weighted sum:

∫

dA F ≈ A

Np
∑

p=1

wpF (xp) (3.15)

where A is the area of the triangle, and xp and wp are an appropriately chosen

set of sampling points and associated weights. The quadratures implemented

in M3D-C1use the weights and sampling points published by Dunavant [53].

Dunavant gives the sampling points {xp} as a set of points in the “nat-

ural” coordinates of a triangle, (α, β, γ), where α = A1/A, β = A2/A, and
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Figure 3.2: Left : The “natural” coordinate system of an equilateral triangle,
(α, β, γ). Right : The local coordinate system on a finite element triangle
used in M3D-C1, (ξ, η).

γ = A3/A, with the areas A1, A2, and A3 as shown in figure 3.2. These coor-

dinates may be converted to the standard form of the local coordinate system

used on triangular elements by M3D-C1, (ξ, η) by the linear transformation:

(ξ, η) =

(

1

2
[(a+ b)(β − γ) + (a− b)(1 − α)] , cα

)

. (3.16)

The area of the triangle is given simply by

A =
1

2
(a+ b)c. (3.17)

The most accurate quadrature implemented in M3D-C1 uses 79 sampling

points (Np = 79). This quadrature is exact for polynomials of up to degree

25, and is therefore exact for discretized nonlinear products of up to four

fields when represented using the reduced quintic elements (the integrand

being the product of four fields and one basis function, each represented by

a degree-five polynomial). The 25-point quadrature, though not exact for

highly nonlinear terms, is found to be accurate even for relatively coarse

meshes. The fractional mean differences between the kinetic energy time
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Figure 3.3: The fractional error in the kinetic energy, as calculated by
〈|En − E79|〉t / 〈E79〉t, is plotted for n = 25 and n = 12 for various element
sizes δx. Here, En is the kinetic energy time series of a simulation using
n-point integration quadrature, and 〈·〉t indicates the time-average.

series obtained with the 79-point quadrature and those obtained with the

25-point and 12-point quadratures are shown in figure 3.3. The test case

is a typical NSTX simulation with η0 = 10−4 (see chapter 5), run for 500

Alfvén times. The error introduced by the lower-order quadratures is small

compared to the truncation error introduced by spatial discretization, which

is on the order of a few percent for typical mesh resolutions used in the NSTX

simulations. The truncation error is shown for the same case in figure 3.4.

Unstructured Mesh

The mesh of triangular elements in M3D-C1 is fully unstructured, meaning

that the index of the element is not in any way dependent on the position

or orientation of the element. This differs from a logically rectangular mesh,

for example, in which each element has a fixed number of neighbors (except

at the boundaries), and in which each element’s position and orientation is

determined by some simple function of its logical indices. By eliminating

these constraints, an unstructured mesh gains the following advantages:

1. any finite domain may be easily meshed, regardless of boundary shape;
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Figure 3.4: The fractional error in the kinetic energy due to truncation
from spatial discretization, as calculated by

〈

|E(δx) − E(δx0)|
〉

t
/ 〈E(δx0)〉t

is plotted for various element sizes δx. Here δx0 ≈ 0.035L0, and 〈·〉t indi-
cates the time-average. These cases were run using the 79-point integration
quadrature.

2. it is relatively simple to pack resolution in boundary layers of any shape

and orientation; and

3. mesh adaptation in response to the development of boundary layers

may be more aggressive.

The disadvantages of an unstructured mesh are that it is costly to determine

in which element a particular spatial point falls, and that some care must be

taken to avoid large changes in the size and aspect ratio of neighboring mesh

elements. For the simulation of physical phenomena in which the position of

a boundary layer is fixed and known a priori, a static mesh with resolution

packed near the boundary layer works well to reduce the computational cost

of obtaining a solution, without significantly reducing the accuracy.

A prime example of this type of phenomenon in plasma physics is mag-

netic reconnection. Magnetic reconnection is process whereby magnetic flux

is transported across a magnetic surface (the “separatrix”). In the ideal

MHD model, this process is prohibited by the “frozen-in” constraint of the

ideal Ohm’s law. However, resistive effects break this constraint within a
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Figure 3.5: A simple example of a packed mesh, overlaying a plot of toroidal
current density in the late stages of a reconnection simulation. The high-
resolution area has a resolution equivalent to a 121 × 121 node structured
mesh; the outer region has a resolution equivalent to a 61×61 node structured
mesh.

thin resistive boundary layer, and allow reconnection to occur. It has been

found that this layer collapses even further in two-fluid models [15], to a so-

called “x-point” or “x-line.” The rate at which reconnection occurs depends

sensitively on the conditions in this boundary layer, and so that region must

be well resolved for simulations to be accurate. If this small region is not

well resolved, the large-scale solution over much of the domain will not be

accurate. With an unstructured mesh, it is easy to pack resolution near the

highly localized x-point without increasing the resolution elsewhere, where

it is not needed. In this way, the accuracy of the solution may be increased

without significantly increasing the computational cost of its calculation. Ex-

amples of M3D-C1 simulation results employing this strategy are shown in

figures 3.5 and 3.6.

The distribution of an unstructured mesh and the associated data struc-

tures onto multiple processors for the purpose of parallel computation is
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Figure 3.6: The total reconnected flux from reconnection simulations run
using a a uniform mesh of 121 × 121 nodes, 61 × 61 nodes, and the non-
uniform mesh shown in figure 3.5.

somewhat more difficult than the domain decomposition of a logical mesh.

This is because in an unstructured mesh, the connectivity of elements can-

not be inferred from their indices, and also because it may be challenging

to decompose the mesh into contiguous domains of roughly equal numbers

of elements while also ensuring that the boundaries between domains (which

incur costs associated with inter-process communication) are as small as pos-

sible. Mesh generation, refinement, and distributed data structures are han-

dled through software developed for M3D-C1 by SCOREC at RPI. The mesh

partitioning is done using ParMETIS [54], through Zoltan [55, 56].

3.3.2 Linear Semi-Implicit Time Step

In order to overcome the restrictive stability limits of explicit time-steps,

M3D-C1 employs an implicit time stepping method. Implicit methods can

be computationally costly because they involve the calculating the solution

of matrix equations which may involve a large number of unknowns. The

computational cost may be reduced by re-writing the large matrix equation in

which all quantities are advanced together as several smaller matrix equations

in which the velocity, density, pressure, and magnetic field are advanced
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separately. It is possible to do this while still retaining the stability properties

of an implicit method. The semi-implicit method employed by M3D-C1

described below, is closely related to the semi-implicit methods of Harned

and Schnack [57] and Caramana [58]. These are methods of “parabolizing” a

hyperbolic system of equations, transforming a large, ill-conditioned system

of equations into a set of smaller, better-conditioned ones [59].

Velocity Advance

First, the momentum equation is evaluated at the θ-advanced time (i.e. u →
u + θδtu̇, etc.) and terms of order δt2 are dropped.

n

[

∂u

∂t
+ u · ∇u + θδt(u̇ · ∇u + u · ∇u̇)

]

= (3.18)

(∇× B) × B −∇p+ ng −∇ · Π(u) − σu

+ θδt
[

(∇× Ḃ) × B + (∇× B) × Ḃ −∇ṗ+ ṅg −∇ · Π(u̇) − σu̇
]

Equations (2.8a),(2.8c), and (2.8f) are evaluated with the θ-advanced u:

∂n

∂t
= −∇ · (nu) − θδt∇ · (nu̇) + Σn (3.19)

∂B

∂t
= ∇× (u × B) + θδt∇× (u̇ × B) + ΣB (3.20)

∂p

∂t
= −u · ∇p− Γp∇ · u − θδt(u̇ · ∇p+ Γp∇ · u̇) + Σp, (3.21)

where

Σn = σ +Dn∇2n

ΣB = −∇×
[

ηJ +
di
n

(J × B −∇pe −∇ · Πe)

]

Σp = di [n∇Te + (Γ − 1)(R − Te∇n)] · J

n
+ (Γ − 1)

(

diΠe : ∇J

n
−∇ · q

)

.

Now ṅ, Ḃ and ṗ in equation (3.18) may be eliminated using equations (3.19)–
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(3.21).

n

[

∂u

∂t
+ u · ∇u + θδt(u̇ · ∇u + u · ∇u̇)

]

= (3.22)

(∇× B) × B −∇p−∇ · Π(u) + ng − σu

+ θδt [L(u) + θδtL(u̇) −∇ · Π(u̇) − σu̇]

where

L(u) = [∇×∇× (u × B)] × B + (∇× B) × [∇× (u × B)]

+ ∇(u · ∇p+ Γp∇ · u) −∇ · (nu)g. (3.23)

Note that L is simply the ideal MHD operator defined by equation (2.10),

aside from the gravitational term which is not present in ideal-MHD. Now

letting u̇ = (un+1 − un)/δt (where the superscripts index the time step),

n
[

un+1 + θδt(un+1 · ∇un + un · ∇un+1)
]

+ θδt[∇ · Π(un+1) + σun+1] − θ2δt2L(un+1) = (3.24)

n [un − (1 − 2θ)δtun · ∇un]

+ δt[(∇× Bn) × Bn −∇pn + nng]

− (1 − θ)δt[∇ · Π(un) + σun] + (1 − θ)θδt2L(un).

This discretization has the problem that the terms proportional to L do not

cancel in steady-state (see section 3.4.1). This can be fixed by the method

of Caramana [58], which is simply to subtract θδt2L(un) from the right

hand side of equation (3.24). This has the effect of removing a numerical

dissipation term from the discretized equations. The resulting discretization
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for velocity is then

nn
[

un+1 + θδt(un+1 · ∇un + un · ∇un+1)
]

+ θδt[∇ · Π(un+1) + σun+1] − θ2δt2L(un+1) = (3.25)

nn [un − (1 − 2θ)δtun · ∇un]

+ δt[(∇× Bn) × Bn −∇pn + nng]

− (1 − θ)δt[∇ · Π(un) + σun] − θ2δt2L(un).

which may be solved independently of the equations for B, n, and p, since

the only advanced-time variable it contains is un+1.

It is convenient to write equation (3.25) in the form:

Vun(u
n+1, nn) − θδt

[

Vuun(u
n+1,un, nn) + Vuun(u

n,un+1, nn)

+ VuΠ(un+1) + Vuuσ(u
n+1)

]

− θ2δt2L(un+1) =

Vun(u
n, nn) + (1 − 2θ)δtVuun(u

n,un, nn)

+ (1 − θ)δt [VuΠ(un) + Vuuσ(u
n)]

+ δt [VBB(Bn,Bn) + Vp(p
n) + Vng(n

n)]

− θ2δt2L(un).

(3.26)

Vun(u, n) = nu

Vuun(u,u, n) = −nu · ∇u

VuΠ(u) = −∇ · Π(u)

Vuuσ(u) = −σu
VBB(B,B) = (∇× B) × B

Vp(p) = −∇p
Vng(n) = ng

(3.27)
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Density Advance

The density equation, which is coupled only to the velocity, may now be

solved implicitly since the advanced-time velocity is known. Taylor expand-

ing n and u in the density equation, dropping terms of order δt2, and dis-

cretizing yields:

Nn(n
n+1) − θδt

[

Nnu(nn+1,un) +Nnu(nn,un+1) +NnDn
(nn+1)

]

=

Nn(n
n) + (1 − 2θ)δtNnu(nn,un) + (1 − θ)δtNnDn

(nn) + δtNσ

(3.28)

Nn(n) = n

Nnu(n,u) = −∇ · (nu)

Nσ = σ

NnDn
(n) = Dn∇2n

(3.29)

Pressure Advance

Similarly, the pressure advance is found by taking the θ-advanced u and p

fields and discretizing:

Pp(p
n+1) − θδt







Ppu(pn+1,un) + Ppu(pn,un+1)

+ Puuσ(u
n+1,un) + Puuσ(u

n,un+1)

+ Ppκ(p
n+1)






=

Pp(p
n) + (1 − 2θ)δt [Ppu(pn,un) + Puuσ(u

n,un)]

+ (1 − θ)δt [Ppκ(p
n)]

+ δt [PpeB(pne ,B
n) + PBBη(B

n,Bn) + PBΠe
(Bn) + PuΠ(un)]

(3.30)



CHAPTER 3. THE M3D-C1 NUMERICAL CODE 43

Pp(p) = p

Ppu(p,u) = −u · ∇p− Γp∇ · u
PpeB(pe,B) = di

[

1
n
∇pe + Γpe∇ 1

n

]

· ∇ × B

PBBη(B,B) = η(∇× B) · (∇× B)

PBΠe
(B) = (Γ − 1)diΠe : ∇

(

1
n
∇× B

)

Ppκ(p, n) = (Γ − 1)∇ ·
[(

κ◦ + κ∧B × +κ‖bb·
)

∇
(

p
n

)]

Puuσ(u,u) = 1
2
(Γ − 1)σu · u

PuΠ(u) = −(Γ − 1)Π : ∇u

(3.31)

Note that for this advance, B, pe, and n appear but are not evaluated at the

θ-advanced time. This allows the pressure to be advanced independently after

the velocity advance, at the expense of some terms (electron convection, PpeB,

and ohmic heating, PBBη) not being treated implicitly. The viscous- and

electron-viscous heating terms (PuΠ and PBΠe
) are treated explicitly because

they contain spatial derivatives of higher than fourth order (see section 3.3.1).

Magnetic field and Electron Pressure Advance

The electron pressure and magnetic field advance equations are calculated

using the θ-advanced values for B, u, and pe, and therefore must be solved

together. This is done to ensure that the kinetic Alfvén wave is treated

implicitly.

Pp(p
n+1
e ) − θδt













Ppu(pn+1
e ,un) + Ppu(pne ,u

n+1)

+ PBBη(B
n+1,Bn) + PBBη(B

n,Bn+1)

+ PpeB(pn+1
e ,Bn) + PpeB(pne ,B

n+1)

+ Ppκ(p
n+1
e )













=

Pp(p
n
e ) + (1 − 2θ)δt [Ppu(pne ,u

n) + PBBη(B
n,Bn) + PpeB(pne ,B

n)]

+ (1 − θ)δt [Ppκ(p
n
e )]

+ δtPBΠe
(Bn)

(3.32)
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Pp(p) = p

Ppu(p,u) = −u · ∇p− Γp∇ · u
PpeB(pe,B) = di

[

1
n
∇pe + Γpe∇ 1

n

]

· ∇ × B

PBBη(B,B) = η(∇× B) · (∇× B)

PBΠe
(B) = (Γ − 1)diΠe : ∇

(

1
n
∇× B

)

Ppκ(p, n) = (Γ − 1)∇ ·
[(

κ◦ + κ∧B × +κ‖bb·
)

∇
(

p
n

)]

Puuσ(u,u) = 1
2
(Γ − 1)σu · u

PuΠ(u) = −(Γ − 1)Π : ∇u

(3.33)

BB(Bn+1) − θδt







BBu(Bn+1,un) +BBu(Bn,un+1)

+BBB(Bn+1,Bn) +BBB(Bn,Bn+1)

+BBη(B
n+1) +Bpe

(pn+1
e ) +BB,Πe

(Bn+1)






=

BB(Bn) + (1 − 2θ)δt [BBu(Bn,un) +BBB(Bn,Bn)]

+ (1 − θ)δt [BBη(B
n) +Bpe

(pne ) +BB,Πe
(Bn)]

(3.34)

BB(B) = B

BBu(B,u) = ∇× (u × B)

BBη(B) = −∇× (η∇× B)

BBB(B,B) = −di∇×
[

1
n
(∇× B) × B

]

Bpe
(pe) = di∇×

(

1
n
∇pe

)

BBΠe
(B) = di∇×

[

1
n
∇ · Πe(B)

]

(3.35)

Iteration of Magnetic Field Advance It is found that, for low values of

resistivity, when ohmic heating, strongly anisotropic thermal conductivity,

and flow are included, this method may be nonlinearly unstable at unac-

ceptably small values of δt. The instability is characterized by temperature

becoming negative in the core region. This limitation may be overcome by

iterating the magnetic field advance. Specifically, after the magnetic field is

advanced, the transport coefficients (η, κ, µ) are recalculated, and the mag-

netic field advance is redone using the new transport coefficients and the old
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Figure 3.7: The time evolution of the kinetic energy in an NSTX simulation
for various values of δt. In this case, the method without iterating the field-
solve is stable for δt = 0.01τA0, but not for δt = 0.1τA0. When the field-solve
iteration is used, δt = τA0 is stable.

velocity and field values. This may reduce the time-accuracy of the timestep,

but has no effect on the steady-state. A single iteration of this type increases

the computational cost of a time step by roughly 50%, but may improve the

maximum stable time step by several orders of magnitude. Figure 3.7 shows

that the iteration method raises the maximum value of δt/τA0 from O(10−2)

to O(1), for a typical NSTX case (see section 5).

Scalar Representation

Equations (3.26), (3.28), (3.32), (3.34) constitute the discretized equations

to be solved each time step. To solve these equations, a coordinate system

and scalar representation for B and u must be chosen. Two such choices

are implemented. The first is for Cartesian coordinates (x, y, z) with y the

direction of axisymmetry and

B = ∇ψ ×∇y + I∇y (3.36a)

u = ∇U ×∇y + V∇y + ∇χ. (3.36b)
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The other is curvilinear coordinates (R,ϕ, Z) with ϕ the direction of axisym-

metry, and

B = ∇ψ ×∇ϕ+ I∇ϕ (3.37a)

u = ∇U ×∇ϕ+ V∇ϕ+ ∇χ. (3.37b)

The flux/potential representations of equations (3.36) and (3.37) have sev-

eral advantages over the coordinate component representation. First, the

magnetic field is completely determined by the values of only two fields, ψ

and I, and the condition ∇ · B = 0 is always exactly satisfied. Second, the

solenoidal, toroidal, and compressible parts of the velocity are naturally sep-

arated. Third, there exist two subsets of the full system of equations which

are easily recovered using this representation: one is the “two-field” equa-

tions of reduced-MHD which are recovered by evolving only ψ and U ; the

other is the “four-field” equations of Fitzpatrick [60] which are recovered by

evolving only ψ, U , I, and V . It can be shown that each of these subsets is

self-consistent and conserves energy (excluding dissipative terms).

The main disadvantage of the flux/potential representation is that it re-

quires more spatial derivatives than would simply breaking B and u into

their spatial coordinate components. Use of C1 elements eliminates this con-

cern, as almost no physical term has more than four spatial derivatives using

the flux/potential representation, and therefore no auxiliary variables need

be defined.1

Now each equation must be broken into scalar components, and cast in

the weak form necessary for computation using finite elements. Another dis-

advantage of the flux/potential representation is that the these scalar equa-

tions can be quite complicated, especially when terms like the gyroviscosity

are included. The end result of this process is a set of equations which can

1The viscous and electron-viscous heating terms do contain terms having more than

four derivatives; however, these terms are generally small and may be treated explicitly

without affecting numerical stability.
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be written in the following block-matrix form:







SUU SUV SUχ

SV U SV V SV χ

SχU SχV Sχχ













U

V

χ







n+1

=







DUU DUV DUχ

DV U DV V DV χ

DχU DχV Dχχ













U

V

χ







n

+







QUψ QUI QUp QUn

QV ψ QV I QV p QV n

Qχψ QχI Qχp Qχn



















ψ

I

p

n













n

+







OU

OV

Oχ






(3.38)

Snnn
n+1 = Dnnn

n +
(

RnU RnV Rnχ

)







U

V

χ







n+1

+
(

QnU QnV Qnχ

)







U

V

χ







n

+On

(3.39)

Sppp
n+1 = Dppp

n +
(

RpU RpV Rpχ

)







U

V

χ







n+1

+
(

QpU QpV Qpχ

)







U

V

χ







n

+Op

(3.40)
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





Sψψ SψI Sψpe

SIψ SII SIpe

Speψ SpeI Spepe













ψ

I

pe







n+1

=







Dψψ DψI Dψpe

DIψ DII DIpe

Dpeψ DpeI Dpepe













ψ

I

pe







n

+







RψU RψU RψU

RIV RIV RIV

Rpeχ Rpeχ Rpeχ













U

V

χ







n+1

+







QψU QψU QψU

QIV QIV QIV

Qpeχ Qpeχ Qpeχ













U

V

χ







n

+







Oψ

OI

Ope






. (3.41)

The elements of these matrices are each linear operators defined in ap-

pendix D. The two-field or four-field reduced MHD equations may be ob-

tained simply by taking the upper-left 1 × 1 or 2 × 2 sub-matrices of the S,

D, R, and Q matrices above.

These matrix equations may be solved in a number of ways. In M3D-C1

they are typically solved using direct LU decomposition, using the distributed

LU factorization software SuperLU dist [61]. Recently M3D-C1 has been

modified to use PETSc [62, 63], which provides an abstraction layer through

which a number of algorithms for the solution of matrix equations, among

other things, are made available.

3.4 Benchmarks

M3D-C1 has been used to simulate phenomena in which the solution to the

dynamical equations is exactly or approximately known, either from analytic

theory or through the consensus results of various other comparable, inde-

pendent numerical codes. Some confidence in the veracity of the numerical

methods of M3D-C1 may be gained by comparing simulation results with

these known results. There are few preexisting results against which the so-

lutions of the full two-fluid equations may be compared, but in cases where
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an equilibrium solution is known it is straightforward to derive asymptotic

expressions for the linear eigenmodes in the limit where the mode wavelength

is small compared to the equilibrium gradient scale length. This has been

done for several types of equilibria in the presence of a gravitational force,

which may be unstable to various modes of physical interest; the analytic

linear theory of these modes is presented in chapter 4, and M3D-C1 simula-

tions are shown to be in excellent agreement with the analytic results. This

is also done in detail for the normal modes of a homogeneous equilibrium in

the next section.

It is more difficult to obtain analytic results for nonlinear phenomena

against which simulation results can be compared. One useful diagnostic is

the degree to which particle number and energy are conserved in the sim-

ulation results. While this data is calculated and output by M3D-C1, no

systematic study of energy conservation has yet been done. It is shown in

section 5 that stationary steady-states obtained with M3D-C1 do satisfy den-

sity, angular momentum, and energy balance to a high degree of accuracy

(this is determined by independent post-processing and not by internal M3D-

C1 diagnostics). Benchmarks against other comparable codes may also be

helpful. Such a comparison of solutions to a standard nonlinear reconnection

problem [15] has been done with M3D-C1 and the JFNK-FD [64], SEL [17],

and NIMROD [20] codes; the kinetic energy in these simulations was found

to agree to within a few percent over the course of the simulations [65].

3.4.1 Normal Modes of an Homogeneous Equilibrium

The normal modes of a homogeneous equilibrium were calculated by Ferraro

and Jardin [21] using a non-dissipative two-fluid model including gyrovis-

cosity in Cartesian coordinates. These results are briefly reviewed here, and

new numerical results obtained with the numerical methods described in this

chapter (which differ from those used in reference [21]) are presented.

In a Cartesian coordinate system (x, y, z), consider the two-fluid model
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Figure 3.8: Left : The phase velocity of linear waves from M3D-C1 simulations
are plotted against the analytic solutions as a function of β = 8πp0/B

2.
Right : The fractional difference between the M3D-C1 result for the phase
velocity and the analytic result is plotted versus δt, with β = 0.5.

given by equations (2.8), with no external sources (σ = 0), and no thermody-

namic forces except ion gyroviscosity R = q = Πe = Q∆ = 0, Π = Π∧, with

Π∧ defined by equation (2.11). Consider also the linear dispersion relation of

the homogeneous, static equilibrium with B = Bx0x̂+Bz0ẑ, p = p0, pi = pi0,

and n = n0. Of course, the normal modes of this system must be plane

waves, with frequency ω and wavenumber k. The dispersion relation for the

normal modes with k = kx̂ is

0 = W 2 ×











































W 6

−W 4 [1 + C2 + (1 +H2)b2x + F 2(1 + 6b2x − 3bx4)]

+W 2b2x







1 + 2C2 − 2FH(1 + b2x)

+ F 2 (4[1 − b2x] + C2[1 − 3b2x]
2)

+H2 (C2 + F 2[1 + 6b2x − 3b4x])







−b4xC2 [1 + FH(1 − 3b2x)] ,











































(3.42)
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where the following definitions have been made

W =
ω

kvA
(3.43)

C =
cs
vA

(3.44)

H =
kvA
ωci

(3.45)

F =
kρ2

iωci
2vA

(3.46)

with cs =
√

Γp0/n0, vA = |B|2/(4πn0m) (in cgs units) and bx = Bx0/|B|.
Equation (3.42) has four doubly-degenerate solutions for W , representing

the stationary entropy mode, and a fast (magnetosonic), Alfvén, and slow

(acoustic) wave. The degeneracy corresponds to the symmetry k → −k (i.e.

the wave may travel in either direction at the same phase velocity).

Given the scalar representation as defined in equations (3.36), the eigen-

mode has the form

kŨ

vA
=

bx
W

{W 2(X − 1) + b2xC
2 + FH[W 2(1 + b2x) + b2xC

2Z]}
(1 −W 2)X + C2Y + F 2 [W 2(1 + 6b2x − 3b4x) − 4b2xY − b2xC

2Z2]

kψ̃

|B|
Ṽ

vA
= bx

HbxX
kψ̃
|B|

− FW [2Y −XZ] kũ
vA

(1 −W 2)X + C2Y

Ĩ

|B| =

bx
W
X( Ṽ

vA
−H kψ̃

|B|
) + FY Z kũ

vA

Y −X

ikχ̃

WvA
=

bz
X

[

Ĩ

|B| − FZ
kŨ

vA

]

ñ

n0

=
ikχ̃

WvA
p̃

p0

=
ikχ̃

WvA
p̃e
pe0

=
ikχ̃

WvA
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Figure 3.9: The fractional difference between the M3D-C1 result and the
analytic results for the phase velocity (left) and the amplitude of the fast wave
(i.e. amplitude should remain constant) for various time-stepping methods.

where tildes denote the perturbed portions of each quantity, bz = Bz0/|B|,
X = W 2 − C2, Y = 1 − b2x, and Z = 1 + 3b2x. The magnitude of the

magnetic flux perturbation, ψ̃, remains arbitrary. Using these results, M3D-

C1 may be initialized in any of the propagating eigenmodes. Since the phase

velocity vφ = ω/k of these eigenmodes is known precisely, this provides a

useful benchmark for the numerical code. Such simulations have been used

to benchmark earlier implementations of M3D-C1 [21]; these benchmarks

are repeated here with the methods described earlier in this chapter (see

figure 3.8).

The phase velocity and amplitude errors for various time-stepping meth-

ods are plotted in figure 3.9. The methods plotted are: the “Split, Caramana”

method, which is the method described in section 3.3.2; “Split”, which the

same as the previous method, except the dissipative term proportional to

θδt2L in equation (3.24) is retained; and “Unsplit”, for which no time-step

splitting is done, and all the fields are advanced together in a single linear θ-

implicit time step. As expected, the unsplit method offers the best accuracy

for this dynamical problem, both in terms of phase velocity (which converges

as δt2) and amplitude dissipation. The two “split” methods yield results

roughly similar to each other, with the Caramana method being somewhat



CHAPTER 3. THE M3D-C1 NUMERICAL CODE 53

Figure 3.10: The steady-state kinetic energy of an NSTX simulation for
various time-stepping methods.

less dissipative. A major advantage of the Caramana method over the non-

Caramana split method is its accuracy in calculating the steady-state. This

can be seen in figure 3.10, in which the steady-state kinetic energy for an

NSTX simulation is shown using the various time-stepping methods. The

steady-state solution obtained by the unsplit method is nearly independent

of δt, and for this method the time step is limited by stability, rather than

accuracy considerations when obtaining a steady-state. In contrast, the split

non-Caramana split method has a very large error in steady-state which con-

verges slowly with δt. The Caramana method is dramatically more accurate

than the non-Caramana split method, is more computationally efficient than

the unsplit method for an equivalent time step, and is found in many cases

to be significantly more stable than the unsplit method.

3.5 Extension to Three Dimensions

Originally developed only for axisymmetric geometry, M3D-C1 is in the pro-

cess of being extended to allow linear calculations in three dimensions [66],

and will eventually be extended to allow fully nonlinear calculations in three

dimensions. The extension to three-dimensional linear calculations is accom-
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plished by the following changes:

1. The curvilinear scalar form of the magnetic field given in equation (3.37a)

is appropriate only if the magnetic field is independent of ϕ. Therefore

a more general form is used:

B = ∇ψ ×∇ϕ+ (R2∇2f)∇ϕ−∇ (∂ϕf) . (3.48)

This form derives from the expression of the vector potential A =

R2∇ϕ×∇f + ψ∇ϕ.

2. The fluid velocity is represented in curvilinear coordinates as

u = R2∇U ×∇ϕ+ ωR2∇ϕ+
1

R2
∇⊥χ (3.49)

where ∇⊥ = ∇ − ϕ̂ϕ̂ · ∇. This form has properties advantageous for

calculating linear eigenmodes. In particular, in this form only χ is cou-

pled to the toroidal field when Bϕ ∝ R−1. In tokamak geometry, even

slight compression of the toroidal field is highly stabilizing. By sepa-

rating compressive flows from non-compressive flows, this form helps

avoid artificial stabilization of modes from truncation error in the finite

element representation of the flow leading to toroidal field compression.

3. The equations are linearized, and Fourier transformed in the ϕ di-

rection. The Fourier transform is done by simply letting scalar to be

complex and letting ∂ϕ → in. Only a single Fourier mode n is retained.

The three-dimensional linear stability capability is in the process of being

benchmarked with simulations of external kink modes. These benchmarks

have shown promising preliminary results. However, since none of the results

in the rest of this dissertation involve three-dimensional stability calculations,

these preliminary results will not be discussed in detail here.



Chapter 4

Weak Instabilities

Rosenbluth, Krall, and Rostoker (RKR) [13] showed using kinetic theory

that FLR effects can be stabilizing to “weakly unstable” modes—defined

as modes having a linear growth rate much smaller than the ion cyclotron

frequency—even when the normal mode wavelength is much larger than the

ion Larmor radius. It was later shown by Roberts and Taylor (RT) [67] that

this result could be obtained from fluid theory by retaining the gyroviscous

stress component of the ion pressure tensor; that is, the finite Larmor radius

correction to the MHD equations are contained in the gyroviscous stress.

The following sections contain linear fluid theory analysis of three in-

stabilities: the gravitational instability, which is the instability originally

considered by RKR and RT; the magnetorotational instability (MRI), which

may occur in astrophysical accretion disks; and the magnetothermal insta-

bility (MTI), which affects thermally stratified magnetized plasmas. Each

of these analyses is carried out using fluid theory, while retaining two-fluid

effects through the Hall term, and FLR effects though the gyroviscous stress.

The purpose of these analyses is to demonstrate the significant impact that

these effects can have on the stability of equilibria, even in the case of strong

magnetization. Indeed, the results of the MRI analysis contradicts the com-

mon belief that FLR effects are negligible in all accretion systems of physical

55
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interest.

The sections discussing the gravitational instability and the MRI essen-

tially repeat analyses previously published by Ferraro and Jardin [21] and

Ferraro [23], respectively. The analysis of the MTI has not previously been

published.

4.1 Gravitational Instability

Fluids having a density gradient opposite to the gravitational field are gen-

erally unstable. In neutral fluids, this is the well known Rayleigh-Taylor

instability. If the fluid is magnetized, the behavior of the fluid may differ sig-

nificantly from that of a neutral fluid. Rosenbluth, Krall and Rostoker [13]

were the first to calculate, by kinetic analysis, the stabilizing effect on this

instability of FLR effects. Roberts and Taylor [67] recovered RKR’s result

in the fluid formalism by including the gyroviscous stress.

RT’s simple fluid analysis showed that both gyroviscosity and the two-

fluid effects represented by the Hall term may independently stabilize the

gravitational instability. The gyroviscous stabilization is due to the fact that

gyroviscosity transports the z-directed momentum across the x-direction—

that is, finite Larmor orbits transfer some vertical momentum from upward-

flowing regions into downward-flowing regions, and vice-versa [13, 68]. The

stabilization due to the Hall term results from the electrons sweeping the

magnetic field perturbations out of phase with the fluid velocity perturba-

tions.

Both RKR and RT assumed that kz = 0 (where Ẑ is the direction of

the density gradient), and considered only the very low-β limit, where β =

8πp/B2, in order to justify the electrostatic assumption. Below is presented

a linear analysis of the gravitational instability which extends the RT result

to arbitrary β and kz 6= 0.
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4.1.1 Local Linear Analysis

Model

The effects of gyroviscosity and Hall currents in the gravitational instability

may be understood using a simple two fluid model:

∂n

∂t
+ ∇ · (nu) = 0 (4.1a)

mn

(

∂u

∂t
+ u · ∇u

)

=
J × B

c
−∇p−∇ · Π −mngẑ (4.1b)

∂B

∂t
= −c∇× E. (4.1c)

The current density is defined by equation (2.8g), as usual. The isothermal

limit (Γ = 1) will be considered here, so that the pressure is determined by

the equation of state p = nT , with T constant. In order to exclude two-fluid

effects arising from ∇pe for simplicity, it is assumed that p = pi. Only the

low-collisionality limit in which resistivity and perpendicular viscosity may

be neglected is considered here. Ohm’s law in this case is

E +
u × B

c
=

1

ne

J × B

c
. (4.2)

Formally the ion pressure tensor will be taken to be of the Braginskii form

Π = Π‖+Π∧ as defined in equations (3.4), though Π‖ does not affect the linear

dispersion relation for the gravitational mode in the equilibrium geometry

described below. The subsequent analysis will be carried out in a Cartesian

coordinate system (x, y, z) with axisymmetry assumed in the y direction.

Equilibrium

Schnack [69] pointed out that it is necessary for the equilibrium to be sup-

ported by a magnetic field gradient, and not a thermal pressure gradient,

in order to ensure that ∂p/∂n is positive definite. Therefore the following
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equilibrium is used:

n(z) = n0e
z/Ln (4.3a)

p(z) = Tn(z) (4.3b)

By(z) =
√

B2
y0 − 2(gLn + T )[n(z) − n0]. (4.3c)

Dispersion Relation

In the local limit, (kLn)
−1 ∼ δ ¿ 1, the eigenfunctions are plane waves of

the form exp[i(kxx+ kzz−ωt)] to lowest order in δ. The gravitational mode

can be isolated by choosing the frequency to be on the order of the ideal

growth rate, ω ∼
√

g/Ln ∼ δ. Furthermore, the viscous closure considered

here is only valid in the magnetized limit, and so only the ordering kρi . δ

is considered here. Given these orderings, to lowest order in δ the dispersion

relation is found to be:

0 = (1 + C)W 2 (4.4)

− [2F (1 +G+ C)(1 + C) + 2FG+H]W

+ (1 +G+ C)

where

W =
kω

kx
√

g/Ln
(4.5a)

H =
k
√
gLn
ωci

(4.5b)

F =
ρ2
iωcik

2
√
gLn

(4.5c)

C = c2s/v
2
A (4.5d)

G = gLn/v
2
A (4.5e)
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Figure 4.1: Contour plots of the value of F at which the gravitational mode
is stabilized, versus the two other independent parameters in the dispersion
relation, equation (4.4). Left : the result of the full model; right : the result
with gyroviscosity omitted.

and where k = |k|, c2s = T/mi, and v2
A = B2

y0/4πn0mi. Note that the

definition of H here is the inverse of that in ref. [21]. RT’s dispersion relation,

0 = W 2 + (2F +H)W + 1, (4.6)

is recovered from equation (4.4) in the limit where β ¿ 1 and G ¿ 1.

(RT’s original definition of F is half of that defined by equation (4.5c). This

discrepancy has previously been attributed to the fact that equation (4.4)

was derived under the assumption that p = pi [21]. However, repeating

this derivation without invoking that assumption does not resolve the dis-

crepancy. In fact, it appears that RT’s expression for the gyroviscous force

includes an erroneous factor of 1/2, as their expression for this force differs

both from that of Thompson [70], which RT cite as the source for their ex-

pression, and Braginskii [27]. For proper comparison with the results here,

equation (4.5c) is used to define F in their dispersion relation. Also, strictly,

RT’s result is equation (4.6) evaluated at k = kx.)

Aside from the normalized frequency W , equation (4.4) contains only

three independent dimensionless parameters, chosen in the following analysis
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to be F , H, and C. In both equations (4.4) and (4.6), the terms containing

F are due to gyroviscosity, and those containing H are due to the Hall effect.

Note that G is not independent of F , H, and C, since G = CH/2F . The

value of F at which the gravitational mode is stabilized may be calculated

as a function only of H and β = 2C by eliminating G in favor of F , H,

and β. (This is not done in equation (4.4) so as not to imply that terms

otherwise containing G are due to the Hall effect or the gyroviscous force.)

Contours of these cutoff values are shown in figure 4.1, both for the full

dispersion relation (equation (4.4)), and for the case where gyroviscosity is

omitted (F → 0 in equation (4.4)). From that figure, it can be seen that

the Hall term is responsible for stabilizing modes having both β ¿ 1 and

H & 2, but does not stabilize modes outside this region of parameter space.

FLR effects independently stabilize all modes at F = 1, and are especially

stabilizing at high β. Note that the gravitational mode can be stabilized by

gyroviscosity even when FH = k2ρ2
i /2 ¿ 1. This is possible because of the

relatively slow growth rate of the gravitational instability [13].

It is important to realize that it is not the case that, in these diagrams,

neglecting the the gyroviscous stress is equivalent to letting F = 0, nor is

it the case that neglecting the Hall effect is equivalent to letting H = 0. In

equation (4.4), terms due entirely to gyroviscosity or the Hall effect are ex-

plicitly proportional to F or H, respectively, only because other occurrences

of these factors have been suppressed by the introduction of the dependent

variable G there.

4.1.2 Numerical Simulation

Linear Simulation results

Linear simulations of the gravitational instability have been run using M3D-

C1. The simulation domain has dimensions Lx×Lz, with periodic boundaries

at x = ±Lx/2 and conducting, no-normal-flow boundaries at z = ±Lz/2.
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Figure 4.2: The linear growth rate of the gravitational instability as a func-
tion of β, as calculated from equation (4.4) (solid line), from RT’s dispersion
relation (dotted line), and as calculated from numerical simulations using
M3D-C1(diamonds).

The dimensions are chosen to exclude wavenumbers smaller than kx = 2π/Lx

(smaller wavenumbers are more unstable). Dissipative terms can strongly

affect the growth rate, but in these linear cases M3D-C1 is able to run stably

with η = µ = 0. The density gradient scale length is taken to be large

(Ln À Lz) to keep the equilibrium fields approximately constant over the

entire box.

The initial conditions are seeded with a small (∼ 10−6n0) perturbation

to the density density equilibrium with kx = 2π/Lx and kz = π/Lz. The

simulation is allowed to proceed until the growth rate of the density and

stream function perturbations equalize and become independent of time. The

growth rate is measured by

γ =
1

2

∂

∂t
ln

[∫ Lx

0

dxA2(x, z = 0, t)

]

(4.7)

where A is the density or the stream function. The data points in the figures

actually represent the average of the density and stream function growth

rates, and the discrepancy between the two values is illustrated by the error
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Figure 4.3: The density profile in the nonlinear phase of the gravitational
instability. Left :Gyroviscosity is omitted; right : gyroviscosity is included.

bars (this discrepancy is generally smaller than the data point symbol itself).

Two distinct cases are presented here: a low-β case to which RT’s result

is applicable, and a high-β case in which the effects of compressibility and

electromagnetism are important. Specifically, for the low-β case, Lx = 2π/10,

Lz = 1, Ln = 100, g = 0.005, and By0 = 100. For the high-β case, Lx =

2π/0.05, Lz = π/0.01, Ln = 105, g = 0.0005, and By0 = 1. Here length

scales are normalized to di and time scales to ωci. As expected, RT’s result

is fairly accurate only for the low-β case (the discrepancy is due to the fact

that kz = 0 in Roberts and Taylor’s analysis). In both cases the simulation

results are quite close to the exact solution to equation (4.4).

Nonlinear Simulation Results

Some simulations of the gravitational instability have been run far into the

nonlinear regime. The parameters for these simulations are By0 = 20, Ln =

100, g = 0.05, p0 = 0.5, η = 10−3, µ = 10−5, κ = 10−5, and δt = 800. The

simulations are started with a density perturbation (ε = 10−3), and allowed

to proceed until the density gradient is essentially quenched.

Images of the density profile at a time far into the nonlinear evolution
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of the instability are shown in figure 4.3. In the figure, the inclusion of

gyroviscosity can be seen to cause the density perturbation to advect in the x-

direction. This is due to the gyroviscous cancellation effect (see section 2.2.2).

The shear in this advection velocity is due to the fact that the magnetization

velocity v∗ is not constant over the simulation domain.

4.2 Magnetorotational Instability

In astrophysical accretion disks, gravitationally bound matter orbits, and

may eventually fall into, a central massive object. In order for orbiting matter

to move inward toward the central object, it must lose angular momentum.

The rate of this inward transport of matter (and hence outward transport

of angular momentum) is observed to be much larger than can be accounted

for by classical viscosity, assuming the flow of the rotating matter is laminar.

It is presumed that some process causes this rotation to be turbulent, and

that this turbulence is responsible for the increased viscosity leading to large

rates of angular momentum transport.

A leading candidate for the catalyst of this turbulence is the magnetoro-

tational instability (MRI) [71]. This instability may be present in ionized,

rotating disks having sheared azimuthal flow (such as is the case for a Kep-

lerian rotation profile) and a weak magnetic field. In most physical scenarios

the MRI is weakly unstable in the sense of Rosenbluth et al., and therefore

may be expected to be affected by FLR effects, even though typical wave-

lengths of this instability in astrophysical scenarios may be vastly larger than

the ion Larmor radius. In this section the the effect of non-ideal processes

on the MRI in the linear regime is explored, and it is shown that indeed the

MRI may be stabilized by gyroviscous effects at scales much larger than the

ion Larmor radius. In some cases this stabilization substantially constrains

the spectrum of linearly unstable modes.

The effect of the Hall term, which accounts for differences between the
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electron and ion fluid velocities, has been examined previously by several

authors [72, 73, 74, 75]. In particular, it was found that the Hall effect may

be either stabilizing or destabilizing, depending on whether the equilibrium

magnetic field is aligned or anti-aligned to the equilibrium angular velocity. It

was also found that the Hall effect is important only when the ion cyclotron

frequency is comparable to, or smaller than, the orbital frequency. This

situation may occur in early galaxy formation where the magnetic fields

are still weak, or in weakly ionized protostellar disks. Krolik and Zweibel

[75] have suggested that, in this limit, short-wavelength modes are likely

suppressed by viscous or resistive damping, leaving only slowly growing, long-

wavelength modes as the magnetic field get sufficiently weak. However, their

analysis is restricted to low-βi plasmas as they do not consider FLR effects,

which are shown to be much more important than the Hall effect in the

weak-field limit. The strong FLR stabilization of the MRI in the weak-field

limit may have important implications for the possible role of the MRI in

the amplification of weak, primordial magnetic fields.

The MRI in the collisionless regime, where the collisional mean free path is

greater than the mode wavelength, has been explored by Quataert, Dorland,

and Hammett [42], and Sharma, Hammett, and Quataert [43] using kinetic

closures. Islam and Balbus [44, 76] have extended the single-fluid MHD

treatment to lower collisionality regimes by including the Braginskii form of

the parallel viscosity, and have obtained results similar to those obtained

using kinetic closure. These various analyses have found the linear growth

rate to be enhanced by a factor of order unity at lower collisionality when an

azimuthal component of the magnetic field is present, but the criterion for

instability was found not to differ from the MHD result. The parallel viscous

stress is included for completeness in the following analysis, as formally it

may be larger than the gyroviscous stress. However, for the sake of simplicity

the MRI mode wavevector and magnetic field are restricted to be normal to

the accretion disk, in which case the parallel viscosity has no effect on the
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linear growth of the MRI. This case is the most unstable one in the collisional

limit, which is the limit considered here.

4.2.1 Local Linear Analysis

Model

The effect of parallel viscosity, gyroviscosity, and the Hall term may be de-

termined by examining a simplification of equations (2.8). Specifically, the

following model is used:

∂n

∂t
+ ∇ · (nu) = 0 (4.8a)

nm

(

∂u

∂t
+ u · ∇u

)

=
J × B

c
−∇p−∇ · Π − ng(R)R̂ (4.8b)

∂B

∂t
= −c∇× E. (4.8c)

dpα = ΓTαdn (4.8d)

E +
u × B

c
=

1

ne

(

J × B

c
−∇pe

)

(4.8e)

where collisional forces (R) have been neglected, and the pressure is assumed

to obey a simple equation of state (Γ = 5/3 represents the adiabatic equation

of state; Γ = 1 represents the isothermal equation of state). The electron

pressure tensor has also been neglected, which is valid to lowest order in

me/mi. The ion pressure tensor is assumed to take the Braginskii form, with

Π = Π‖ + Π∧ as defined in equations (2.23) and (2.11). Again, Π∧ is the

gyroviscous force, which represents the lowest-order FLR correction to the

fluid equations. The perpendicular viscosity is smaller than the gyroviscosity

by a factor of ωci/νi, and may therefore be neglected in the low-collisionality

limit where νi ¿ ωci. Together with the short mean-free-path condition

(k‖vti ¿ νi) necessary to justify the use of the Braginskii form of Π, this

restricts the validity of these results to the parameter regime where k‖vti ¿
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νi ¿ ωci. In the case of an accretion disk where k‖ & 1/d is limited by the

disk height d ∼ vti/Ω, where Ω is the angular frequency of the disk, this

validity condition becomes Ω ¿ νi ¿ ωci.

Equilibrium

Curvilinear coordinates (R,ϕ, Z) are used, with the assumption of axisym-

metry in ϕ. For simplicity, it is assumed that the equilibrium magnetic field is

perpendicular to the disk, B0 = B0Ẑ, and that the equilibrium fluid velocity

is purely toroidal, u0 = RΩ(R)ϕ̂. Without loss of generality, the coordinate

system is oriented so that Ω(R) > 0 at the radius of interest. In this case,

radial force balance is satisfied when

g(R) = RΩ2(R) +
ρ2
iωci
2R2

∂

∂R

[

R3Ω′(R)
]

. (4.9)

Equilibrium structure in the Z-direction is neglected. In the following deriva-

tion, equation (4.9) is used to eliminate g(R) in favor of Ω(R) (hereafter the

explicit dependence of Ω on R will be dropped).

Dispersion Relation

Consider linear perturbations about this equilibrium having scale lengths 1/k

much smaller than the equilibrium flow gradient scale length L = Ω/Ω′, so

that δ = 1/|kL| ¿ 1. In this limit, the normal modes of the system are

plane waves to lowest order in δ. This analysis is restricted to perturbations

∝ ei(kz−ωt) (i.e. k = kẐ) for simplicity, as this is the most unstable case in

both the MHD and collisionless limits [42]. Carrying out the linearization of

equations (4.8) yields the following dispersion relation, to lowest order in δ:

0 = (W 2 +W
8iη0i

3

ωci
νi
A− C) × (4.10)

×
{

W 4 −W 2 [2(2 +R +K) − 2A(4 +R− 2A) +H(R +H)] +

+ [K − A(R + 2H) + 2(R +H)] [K − A(R + 2H) +H(2 +R)]}
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where the following dimensionless quantities are defined:

W = ω/Ω (4.11a)

K = (vAk/Ω)2 (4.11b)

A =
1

2
k2ρ2

i (ωci/Ω) (4.11c)

H = K(Ω/ωci) (4.11d)

C = (csk/Ω)2 (4.11e)

R = rΩ′/Ω. (4.11f)

and characteristic velocities v2
A = B2

0/4πn0mi and c2s = ΓT/mi. The dimen-

sionless parameter A measures the importance of the gyroviscous force, and

setting A = 0 is equivalent to omitting Π∧ in the ion momentum equation.

Similarly, H measures the importance of the Hall term in Ohm’s law, and

K measures the importance of magnetic tension. R is the ratio of the radial

coordinate to the equilibrium flow gradient scale length, and is taken to be

∼ O(1). For a Keplerian disk, R = −3/2. In order to quantify the impor-

tance of the gyroviscous force with a dimensionless variable independent of

the wavenumber, the quantity

F =
A

K
=
βi
4

Ω

ωci
,

is defined, where βi = 8πpi0/B
2
0 is the ratio of ion thermal pressure to mag-

netic pressure.

Equation (4.10) contains two uncoupled modes. The first factor contains

the compressive acoustic mode, which is damped by the parallel viscosity,

and is not of interest here. The second factor, enclosed in braces, contains

the incompressible MRI mode. In the limit where A → 0 (no FLR effects),

and H → 0 (no Hall effect), the ideal dispersion relation is recovered [77].

Note that the parallel viscosity (∝ η0i) affects only the acoustic mode and

not the MRI. Evidently, there is no O(Ω/νi) correction to the MHD result
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Figure 4.4: The linear growth rate of the MRI in the limits F → 0 (left) and
H → 0 (right).

for the MRI when B0 = B0Ẑ, which is in agreement with previous findings

[43, 44]. In the collisional case, the B0 = B0Ẑ case is the most unstable

and is therefore the one of interest here. Extending this analysis to a more

general magnetic field configuration substantially complicates the analysis.

It should also be noted that ωci is a signed quantity since it is proportional

to B0, which may be positive or negative. Since the coordinate system has

been chosen so that Ω is positive, sign ωci = sign B · Ω = sign F . It has

been shown previously that the effect of the Hall term on the MRI depends

strongly on the sign of ωci [72]. The effect of the gyroviscous force has a

similarly strong dependence.

The growth rate γ = Im ω of the unstable solution to equation (4.10)

is plotted in figure 4.4 for a Keplerian rotation profile (R = −3/2). Note

that the abscissa should be read as a normalized wavenumber and not a

normalized magnetic field strength, because F and Ω/ωci are dependent on

B. When ωci > 0, and hence F > 0 also, both the FLR and the Hall effects

can be seen to move the most unstable mode to lower wavenumbers, and

to reduce the value of K at which the MRI is completely stabilized. Also,
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FLR effects increase the growth rate of the most unstable mode. When

ωci < 0, and hence F < 0, both effects are seen instead to increase the

cutoff value of K all the way to the point where modes of any wavelength

are unstable. When F or Ω/ωci becomes sufficiently negative (F < −2/3

when Ω/ωci → 0, or Ω/ωci < −2 when F → 0), all values of k are suddenly

completely stabilized. (It has been shown that this stabilization is less sudden

when finite resistivity is included [73].)

Instability Criterion

Applying the Routh-Hurwitz theorem to equation (4.10), it is found that the

condition for stability of an MRI mode is that the following inequalities are

satisfied:

0 < 2(2 +R +K) − 2A(4 +R− 2A) +H(R +H)

0 < [K − A(R + 2H) + 2(R +H)] [K − A(R + 2H) +H(2 +R)]

This criterion is highly complicated, and for general values of A and H, there

may be multiple stable and unstable regions of in K-space.

In the ideal limit, when A→ 0 and H → 0, the ideal instability criterion,

K < −2R, is recovered [77]. This limit is well understood, and in this case

stabilization at high-K is due to the effect of magnetic tension. In this limit,

instability does not exist in flows in which the angular velocity increases with

radius (R > 0).

The limit A→ 0, in which case the Hall effect is dominant over the FLR

effects, has also been considered before [72]. Since A/H = F/(Ω/ωci) = βi/4,

this limit describes accretion disks having βi ¿ 1. Formally, the instability

criterion in this case remains somewhat complicated because the signs and

relative magnitudes of most of the terms are undetermined in general. The
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criterion for instability

K

[(

1 + 2
Ω

ωci

)(

1 +
Ω

ωci
(2 +R)

)]

< −2R

[

1 +
Ω

ωci
(2 +R)

]

(4.13)

has been derived from an analysis of the physical forces involved by Balbus

and Terquem [73]. There is some discussion of this criterion in the articles by

[72] and [73], as well as insight into its physical meaning. This discussion will

not be repeated here, except to mention a few interesting points. The first is

that there may exist some values of Ω/ωci for which modes of any wavelength

are unstable (this is true in the Keplerian case for −2 < Ω/ωci < −1/2).

Also, some unstable modes may be present in disks in which angular velocity

increases with radius (R > 0), in contrast to the ideal result [73].

Of more physical interest in the opposite limit, βi À 1, in which FLR

effects are dominant over the Hall effect. Taking H → 0, the dispersion

relation for the MRI reduces to

0 = W 4 − 2 [2 +R +K − A(4 +R− 2A)]W 2 + [K − AR + 2R] [K − AR]

(4.14)

and the criterion for instability is found to be

K < − 2R

1 − FR
. (4.15)

For the usual case where R < 0, all modes are completely stabilized if F <

−1/|R|. For the case where R > 0, unstable modes may exist when F > 1/R.

In the limit where the gyroviscous force dominates the force of magnetic

tension, F À 1, the instability criterion becomes simply

A < 2 (4.16)

or, equivalently, (kρi)
2 < 4Ω/ωci. Note that this condition closely agrees

with RKR’s hypothesis that instabilities are stabilized by FLR effects when
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(kρi)
2 & γH/ωci, where γH is the ideal growth rate of the instability.

An important point is that the FLR effects are dominant in the weak-field

limit. Of course, FLR effects are dominant over magnetic tension in this limit,

which can be seen by noting that A/K = F ∝ B−3. FLR effects also are

dominant over the Hall effect, since A/H = βi/4 ∝ B−2; therefore previous

analyses of the MRI in the weak-field limit (in the sense that Ω/ωci & 1)

which did not consider FLR effects are valid only for βi ¿ 1. Looking at

equation (4.16), which is the proper instability criterion for the weak-field

limit, one can see that the MRI is cut off at sufficiently weak fields, because

A ∝ B−1. This is the proper resolution to the inconsistency of the ideal

MHD result that the MRI remains unstable as B → 0 in the non-dissipative

case. Because the MRI is not present at arbitrarily low magnetic fields, its

role in the amplification of primordial magnetic fields is severely restricted.

In the FLR-dominated case, MRI modes are stabilized when (kρi)
2 >

4(Ω/ωci), where Ω/ωci is typically small in astrophysical accretion disks. The

importance of this stabilization may increased by the fact that, in an accre-

tion disk, the lower bound on k is set by the width of the disk d, which

may be much smaller than the equilibrium flow gradient scale length L. Al-

though a proper understanding of this phenomenon must take into account

the z-stratification of the disk equilibrium, one may estimate that the small-

est wavenumber present in the disk to be ∼ π/d. The criterion for complete

stabilization by FLR effects of all MRI modes within an accretion disk at

some distance from the central mass is

π2(ρi/d)
2 & 4Ω/ωci. (4.17)

In the typical case where d ∼ vt/Ω this inequality reduces to ωci/Ω . π2/4.

While this is not typically satisfied in astrophysical accretion disks, it may

be satisfied in nascent galaxies with weak magnetic fields, or weakly ionized

protostellar disks [75].
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4.3 Magnetothermal Instability

Balbus [78] showed that a thermally stratified, magnetized plasma in a grav-

itational field, such that g · ∇T > 0, and such that the magnetic field is

transverse to the temperature gradient, may be unstable. This magnetother-

mal instability (MTI) depends on the presence of a weak magnetic field per-

pendicular to the thermal gradient, and anisotropic thermal conduction that

is much greater along the magnetic field than perpendicular to it, as is typ-

ical for a magnetized plasma [27]. The MTI is significant because it may

be present even when the Schwarzschild condition for convective stability,

g · ∇S < 0, where S is the entropy density of the plasma, is satisfied.

4.3.1 Local Linear Analysis

Equilibrium

Consider an equilibrium having a constant horizontal field and a pressure

and density varying in the vertical direction in a Cartesian coordinate system

(x, y, z):

B = Bx̂

n = n(z)

p = p(z)

where p′ = −ng to satisfy hydrostatic equilibrium.

The Brunt-Väisälä frequency of the equilibrium, N , is defined by

N2 = − 1

Γ

∂p

∂z

∂ lnS

∂z
,

where the entropy density is S = pn−Γ. For a neutral fluid, the condition for

stability is that N is real and positive (i.e. entropy increases with height);

however, a magnetized plasma in such an equilibrium will have a different
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stability criterion due to the MTI.

Model

This analysis is carried out in the low-collisionality regime where η, and

perpendicular viscosity may be neglected, though within the short mean-

free-path limit. The only component of the pressure tensor which affects the

linear stability of this equilibrium is the gyroviscosity. For simplicity, the

assumption that pe is a constant fraction of p everywhere is made. Therefore

the following model is used consists of equations (2.8a)–(2.8c), (2.8f), (2.8g),

and (2.8e), with

F = −gẑ (4.19a)

q = −κ◦∇T − κ‖bb · ∇T (4.19b)

R = 0 (4.19c)

Πe = 0. (4.19d)

The ion pressure tensor is assumed to take the Braginskii form, with

Π = Π‖ + Π∧ (4.20)

as defined in equations (3.4).

Linear Dispersion Relation

Consider modes having wavelengths much shorter than equilibrium gradient

scale lengths, kL ∼ δ ¿ 1, where L = p/p′; and with plane-wave eigenfunc-

tions of the form exp (γt+ ikx). The dispersion relation is found to be, to

lowest order in δ,

0 = W 3 +XW 2 + (1 + Z)W −X(Y − Z) (4.21)
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where the following dimensionless quantities have been defined:

W = γ/N (4.22a)

X =
Γ − 1

Γ

k2(κ‖ + κ◦)

Nn
(4.22b)

Y = −Γ
∂ lnT

∂ lnS

κ‖
κ‖ + κ◦

(4.22c)

Z = k2v2
A/N

2 + (kρi)
4(ωci/N)2. (4.22d)

The condition for hydrostatic equilibrium, p′ = −ng, is has been used to elim-

inate g. In contrast to the derivation of this dispersion relation differs from

that of Balbus [78], it is necessary to retain the component of the momen-

tum equation in the direction of axisymmetry (y) because of the coupling

between the various flow components introduced by the gyroviscous force.

Letting ρi → 0, equation (4.21) reduces to the dispersion relation given by

Balbus [78].

It can readily be seen from equation (4.21) that there are no growing

solutions (Re W > 0) when

Z ≥ Y, (4.23)

and therefore such modes are stable. The first term of Z in equation (4.22d)

represents the effect of magnetic tension, and the second term represents

the FLR (i.e. gyroviscous) effect. Both terms are positive definite, and are

therefore always stabilizing. Comparing the two terms reveals that the FLR

effects dominate the magnetic tension force when (kρi)
2 & 1/β. In the limit

where the magnetic tension force dominates the stability criterion given by

Balbus [78] is recovered. In the opposite limit, in which the FLR effects are

dominant, the condition for stability reduces to

kρi & 1/(kL). (4.24)

Thus, for normal modes where kLÀ 1 (i.e. for modes where equation (4.21)
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Figure 4.5: The solution to equation (4.21) is plotted versus normalized
equilibrium magnetic field strength, both including (solid line) and omitting
(dotted line) the FLR contribution. The growth rate is normalized to the
ion cyclotron frequency associated with B0. The data points are results from
two-dimensional linear simulations.

is valid), the stabilization due to FLR effects occurs at scales much larger than

the ion Larmor radius. Specifically, the equilibrium is stable to perturbations

having wavelengths smaller than ∼ √
ρiL.

4.3.2 Numerical Simulation

Linear simulations with M3D-C1 of the MTI using an axisymmetric, extended-

MHD code which includes anisotropic heat flux and the full Braginskii form

of the gyroviscous stress tensor are presented here. The equilibrium is that

considered by Parrish and Stone [79]:

n(z) = n0(1 − z/Ln)
2 (4.25a)

p(z) = p0(1 − z/Ln)
3. (4.25b)

Physical parameters have been chosen such that the dimensionless parame-

ters X = 800π
√

5/3 and Y = 5. B/B0 is varied from ≈ 10−5–3×10−4, where

B0 is an arbitrary field strength, which leads to values of Z in a range ≈ 0.7–
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16. Note that Z < 5 (unstable) in the range 1.8×10−5 . B/B0 . 2.8×10−5,

and Z > 5 (stable) elsewhere. The simulations were run both with and with-

out gyroviscosity, to highlight the difference at low values of B/B0. Linear

growth rates are determined from the simulation results by measuring the

exponential growth time of the perturbation amplitudes. The results of these

simulations are plotted in figure 4.5 against the solution to equation (4.21),

with which they are in excellent agreement.



Chapter 5

Axisymmetric Toroidal

Steady-States

As mentioned in chapter 1, an understanding of the steady-states of fusion

plasmas, and how to affect that state, is of great importance for designing a

fusion reactor. By steady-state is meant the asymptotic statistical behavior of

the plasma at infinite time, which may be static (no flow), stationary (a fixed

point in parameter space), oscillatory (as with a limit cycle) or turbulent.

Ideally one would like to have a predictive capability of what the steady-state

of a plasma should be given the external magnetic fields and driving forces

in which all quantities are self-consistently determined.

Typically, magnetic equilibria are calculated with pressure and current

profiles assumed known a priori. Assuming that inertial forces are small,

the requirement of force balance is approximately given by ∇p = J × B. In

an axisymmetric configuration, this leads to the well-known Grad-Shafranov

(GS) equation,

∆∗ψ = −R2p′ − II ′, (5.1)

and the condition that p and I are free functions which are constant on

magnetic surfaces. (Here primes represent derivatives with respect to ψ.)

By specifying the boundary conditions on ψ and the profiles of p and I

77
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(by fitting to experimental data, for example), equation (5.1) determines

the magnetic configuration. Numerical methods for the solution of equa-

tion (5.1) are well developed and a number of numerical codes exist for its

efficient solution [80, 81, 82]. Aside from the fact that there are infinitely

many solutions to equation 5.1 when p and I are not both specified, this

method gives an incomplete picture of the steady-state, as it only enforces

the satisfaction of steady-state force balance. The issues of resistivity, flows,

and thermodynamic fluxes are ignored.

It is known that a static toroidal equilibrium is unstable to rotation [83],

and therefore flows will be present in the steady-state. While the magne-

tostatic equilibrium of magnetically confined fusion plasmas are relatively

insensitive to the flows, the stability and transport properties of the plasma

may be strongly affected by them [84, 85, 86]. More recently, it has been

found that strong flows at the plasma edge are stabilizing to resistive wall

modes [87, 88] and are correlated with the important L-H transition in toka-

maks [89]. Also, it is thought that flow shear may significantly reduce trans-

port due to turbulence by suppressing eddy formation [4, 5]. Therefore it

is desirable to develop a method for obtaining steady-states with flow self-

consistently included. Here the focus is on obtaining axisymmetric steady-

states of a two-fluid plasma model with flow, which may then be used as the

basis for three-dimensional stability calculations.

Early steps toward addressing the issue of stationary axisymmetric toroi-

dal equilibria with self-consistent flows were taken by Greene et al [90], who

obtained equations governing the equilibrium including flows to first order in

the inverse aspect ratio using a resistive single-fluid model. These results do

not uniquely determine the flows, however; the equilibrium density profile,

electrostatic potential, and parallel velocity are left arbitrary. Zehrfeld and

Green [91] obtained reduced sets of equations determining ideal MHD equi-

libria including flow for arbitrary β and magnetic configurations. Hazeltine

sought to determine uniquely the electrostatic potential through kinetic the-
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ory [92]. Hazeltine’s work has been revisited recently by others [93, 94, 95]

using drift-ordered fluid theory, including viscosity. The problem of equilibria

with flows can also be recast as a problem of minimization of the plasma en-

ergy subject to the constraints of invariants like helicity [96, 97] and boundary

conditions, which can be shown to yield unique solutions in some cases.

One approach to the numerical calculation of steady-states with flow is

the extension of the Grad-Shafranov (GS) method of casting the steady-

state ideal MHD equations in terms of free functions of the poloidal flux.

This yields the Grad-Shafranov-Bernoulli equations, which are elliptic in the

absence of supersonic flows. As with the GS method, the free functions must

then be fit to experimental data to obtain a unique equilibrium. This method

is complicated by the fact that density is not constant on a magnetic surface

in the presence of flows, and the free functions may be complicated combi-

nations of physical variables, and not necessarily continuous. Attempts have

been made to include two-fluid effects by assuming that the perturbations

introduced by such effects are small [98, 99]. None of these methods include

resistive or viscous effects, or sources.

The numerical codes CLIO [100], FINESSE [101], and FLOW [102] have

been developed to obtain the stationary equilibria of ideal MHD with flow.

Because dissipationless models do not have a unique solution [96], the solu-

tions obtained by these methods requires the a priori specification of various

thermodynamic profiles. Therefore it is more accurate to say that these codes

“reconstruct” rather than “predict” the stationary states. Note also that be-

cause these methods solve the time-independent equations, non-stationary

steady-states cannot be recovered. CLIO and FLOW have been able to

reconstruct such stationary states for JET and NSTX-geometry plasmas,

respectively [100, 103].

A more physically motivated method is to evolve numerically the dynam-

ical equations from some initial condition until a steady-state is reached.

This method had several advantages over solving directly for the equilib-
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rium, as with the Grad-Shafranov-Bernoulli method. First, this method

readily admits the inclusion of dissipative and other more complicated terms

relatively easily and generally without any algorithmic changes. Second, the

same method may be used to observe and investigate the dynamics of the

plasma evolution and oscillations in the steady-state. The disadvantages of

this method are the relatively large amount of processing time that must be

spent to arrive at a steady-state when multiple time-scales are present, and

the difficulty of calculating steady-states with very small values of resistiv-

ity and viscosity. This approach was taken by Aydemir, who has recently

obtained quasi-steady-states of a visco-resistive single-fluid model in low-β

plasmas using the numerical code CTD [18, 12].

This general approach is used here, with a significantly more comprehen-

sive physical model than has been used previously for this purpose, including

two-fluid effects, gyroviscosity, parallel viscosity, and realistic β. Further-

more, the numerical methods employed in M3D-C1 allow large enough time

steps that steady-states are truly steady on all timescales present in the sys-

tem, throughout the entire simulation domain. This has not previously been

accomplished.

Specifically, the following method for obtaining steady-states is used. The

initial conditions for the magnetic field are determined using an ideal-MHD

equilibrium with boundary conditions determined by currents in external

magnetic coils (outside the simulation domain) appropriate to NSTX, and

a specified toroidal current within the simulation domain. The method for

obtaining this solution is described in detail in reference [51]. This initial

condition satisfies equation (5.1), and is not, in general, a steady-state solu-

tion of the two-fluid equations. The system is then time-advanced according

to the full two-fluid equations. In order to counteract the resistive dissipa-

tion of current, a loop voltage VL is applied by ramping the value of the

poloidal flux ψ on the boundary at a rate ψ̇ = VL/2π. The loop voltage is

regulated by a proportional-integral-derivative (PID) controller to keep the
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Figure 5.1: The normalized resistivity in the initial conditions (left) and in
the final steady-state (right) is shown. In both cases, η ranges from roughly
0.1 at the edge to .004 at the magnetic axis.

toroidal current at a fixed value. This loop voltage also serves to counteract

the diffusion of thermal energy out of the domain by causing ohmic (Joule)

heating. The thermal conductivity is chosen so that the temperature attains

a realistic value in steady-state. Particle loss due to diffusive flux out of

the domain is counteracted by a localized particle density source σ near the

magnetic axis.

The system of equations considered here are a driven, nonlinear sys-

tem, and therefore may not have a stationary steady-state, or even a unique

steady-state. However, for the cases presented below, which are carried out

with relatively large values of dissipation, the system is typically found to re-

lax to a steady-state within 5−10 resistive periods (η−1). These steady-states

are statistically stationary on all timescales present in the model: hydrody-

namic, diffusive, and resistive.
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Figure 5.2: The fractional error in steady-state kinetic energy is plotted
versus the ratio of the isotropic to parallel heat conduction. The error is
calculated relative to the solution for the case where κ‖/κ◦ = 4 × 104.

5.1 Simulation Parameters

The simulations presented in this chapter have a diverted magnetic field con-

figuration, with geometry, plasma current, temperature, and density profiles

typical of NSTX. Resistivity was taken to have the standard collisional form

η = η0/T
3/2
e , with results here obtained with η0 in the range 10−4–10−6. The

other transport parameters, κ◦, κ‖, Dn, µ, and µc, were taken to be con-

stant and uniform. Unless otherwise specified, κ◦ = 200η0, κ‖/κ◦ = 104,

Dn = 10−4, µ = 10−4, µc = 10−3, and µ‖ = 0. (κ is scaled with resistivity in

order to achieve temperature profiles roughly independent of η0.) For two-

fluid simulations, the ion skin depth was a realistic value of di = 5.1 × 10−2.

One-fluid simulations were done by letting di = 0. Since the gyroviscous force

scales with di, it is not included in one-fluid simulations. The total plasma

current is kept at a (normalized) value of 3.14 by a PID controller. Using the

normalization values for NSTX given in appendix A, this is approximately

750 kA.

The heat conduction anisotropy is limited by nonlinear numerical stability

considerations. It is found that in NSTX simulations the maximum stable
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time step begins to be reduced when κ‖/κ◦ & 104. (Simulations of ITER

configurations and other higher-aspect ratio geometries allow anisotropies of

κ‖/κ◦ & 106 without placing onerous restrictions on the time step; this may

be to be due to the increased distance between the LCFS and the simulation

domain boundary in those cases.) In the simulations presented here, where

the perpendicular heat conduction is much greater than the Braginskii value,

the solution does not depend strongly on the value of the heat conduction

anisotropy above ∼ 104 (see figure 5.2). If the Braginskii values of the thermal

conductivities were used, the solution might not be so insensitive, since the

perpendicular heat transport would be due primarily to the component of q∧

proportional to the parallel thermal gradient [104]. In the simulations here,

where κ◦ is anomalously large, the contribution of q∧ is negligible and κ∧ is

assumed to be zero.

Diffusive particle loss through the boundary is compensated by a localized

density source σ, which takes the form

σ =
νn

2πR`n
exp

[

−(R−Rn)
2 + (Z − Zn)

2

2`2n

]

(5.2)

with the injection rate νn = 6 × 10−4 and `n = 0.1. The density injection is

centered on the high-field side (HFS) of the magnetic axis (R0 ≈ 0.9) with

(Rn, Zn) = (0.6, 0), unless otherwise specified.

5.1.1 Boundary Conditions

M3D-C1 allows a wide range of boundary conditions to be applied. Let n̂

be a vector normal to the simulation domain boundary, and t̂ = n̂ × ϕ̂. For

the simulation results presented here, the following boundary conditions were

used:

1. No-normal-flow: n̂ · u = 0;

2. No-slip: ϕ̂ · u = t̂ · u = 0;
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3. No-current: n̂ · J = t̂ · J = ∇ϕ · J = 0;

4. Constant-density and temperature ∂tn = ∂tT = 0.

5. Conducting boundaries with toroidal loop voltage: ∂tI = 0, ∂tψ =

VL/2π.

The no-normal-flow boundary ensures that particles are lost (or gained)

through the domain boundary only through diffusion. This condition is per-

haps not realistic; edge modeling codes such as UEDGE [105] typically em-

ploy a sheath boundary condition to model the loss of particles to the divertor

plates [47]. No-normal-flow boundary conditions may yield a reasonable ap-

proximation to the particle density dynamics assuming that particles lost to

the divertor are quickly recycled and re-ionized close to the point at which

they are lost. However, because in reality recycled particles are recycled at a

much lower temperature than that at which they at lost, the no-normal-flow

boundary conditions cause the thermal flux to the divertor to be underesti-

mated.

The no-slip boundary condition is used because it is found to improve

numerical stability, though the results are qualitatively the same if this con-

dition is omitted. The boundary condition on the current density is also

found to have little effect. It is essential that the temperature be held con-

stant at the boundary in the absence of thermal sinks within the domain;

otherwise the system tends toward thermal equilibrium (i.e. spatially uni-

form temperature). Keeping density constant is useful for numerical stability

and perhaps more realistic than a no-flux condition, but the results are rel-

atively insensitive to the density boundary conditions.

Recently it has been shown that currents flowing in the scrape-off layer

(SOL) and through conducting walls may be destabilizing to resistive wall

modes [106] and ideal kink modes [107]. While these instabilities are not

present in the absence of non-axisymmetric perturbations, it should be noted

that these effects would be excluded by the no-current boundary conditions
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Figure 5.3: The flux-averaged steady-state temperature (left) and pressure
(right) profiles as a function of normalized flux Ψ. The magnetic axis is
Ψ = 0, and the LCFS is Ψ = 1.

considered here.

5.2 Thermodynamic Profiles

In steady-state for the parameters investigated here, the energy balance

within the last closed flux surface (LCFS)—the magnetic surface farthest

from the magnetic axis which does not intersect the domain boundary—is

dominated by the balance between ohmic heating and perpendicular thermal

diffusive losses (see figure 5.4):

η0

T 3/2
J2 ≈ ∇ · (κ◦∇T ). (5.3)

Therefore, by keeping κ◦/η0 the same for each simulation, the temperature

profile in each simulation is essentially the same in each, as can be seen

in figure 5.3. However, the pressure and density profiles differ somewhat

among simulations with varying η0. Due to the increased Pfirsch-Schlüter

convective losses at higher resistivity (see section 5.3.1), the core density

(and hence pressure) is higher in the low-resistivity cases.

The current profile is determined by the parallel component of Ohm’s
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Figure 5.4: The energy balance (left) and particle balance (right) in the
steady-state of a two-fluid simulation with η0 = 10−5. Positive values indicate
outward flux. Smaller terms in the energy balance such as electron pressure
convection and viscous heating are suppressed. The Poynting flux is VLIp,
where VL is the loop voltage and Ip is the plasma current, and represents the
energy transferred to the plasma by ohmic heating.

law. The higher core pressure in the low-resistivity cases causes the safety

factor at the magnetic axis to drop slightly in those cases, from roughly

q0 ≈ 0.9 at η0 = 10−4 case to q0 ≈ 0.8 at η0 = 10−6. Two-fluid terms and

gyroviscosity are entirely negligible in the particle, radial momentum, and

energy balances, and do not directly contribute to cross-field fluxes; therefore

the thermodynamic and magnetic profiles are not sensitive to the inclusion

of these effects.

The radial electric field, shown in figure 5.5, is found to be negative

(inward) throughout the plasma. This is due primarily to the relatively

large radial ion pressure gradient. While the Lorentz force is significant

in the high-resistivity case in which the resistively driven Pfirsch-Schlüter

flows are large, it is negligible in low-resistivity simulations. In other words,

the poloidal components of the electric (E × B) and diamagnetic drifts are

roughly equal and opposite in the low-resistivity cases. In experiments with

auxiliary methods of heating (other than ohmic heating) operating in H-

mode, it is found that the radial electric field exhibits a dramatic drop at the
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Figure 5.5: The surface-averaged radial electric field in the steady-state with
η0 = 10−4 (left) and η0 = 10−5 (right), as calculated from equation (3.1g).
The curve labeled dir̂ · ∇pi/n is actually dir̂ · (J × B − ∇pe)/n, which is
equivalent to dir̂ · ∇pi/n up to small inertial and viscous effects. Here r̂ =
−∇ψ/|∇ψ| is the outward minor-radial direction.

edge concurrent with the formation of the sharp thermodynamic gradients.

The thermodynamic profiles in the simulation results presented here lack

such sharp gradients, and are more characteristic of ohmically heated L-mode

discharges.

To lowest order, the parallel and poloidal flows depend on the radial elec-

tric field. Hazeltine [92] was able to calculate the self-consistent parallel and

poloidal flows in the collisional regime from the drift-kinetic equation, and

gives an explicit expression for the radial electric field in the large aspect-

ratio limit. Attempts have been made to obtain Hazeltine’s result from fluid

equations by using Mikhailovskii and Tsypin’s corrections to the Bragin-

skii equations which are valid in the drift ordering [29, 93]. Much more

complicated, implicit results are obtained by Catto and Simakov using this

formalism, who find results which differ somewhat from Hazeltine’s [94, 95];

these differences are ascribed to improper assumptions about the poloidal

variation of the electrostatic potential in Hazeltine’s original derivation. It

is difficult to compare the results presented here directly with these theories

because the theoretical results derive generally from drift-ordered equations
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Figure 5.6: The surface-averaged value of ur = −u · ∇ψ/|∇ψ| is plotted
versus normalized flux (Ψ = 0 at the magnetic axis, Ψ = 1 at the LCFS), for
various values of η0. Left : one-fluid simulations; right : two-fluid simulations
(including gyroviscosity). Symbols indicate the value of the left side of equa-
tion (5.4), and the lines indicate the value of the right side of equation (5.4);
both are calculated using simulation results. The minimum in each line rep-
resents the point at which the sign of 〈ur〉 changes from inward (near the
magnetic axis) to outward (near the LCFS).

in the absence of sources, and explicit results are given only in the low-β,

circular cross-section limit.

5.3 Flows

5.3.1 Radial Flows

It is well known that resistive diffusion in a toroidal magnetic configuration

leads to parallel currents and cross-field convective transport [108]. The

radial flows responsible for this transport may be derived from the resistive

Ohm’s law, assuming ideal force balance and ∇·J = 0, to be (see appendix B)

u · ∇ψ = −VL
2π

(

1 −
〈

B2
ϕ

〉

〈B2〉

)

− ηp′R2

(

1 −
B2
ϕ

〈B2〉

)

, (5.4)
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where

〈f〉 =

∮

C
d` f/Bp

∮

C
d`/Bp

(5.5)

denotes the magnetic surface average. Here Bp = |∇ψ|/R is the poloidal

magnetic field strength and d` is a differential along the curve C formed by

the intersection of a magnetic surface with a poloidal plane (ϕ = const). In

figure 5.6, the actual values of u · ∇ψ obtained by M3D-C1 are compared

with the values obtained from equation (5.4) given the computed steady-

state magnetic field. For the cases which reach a steady-state, the agreement

is generally excellent, with some discrepancy near the LCFS where stronger

poloidal variations in pressure begin to occur. The η0 = 10−6 case remains

oscillatory in the core in the two-fluid model, and 〈ur〉 is seen to disagree

slightly with the Pfirsch-Schlüter theory in that case.

5.3.2 Toroidal Flows

The steady-state toroidal flow patterns in a series of simulations are shown in

figure 5.7. The dominant feature of the high-resistivity cases is the roughly

up-down antisymmetric edge flow. As resistivity is uniformly decreased, the

strength of the up-down antisymmetric edge flow decreases, and is dominated

by an up-down symmetric toroidal flow in the core when η0 = 10−6. (Though

there exist small oscillations in this particular case, this toroidal rotation fea-

ture is persistent and essentially stationary.) This rotation is a consequence

of gyroviscosity and is explained in section 5.3.3. This effect becomes more

evident at lower resistivity, when the resistively driven flows are smaller. In

the absence of gyroviscosity, the toroidal flow in the core is very weak and

essentially up-down antisymmetric throughout (i.e. no net toroidal flow in

the core). It is also shown in section 5.3.3 that this rotation is dependent on

the location and magnitude of density injection.

Gyroviscosity is also found to cause highly regular oscillations in some

high-resistivity steady-states. These oscillations are damped by isotropic



CHAPTER 5. AXISYMMETRIC TOROIDAL STEADY-STATES 90

Figure 5.7: Plots of the toroidal velocity for (from left to right) η0 = 10−4,
10−5, and 10−6. Top row : one-fluid model, without gyroviscosity. Middle

row : two-fluid model, without gyroviscosity. Bottom row : two-fluid model,
with gyroviscosity.
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viscosity, and may persist for long periods when the isotropic viscosity is

relatively small (see figure 5.13). The frequency and amplitude of this oscil-

lation are independent of δt and δx. Furthermore, the amplitude appears to

be independent of the initial conditions, which suggests that the oscillations

are nonlinear in nature. This phenomenon is not yet understood, and is de-

scribed in more detail in section 5.3.5. Neither the core toroidal rotation nor

the steady oscillation phenomenon are present in the absence of gyroviscosity.

The isotropic viscosity plays an important role in the character and mag-

nitude of the toroidal flows. An analysis of simulation results shows that the

dominant terms in the local angular momentum balance changes as viscosity

is decreased. For the η0 = 10−4 cases without gyroviscosity or parallel viscos-

ity, the balance is between the J×B force and the viscosity when µ . 10−4;

when µ & 10−4, the balance is dominantly between the J × B torque and

convection. For most of the simulation results presented here, the isotropic

viscosity is dominantly limiting the toroidal flow because only in these cases

is the kinetic energy found to come to a fully stationary equilibrium.

Edge Flows

Up-down antisymmetric flows were found to occur in the resistive SOL in

simulations of a resistive one-fluid model by Aydemir [12]. These flows were

found to be quite strong, with maximum speeds of order 100 km/s, when

the Lundquist number of the SOL is of order 10. Results found here exhibit

toroidal edge flows, similar in both character and magnitude to those found

by Aydemir, in cases where the SOL Lundquist number is comparable.

It is well known that the angular velocity of the plasma must be constant

on a magnetic surface given an ideal, one-fluid Ohm’s law [109]. In a resistive

plasma, this restriction is lifted, and the poloidal variation of the angular ve-

locity may be expected to be proportional to the resistivity. This poloidal

variation is determined by the toroidal component of Faraday’s law (equa-
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Figure 5.8: Comparison of the terms of equation (5.9) after field-line inte-
gration, using data from just outside the LCFS (Ψ = 1.01) of a two-fluid
simulation. The θ coordinate is simply the polar angle from the LFS hori-
zontal midplane (θ = 0) about the magnetic axis. The field lines intersect
the computational domain boundary at roughly θ ≈ ±1.8.

tion (2.8f)), the dominant balance of which is, in a resistive steady-state,

B · ∇ω = −∇ ·
[

1

R2
η∇I

]

+
1

R2
I∇ · u (5.6)

= η
1

R
JϕI

′ − (ηI ′)
′
B2
p −

1

R2
n′Iu · ∇ψ, (5.7)

where primes represent derivatives with respect to ψ. The I∇·u term may be

important in cases with a strong density gradient at the edge, and is therefore

retained. Equation (5.7) is obtained using equation (2.8a) and assuming I, η,

n are constant along field lines, which is generally well satisfied throughout

most of the simulation domain (including outside the separatrix). Thus, in

the resistivity dominated case (as in the plasma edge), the toroidal angular

velocity scales linearly with resistivity. Equation (5.7) may be simplified by

using equation (5.4). The flows are observed to be strongest just outside

the LCFS, where equation (5.4) is not well-defined, since surface-averages

cannot be correctly performed outside there. However, one may simplify
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equation (5.4) under the assumptions that |B| ∼ |Bϕ| = I/R, and 〈R〉 ≈ R0,

where R0 is the major radius of the magnetic axis, yielding

u · ∇ψ ≈ −ηp′(R2 −R2
0). (5.8)

Using this equation, and making the further assumption that Jϕ is negligible

in the SOL, one may write equation (5.7) as

B · ∇ωe ≈ −(ηI ′)′B2
p + Iηp′

n′

n

(

1 − R2
0

R2

)

. (5.9)

This equation may then be integrated along a field line to obtain the edge

angular velocity, ωe. The result of doing this using data from the two-fluid

simulation with η0 = 10−4 is shown in figure 5.8. It can be seen from that

figure that equation (5.9) gives a good estimate of the poloidal variation of

the angular velocity in this case. This equation is useful because it does

not depend on any other component of the flow or on the electrostatic po-

tential, but only on quantities which may be measured relatively accurately

in experiment or determined accurately through magnetostatic equilibrium

reconstruction.

5.3.3 Core Flows

Within the core of the plasma column, the situation differs from that in the

edge due to the lower resistivity in the core. Therefore the core may be more

closely approximated by the ideal MHD description. The Pfirsch-Schlüter

theory for the radial flows shows that u · ∇ψ ∼ η. Thus to zeroth order in

the resistivity, one may write

u0 = ΩR2∇ϕ+GB. (5.10)
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In a stationary steady-state, Ampère’s law together with the ideal Ohm’s

law,

0 = −∇× (u0 × B), (5.11)

yields the constraint that Ω = Ω(ψ). Continuity, equation (3.1a), then re-

quires

B · ∇(nG) = σ +Dn∇2n. (5.12)

In the absence of diffusion or a density source, one would then have K = nG

constant on magnetic surfaces, which is the standard result [109, 110]. It

is then typically argued that K, to which the rate of poloidal rotation is

proportional, must be negligible due to the neoclassical poloidal damping.

This does not hold in the case considered here, however, where a density

source exists and therefore B · ∇K = σ +Dn∇2n. The poloidal variation of

the toroidal angular momentum density is therefore

B · (nV ) = ΩB · ∇(nR2) + (σ +Dn∇2n)I, (5.13)

assuming that I is constant on magnetic surfaces. (This is satisfied to

O(u2/v2
ti) due to inertial corrections to force balance, or O(στcu/nvti) due

to the σ correction, where τc = L0/vti and L0 is the pressure gradient scale

length.)

Note that surface-averaging equation (5.12) yields the solubility condition

that 0 = 〈σ +Dn∇2n〉. Therefore no stationary steady-state can exist in

this ordering without Dn & L2
n/n. Of course, this is due to the fact that

particles injected into a magnetic surface may only leave through diffusion or

through cross-field convective flux, the magnitude of which is proportional

to resistivity.
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Figure 5.9: The gyroviscous core rotation is shown to be dependent on the
density injection location. Top row : the density source, σ is shown for three
different simulations, all with η0 = 10−5. Bottom row : the steady-state
toroidal velocity corresponding to the density sources in the top row.
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Figure 5.10: The angular momentum density flux, integrated over each flux
surface, is shown for the steady-state without (left) and with (right) gyro-
viscosity. Positive values represent outward flux.

Gyroviscous Core Rotation

The inclusion of gyroviscosity is found to lead to significant changes to the

toroidal flows in the plasma core in many cases. As can be seen in figure 5.7,

the most prominent effect of gyroviscosity is an up-down symmetric toroidal

rotation in the core. The direction and magnitude of this rotation is depen-

dent on the position and magnitude of the density source, as will be shown

below.

The angular momentum balance calculated from the steady-state solu-

tions obtained by simulations with and without gyroviscosity is shown in

figure 5.10. In this figure the angular momentum flux due to gyroviscosity is



CHAPTER 5. AXISYMMETRIC TOROIDAL STEADY-STATES 97

calculated using an approximate form of the gyroviscosity:

−R2∇ϕ · ∇ · Π∧ ≈
[

R2piI

B2

(

1 −
3B2

p

2B2

)

,
uϕ
R

]

(5.14)

+
pi

2B2

[

up, |∇ψ|2
]

− up

[ pi
2B2

, |∇ψ|2
]

− pi
B2

(

1

R
〈R [up, ψ] , ψ〉 + ∆∗ψ [up, ψ]

)

+ up

(

1

R

〈

R
[ pi
B2

, ψ
]

, ψ
〉

+ ∆∗ψ
[ pi
B2

, ψ
]

)

− 3Rpi
B2

(

1 −
B2
p

B2

)[

1

R2
ψRup, ψ

]

+
1

R4

[

R4K1, ψ
]

−
[

3B2
p

B2
K1, ψ

]

−R2

[

1

R2
K2, ψ

]

+R

[

1

R2
, K3

]

− (K4∆
∗ψ + 〈K4, ψ〉)

where

K1 =
pi

2B2
(〈up, ψ〉 + up∆

∗ψ) (5.15a)

K2 = up

(〈 pi
B2

, ψ
〉

+
pi
B2

∆∗ψ
)

(5.15b)

K3 = 3vp
pi
B4

(

B2
p∆

∗ψ − 1

2

〈

B2
p , ψ
〉

)

(5.15c)

K4 =
pi

2B2

(

R3
[ up
R3
, ψ
]

− 3RBp

B2

[

upBp

R
,ψ

])

(5.15d)

and

up =
u · Bp

B2
p

. (5.16)

(Note that up does not have units of velocity.) Here the following shorthand

“Poisson bracket” and “inner product” notation has been used:

[a, b] = ∇ϕ · (∇a×∇b)
〈a, b〉 = ∇a · ∇b.
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Equation (5.14) is equivalent to the Braginskii form in the limit that u·∇ψ =

0. The full form and the above approximate form are somewhat unwieldy

to deal with analytically; therefore it is advantageous to use the gyroviscous

cancellation approximation (see section 2.2.2), which in normalized units is

given by:

∇ · Π∧ ≈ di∇×
( pi
B2

B
)

· ∇u. (5.18)

The toroidal component of the gyroviscous force is therefore approximately

−R∇ϕ · (∇ · Π∧) ≈ di

[

piI

B2
, uϕ

]

+ di(u · ∇R)∇ ·
(

pi
B2

∇ψ
R2

)

. (5.19)

Near the magnetic axis one may assume that pi and I are essentially constant,

and B ≈ Bϕ = I/R. Thus

−R∇ϕ · (∇ · Π∧) ≈ −2di
pi
I

∂uϕ
∂Z

+ di
pi
I2

(u · ∇R)∇2ψ. (5.20)

And finally, assuming that |∇ψ|/R ¿ |∇2ψ|, which must be true near the

magnetic axis, one may write Jϕ = −∆∗ψ/R ≈ −∇2ψ/R, so that

−R∇ϕ · (∇ · Π∧) ≈ −di
pi
I

∂uϕ
∂Z

− di
Rpi
I2

(u · ∇R)Jϕ. (5.21)

The second term on the RHS of equation (5.21) provides a force that is

always dominantly in the counter-current direction since the resistive Pfirsch-

Schlüter flows are always such that u · ∇R is dominantly positive (at least,

in a flux-averaged sense).

However, the first term on the RHS of equation (5.21) is by far the dom-

inant term in the simulations presented here, due to the predominantly to-

roidal direction of the flow in the core. In the core, an inverse aspect ratio

expansion becomes accurate even for low aspect-ratio devices. It may also

be assumed that the flux surfaces are concentric and circular to the lowest

order in the inverse aspect ratio ε = r/R0. Defining the coordinate system
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(r, φ, θ), such that

r =
√

(R−R0)2 + (Z − Z0)2 (5.22)

θ = arctan [(Z − Z0)/(R−R0)], (5.23)

Then using equation (5.13) and assuming that n is constant on magnetic

surfaces, then to lowest order in ε,

−2di
pi
I

∂uϕ
∂Z

= −2dipi
σ +Dn∇2n

nψ′
cos θ. (5.24)

Here ψ′ = ∂rψ, which has the opposite sign of Iϕ (assuming ψ is a monotonic),

and therefore ψ′ = −sign(Jϕ)|∇ψ| to lowest order in ε. Surface-averaging

gives

−
〈

2di
pi
I

∂uϕ
∂Z

〉

=
2dipi
n|∇ψ|sign(Jϕ) 〈σ cos θ〉 . (5.25)

Thus the direction of toroidal force in the core due to gyroviscosity is de-

pendent only on sign(Jϕ) 〈σ cos θ〉, and therefore results in a counter-current

rotation for HFS fueling, or a co-current rotation for LFS fueling. This is

in agreement with the results presented in figure 5.9, and also with other

simulation results (not shown) which show that for a given fueling location,

the direction of rotation is independent of the toroidal field direction, but

flips when the toroidal current is flipped.

While this gyroviscous torque is strongest at the location of the density

source, the resulting rotation spreads inward to the magnetic axis through

isotropic (perpendicular) viscous coupling, since there are no strong compet-

ing torques there. Thus the steady-state rotation is roughly uniform within

the fueling surface. The magnitude of the rotation in steady-state is deter-

mined by the viscosity in the simulations presented here (see figure 5.10). In

cases where the viscosity is sufficiently small, the steady-state rotation rate

may be limited instead by the ion inertial force, but is unlikely to reach a

stationary steady-state in that case.
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It should also be noted that it has been shown that the Mikhailovskii-

Tsypin corrections to the gyroviscous stress, which are not considered here,

have been shown in some cases to diminish the importance of the gyroviscos-

ity in toroidal angular momentum transport, sometimes significantly [93]. It

is not obvious how these corrections should affect the phenomenon described

above, which depends on the presence of a particle source; this is a matter

for future research.

5.3.4 Poloidal Rotation

Vector plots of the poloidal velocity for various resistivities and models are

shown in figure 5.11. In the high resistivity (η0 = 104) case, these flows are

dominated by the Pfirsch-Schlüter flows across the magnetic surfaces from

the HFS to the LFS, with strong vertical return flows along the center stack

toward the horizontal mid-plane. These observations are in agreement with

both the observations that fuel injection is significantly more efficient from

the HFS than from the LFS, and that the injection from the HFS corners

is as efficient as injection from the HFS mid-plane [111]. As resistivity is

decreased, this convection pattern is no longer permitted since the cross-

surface flows are proportional to the resistivity; the poloidal flows are instead

dominated by a poloidal rotation in the electron diamagnetic drift direction.

When gyroviscosity is included, a new rotation in the core becomes appar-

ent. This is due to the gyroviscous rotation effect described in section 5.3.3,

in which the density injection leads to a toroidal force, the sign of which de-

pends on the location of the density injection and on the sign of the toroidal

current density. This toroidal force drives a parallel flow. The simulations

in figure 5.11 are such that the toroidal gyroviscous force is in the negative

ϕ̂ direction. Since Bϕ < 0 in this case, the poloidal component of this flow

is in the ion diamagnetic direction. In the case where the density injection

is moved to the LFS, for example, this poloidal rotation would be in the

electron diamagnetic direction, thereby enhancing the ambient poloidal flow.
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Figure 5.11: Plots of the poloidal velocity for (from left to right) η0 = 10−4,
10−5, and 10−6. Top row : one-fluid model, without gyroviscosity. Bottom

row : two-fluid model, with gyroviscosity. As with the toroidal velocity, the
results using a two-fluid model without gyroviscosity are essentially identical
to that using a one-fluid model without gyroviscosity. In all cases, µ‖ = 0.
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Figure 5.12: The poloidal projection of the velocity without (left) and with
(right) parallel viscosity, in the one-fluid case where η0 = 10−6.
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Figure 5.13: Left : The total kinetic energy versus time for the two-fluid
model, including gyroviscosity, for various values of isotropic viscosity µ.
Right : The total kinetic energy for various models—one-fluid (without gyro-
viscosity), two-fluid without gyroviscosity, and two-fluid with gyroviscosity—
at µ = 2 × 10−6. These results are all from simulations having η0 = 10−4.

The results shown in figure 5.11 were obtained with µ‖ = 0. The dominant

effect of parallel viscosity in a nonlinear NSTX-geometry simulation using a

one-fluid model is shown in figure 5.12, in which the poloidal flow is plotted

for steady-states obtained with and without parallel viscosity (both without

gyroviscosity). It can be seen that parallel viscosity has the effect of reducing

the poloidal rotation, resulting in a more closely up-down symmetric flow.

The parallel viscosity also strongly damps the poloidal flows associated with

the gyroviscous rotation, but not the toroidal component of those flows. The

dominant features of the toroidal velocity are found to remain essentially

unchanged by parallel viscosity.

5.3.5 Gyroviscous Oscillation

As mentioned previously, the introduction of gyroviscosity leads to very reg-

ular oscillations in the total kinetic energy. This oscillation is not yet under-

stood, but will be characterized here. Some observations:

1. The frequency of the oscillation is almost precisely proportional to the
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Figure 5.14: The difference between the values at the peak and trough of the
gyroviscous oscillation of (from left to right) the toroidal angular momentum
density Lϕ, the pressure p, and the toroidal magnetic field I = RBϕ. Note
that the “equilibrium” toroidal field is negative, so negative values of ∆I
indicate a strengthening of the field.

resistivity, with period a period of 130τA0 (to within a few percent) for

η0 = 2 × 10−4 and 260τA0 for η0 = 10−4.

2. Increasing the density diffusion coefficient or the viscosity µ damps the

oscillation. Increasing the compressional viscosity µc does not.

3. The necessary and sufficient component of the gyroviscosity is that part

of the toroidal gyroviscous force which depends on the parallel viscosity.

4. The u · ∇u term must be present in the momentum equation.

5. The steady-state amplitude of the oscillation seems to be independent

of initial conditions. This suggests that it is a nonlinear phenomenon.

A sense of the eigenfunctions may be gained by observing the difference

between each field at a peak and trough of the oscillation. Some of these

approximate eigenfunctions are shown in figure 5.14, where it can be seen

that the eigenfunctions have a fairly complicated, nonlocal structure. Indeed,

there appear to be two separate regions of oscillation: in the core (with both



CHAPTER 5. AXISYMMETRIC TOROIDAL STEADY-STATES 105

m = 0 and m = 1 components) and at the edge. This makes it very difficult

to perform an analytic linear eigenmode calculation.

Given the dependence on the resistivity of this oscillation, and its promi-

nence only in the high-resistivity cases, one might speculate that the Pfirsch-

Schlüter flows play an important role. This is supported by the fact the

period of the oscillation is close to the rotation period of the up-down sym-

metric poloidal convection cells present in these high-resistivity cases (this

rotation period is not well defined, but can be roughly estimated using the

length of the path formed by the mid-plane and the upper or lower half of

the LCFS, and the average velocity along that path). A more complete un-

derstanding of this oscillation will be the goal of future work. In any case,

this oscillation is unlikely to be observable in fusion-temperature reactors, in

which the resistivity is several orders of magnitude smaller than the lowest

resistivity in which it has been observed in simulations, η0 ∼ 5 × 10−5.

5.3.6 Net Toroidal Angular Momentum

Experimental results from ohmic discharges (in which no momentum is in-

jected into the plasma) show that net toroidal rotation may be present in

the steady-state [112, 113]. This rotation is usually in the counter-current

direction, and is found to depend on the direction of the ion grad-B drift

relative to the divertor x-point. In Alcator C-mod experiments with single-

null configurations, this rotation is 10-20 km/s in the case where the grad-B

drift is toward the divertor, and 30-40 km/s when the drift is away from the

divertor. It has also been found experimentally that the H-mode is more

easily accessed when the ion grad-B drift is toward the divertor than when

it is away [114]. These results are not understood.

In M3D-C1 simulations of NSTX-like discharges a net toroidal angular

momentum also arises, and is found to depend on the direction of the ion

grad-B drift relative to the divertor x-point. Furthermore, when two-fluid

effects are included, the steady-state angular momentum is found to be pref-
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Figure 5.15: The total angular momentum in simulations using the one- and
two-fluid models, with positive and negative values of Bϕ. The ion B×∇B

drift is downward (toward the x-point) for Bϕ < 0, and upward for Bϕ > 0.

erentially in the counter-current direction. These results are shown in fig-

ure 5.15. In this figure, it can be seen that with the two-fluid model, the

overall toroidal angular momentum is greater in the case with Bϕ < 0 (ion

grad-B drift toward the divertor) than that with Bϕ > 0; this disagrees with

the results from Alcator C-mod.

In the two-fluid model, the toroidal angular momentum obeys the con-

servation equation

∂(nR2ω)

∂t
+ ∇ ·

[

R2 (nuu − BB + Π) · ∇ϕ
]

= 0, (5.26)

where ω = uϕ/R is the angular velocity The torque density due to isotropic

viscosity is

∇ ·
[

R2Π◦ · ∇ϕ
]

= ∇ ·
(

µR2∇ω
)

. (5.27)

In the case considered here, where the boundary conditions are such that

n̂ · u = 0 (no normal flow) and R2B · ∇ϕ is uniform on the boundary, the

only nonzero contribution to the flux of toroidal angular momentum through
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the simulation domain boundaries is due to viscosity. Analysis of the torque

density shows that the main region of viscous torque in these simulations is

near the divertors at the top and bottom of the simulation domains. Since

the magnetic geometry is not up-down symmetric, the viscous drag on the

flows near the lower divertor region are greater than those oppositely directed

flows in the upper region, leading to a net torque on the plasma.

The one-fluid model is exactly invariant under the transformation Bϕ →
−Bϕ and uϕ → −uϕ. Therefore, reversal of the toroidal field direction re-

verses the direction of the toroidal rotation in the steady-state. If the plasma

were up-down symmetric, there could be no net torque on the plasma in this

model, since all angular momentum density flux through the upper half of

the domain boundaries would necessarily cancel that through the lower half

boundaries. However, the plasma is not up down symmetric, but is in a lower

single null (LSN) configuration. In this configuration, the plasma is closer to

the lower boundary, and hence the viscous coupling between the flows driven

at the lower edge of the plasma and the lower boundary is greater than

that at the upper edge. Thus viscous losses through the boundary cause

the plasma to acquire a net angular momentum in the direction opposite to

that of the angular momentum in the lower edge. In the typical case where

Bϕ < 0, the angular momentum density of the lower edge is positive, and

thus the net angular momentum of the plasma should be negative. Again,

this effect should change signs under reversal of the toroidal field direction.

This is what is observed in these simulations (see figure 5.15). It is also pos-

sible to reduce or even reverse the sense of the rotation by moving the upper

boundary down very close to the top of the plasma (without changing the

LSN configuration).

The two-fluid terms break the invariance of the model to the transforma-

tion Bϕ → −Bϕ and uϕ → −uϕ. Therefore, it is possible for the two-fluid

terms to lead to a net torque on the plasma which is independent of the

sign of Bϕ. The Hall term leads to the development of up-down symmetric



CHAPTER 5. AXISYMMETRIC TOROIDAL STEADY-STATES 108

poloidal surface currents, even in an initially symmetric magnetic configura-

tion. This results in a symmetric contribution to the J × B force, which is

independent of the direction of the initial toroidal field.

To understand this, it is necessary to understand the poloidal currents at

the boundary. The current profile expands as it relaxes from its initial con-

ditions, causing the toroidal field to be compressed against the conducting

boundaries as the plasma column expands toward the wall. In the simula-

tions, in which no current is allowed to flow in the boundary surface, this

compression leads to surface currents in a boundary layer. In this boundary

layer one may write

∇B2
ϕ = −αn̂, (5.28)

where n̂ is the outward normal unit vector and α is some positive value

(assuming that βpol < 1, so that the toroidal field within the plasma is greater

than that in the vacuum region, as is the typical case for tokamaks [115, 25]).

Now let B(1) be the solution for the magnetic field in the one-fluid model.

Then the contribution to the magnetic field from two-fluid effects is B(2) =

B − B(1). In the case that |B(2)|/|B(1)| ∼ di ¿ 1, the O(di) correction

equation from equation (2.8f) is

∂B(2)

∂t
= −di∇×

[

1

n
(J(1) × B(1) −∇pe)

]

. (5.29)

In the absence of density and pressure gradients near the boundary, the

toroidal component of equation (5.29) is

∂I(2)

∂t
= −di

n
R2B(1) · ∇

(

J
(1)
ϕ

R

)

+
di
nR2

∂(I(1))2

∂Z
. (5.30)

Restricting the analysis to boundary layers near the edge, one may ignore

derivatives acting on R which does not change rapidly in the layer. Toroidal
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current is not allowed to flow on the boundary, so within the boundary layer

Jϕ = −sign(Jϕ)γn̂, (5.31)

with γ > 0. This equation together with equation (5.28) simplify equa-

tion (5.30):
∂I(2)

∂t
=
di
n

sign(Jϕ)RγB
(1) · n̂ − di

n
αn̂ · Ẑ. (5.32)

Note that on the LFS, both terms in equation (5.32) are always negative at

the upper boundary and positive at the lower one. Thus I (2) will always be

negative on the upper boundary and positive on the lower boundary. The

electromagnetic torque due to two-fluid effects in the boundary layer is B ·
∇I(2), which will be positive on both the upper and lower boundaries. These

positive torques lead to positive toroidal flows in the boundary layers, and

angular momentum conservation requires that negative toroidal flows must

develop elsewhere in the plasma. The boundary flows are quickly damped

through viscous interaction with the wall, leaving a negative net toroidal

angular velocity in the plasma. This is consistent with what is observed in

the simulations, as can be seen in figure 5.15.



Chapter 6

Conclusions

The numerical code M3D-C1 has been developed to calculate numerical so-

lutions to the nonlinear dynamical equations of a comprehensive, dissipative

two fluid model, in both Cartesian and curvilinear axisymmetric geometries.

The numerical methods employed by this code yield significant advantages

over comparable codes in cases where multiple time scales are present. M3D-

C1 has been shown to produce results in close agreement with the analytic

theory of the linear normal modes of various equilibria, including dispersive

waves in a homogeneous equilibrium, and unstable modes in various strat-

ified equilibria. Furthermore, surface-averaged neoclassical transport rela-

tions and Pfirsch-Schlüter theory are found to be well satisfied in nonlinear

toroidal steady-states.

The comprehensive physical model implemented in M3D-C1 allows for

the exploration of the effects of many non-ideal processes, which have usu-

ally been omitted in previous works. In chapter 4, some of these effects—the

Hall and FLR effects, in particular—have been shown analytically to play

an important role in the stability criteria and growth rates of several “weak”

instabilities. While it has been previously noted that the inductive FLR ef-

fects are stabilizing to the MRI, it was assumed that this stabilizing effect

only becomes important as ρi approaches the scale of the system [116, 42].

110
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However, it has been shown here that FLR effects may be important even

when k⊥ρi ¿ 1, due to the relatively slow ideal growth rate of this instabil-

ity. Furthermore, unlike the collisional parallel viscosity, which only affects

the growth rate of the MRI [44], the gyroviscosity alters its stability crite-

rion, and may result in the complete stabilization of all MRI modes present

in high-β accretion disks. This stabilization contradicts the result of ideal

MHD—which does not remain valid when the normalized growth rate is small

compared to the magnetization parameter, (k⊥ρi)
2 & γ/ωci—that the MRI

remains unstable in the limit that B → 0. These results raise questions about

whether the MRI could be the primary mechanism for the amplification of

the extremely weak primordial “seed” magnetic fields present in the early

universe to the greater interstellar field strengths observed in the present

era, as others have speculated.

The fact that FLR effects may be important in slowly growing modes

likely also has relevance to instabilities in tokamaks or other fusion devices.

Indeed, the gravitational instability presented in chapter 4 may serve as a

model for interchange instabilities (such as the ballooning mode) in toroidal

configurations, with the gravitational field playing the role of the centrifugal

force, with g ∼ v2
ti/R0 [117]. This will be explored numerically after the

capability for three dimensional linear stability is fully developed in M3D-

C1.

Using M3D-C1, steady-states of the two-fluid model described in chap-

ter 3 have been obtained for NSTX geometry plasmas by time-integration of

the dynamical, driven system. Some of these states are found to be essen-

tially stationary on all time-scales, and others are found to be oscillatory, with

more-dissipative cases tending to yield more stationary steady-states. These

solutions go beyond previous calculations in several ways. First, dissipative

effects such as viscosity and resistivity are included, which are not present in

most other numerical methods for obtaining such steady-states. These results

also go beyond those obtained using other methods which do include dissi-
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pative effects, because here the numerical methods allow time-integration to

be carried sufficiently far to ensure a steady-state on all physical time-scales

present in the problem. Second, these simulations include realistic current

drive, heating, and particle injection mechanisms, and may therefore reach

a realistic steady-state in the presence of dissipation. Third, the model used

here includes both parallel viscosity and gyroviscosity, which have significant

influence on the steady-state flows, and which have not been included in any

other study of this type. Finally, two-fluid effects are also included here,

which appear not to have been present in any comparable published work.

In these solutions, a number of interesting results have been found, some

of which have not previously been observed or predicted. The radial flows

have been found to be in excellent agreement with the Pfirsch-Schlüter theory.

The steady-state poloidal and toroidal components of the flow, which are free

functions in the non-dissipative case, are more difficult to obtain analytically,

especially in general geometry, and therefore simulations such as the ones

described in this work are particularly useful in this regard. The radial

electric field, which determines the rotation, is (obviously) similarly difficult

to calculate analytically, but may be easily extracted from simulation results.

It is found that strong, up-down asymmetric toroidal edge flows may exist

in highly resistive SOLs, in accordance with previous simulation results [12].

Parallel viscosity has been demonstrated to damp poloidal flows significantly,

as previously anticipated [32]. The radial electric field has been found to be

due mainly to the ion pressure gradient in the ion momentum equation, with

the poloidal electric and ion diamagnetic drifts therefore nearly equal and

opposite, even in the absence of parallel viscosity. In the cases presented

in the previous chapter, the toroidal angular momentum balance is between

isotropic viscosity, gyroviscosity, and inertia (these are essentially the only

torques which can contribute to the flux-averaged torque) with the dominant

balance determined by the choice of parameters. The dynamical system has

been found not to attain a stationary state when the torque due to isotropic
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viscosity is significantly smaller than either of the other two (non-dissipative)

terms.

In particular, gyroviscosity is found to play an important role in the

steady-state flows, driving toroidal and parallel flows in the presence of a

density source. A theoretical basis for this core rotation, based on the gyro-

viscous cancellation effect, has been presented. This result suggests the pos-

sibility of driving toroidal flows localized to particular flux surfaces by pellet

injection. The inclusion of gyroviscosity is found also to result in strong,

regular oscillations in highly resistive steady-states, though this oscillation is

not yet fully understood.

6.1 Future Work

Work is currently being done to allow three-dimensional linear stability cal-

culations to be done using the steady-states calculated here, as discussed

in section 3.5. This work may facilitate an understanding of the effect of

flows, finite Larmor orbits, and other non-ideal effects on the stability of

these steady-states.

One shortcoming of the preceding work regarding tokamak simulations

is the relative inattention paid to modeling boundary physics. In particular,

the domain boundaries are taken to be rectangular here, which does not well

approximate the shape of the conducting boundaries found in most tokamaks.

The meshing capabilities of M3D-C1 and software it uses are presently being

upgraded to address this issue. Furthermore, the boundary conditions used

in the preceding work exclude effects which may be important in tokamaks.

Such effects including finite resistivity of the conducting boundary, which

lead to current diffusion through the boundary and resistive wall modes, and

sheath boundary conditions which would more accurately model the loss of

particles to the divertors.

More sophisticated transport models will be necessary for the simulation
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of H-mode plasmas. Currently it is possible to prescribe the transport co-

efficients to be arbitrary functions of space, or poloidal flux, and therefore

a experimentally-determined transport profiles could be used to (in theory)

obtain H-mode thermodynamic profiles. This method compromises the pre-

dictive capability of the calculation, however, and therefore a more physics-

based solution is preferred. As discussed in section 2.2.4, it is possible to

approximate the effect of turbulent transport by using a phenomenological

transport model based on the results of turbulence calculations, such as the

trapped-gyro-Landau-fluid [50] (TGLF) model. By coupling such a model

with the fluid model, the radial transport due to turbulence given a macro-

scopic thermodynamic profile may be efficiently determined and used to self-

consistently calculate the evolution of that profile, without having to resolve

the turbulent fluctuations due to the micro-instabilities within the fluid sim-

ulation itself. It may be challenging to employ an implicit time advance with

such a coupling, due largely to the fact that the dependence of the turbu-

lent transport coefficients on the temperature gradient (for example) may be

complicated and quite sensitive near the point of marginal stability. How-

ever, this method would certainly be more efficient than extending the fluid

closures to incorporate micro-instabilities into the fluid model.

It is straightforward to extend this work to more realistic parameter

regimes. Results presented here have focused on more highly-resistive cases

in order to obtain essentially stationary steady-states; simulations with sig-

nificantly lower resistivities are possible, but appear never to settle to a

stationary state, even on time-scales much longer than all diffusive time-

scales in the system. The steady-state obtained in such a case would still

be of interest, and analysis of the fluctuation of these states about the mean

could possibly shed light on intermittent dynamical processes observed in

experiments. Finally, as outlined in section 2.2.3, modifications to the elec-

tron parallel viscosity which allow the inclusion of the bootstrap current and

other important banana-regime neoclassical effects, should also be explored.



Appendix A

Normalizations

Physical Quantity Normalization NSTX Values

Length x L0 1 m

Density n n0 2 × 1013 cm−3

Magnetic Field B B0 0.3 T

Velocity u vA0 = B0/
√

4πmin0 1.5 × 108 cm/s

Time t τA0 = L0/vA0 0.68 µs

Pressure p,Π B2
0/4π 0.7 atm

Temperature T B2
0/4πn0 22 keV

Energy E B2
0L

3
0/4π 72 kJ

Electric Field E vA0B0/c 450 kV/m

Current Density J B0c/4πL0 240 kA/m2

Current I B0cL0/4π 240 kA

Resistivity η 4πτA0(vA0/c)
2 1.9 Ω m

Diffusivity Dn L2
0/τA0 1.5 × 106 m2/s

Viscosity µ B2
0τA0/4π

Thermal Conductivity κ n0L
2
0/τA0
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Appendix B

Derivation of Radial

Pfirsch-Schlüter Flows

Let us make the following ordering:

J ∼ B ∼ ∇p ∼ 1

η ∼ u ∼ di ∼ δ.

In a stationary steady-state, equations (2.8b), (2.8f) and (2.8e) are, to lowest

order in δ,

∇p = J × B (B.1)

∇× E = 0 (B.2)

E + u × B = ηJ +
di
n

(J × B −∇pe) . (B.3)

Assuming that magnetic surfaces are uniquely determined by the poloidal

flux, taking B· and ∇ϕ· equation (B.1) show that, to lowest order in δ, p =

p(ψ) and I = I(ψ) respectively. Given the large parallel thermal transport,

one may also assume that T = T (ψ), which implies n = n(ψ) and η = η(ψ).

First let us calculate the steady-state currents. Taking B× equation (B.1)
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gives

J⊥ =
B ×∇ψ
B2

p′. (B.4)

The condition that ∇ · J = 0 may be written, using equation (B.4), as

B · ∇
(

Ip′

B2
− J‖
B

)

= 0, (B.5)

so one may define a new flux quantity

f(ψ) =
Ip′

B2
− J‖
B
. (B.6)

Equation (B.2) ensures that the electric field may be written as an elec-

trostatic potential. Let

E = −∇
(

Φ +
VL
2π
ϕ

)

(B.7)

where Φ is the component of the potential not dependent on ϕ and VL is

the “loop voltage,” which represents a uniform, axisymmetric Eϕ. Taking B·
equation (B.3), and using equations (B.6) and (B.7) to eliminate J‖ and E‖,

respectively, yields

ηB2f(ψ) = −B · ∇Φ +
VLI

2πR2
+ ηIp′. (B.8)

Magnetic surface averaging to eliminate Φ, and then using equation (B.6)

again to eliminate f in favor of J‖ yields

J‖ = − I

〈B2〉

[

VL
2πη

〈

1

R2

〉

+ p′
(

1 − 〈B2〉
B2

)]

(B.9)

Taking (∇ψ × B)· equation (B.3) and using equations (B.7), (B.8), (B.6),



APPENDIX B. RADIAL PFIRSCH-SCHLÜTER FLOWS 118

and (B.9) to eliminate E, Φ, f , and J‖, respectively, yields

u · ∇ψ = −VL
2π

(

1 −
〈

B2
ϕ

〉

〈B2〉

)

− ηp′R2

(

1 −
B2
ϕ

〈B2〉

)

. (B.10)



Appendix C

A Spectral Method for the

Solution of Poisson’s Equation

in Cylindrical Coordinates

Subject to Dirichlet Boundary

Conditions

Consider the equation

∇2φ = −ρ, (C.1)

where ρ is known, subject to the boundary conditions

φ(Z0) = 0 (C.2)

φ(Z1) = 0 (C.3)

φ(R0) = 0 (C.4)

φ(R1) = 0 (C.5)
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with 0 < r0 < r1. The solution may be expanded in the complete Fourier-

Bessel basis

φ(R,Z) =
∞
∑

m=1

∞
∑

n=1

sin(k
(m)
Z Z + θ)[AnJ0(k

(n)
R R) +BnY0(k

(n)
R R)] (C.6)

where the allowed spectra of kz and kr are determined by the boundary

conditions. Equations (C.2) and (C.4) may be used to eliminate θ and one

of the undetermined coefficients Am and Bm to yield

φ(R,Z) =
∞
∑

m=1

∞
∑

n=1

Cmn sin[k
(m)
Z (Z − Z0)] (C.7)

×
[

Y0(k
(n)
R R0)J0(k

(n)
R R) − J0(k

(n)
R R0)Y0(k

(n)
R R)

]

.

Equations (C.3) and (C.5) determine the spectra of kz and kr:

k
(m)
Z =

mπ

Z1 − Z0

(C.8)

J0(k
(n)
R R1)Y0(k

(n)
R R0) = J0(k

(n)
R R0)Y0(k

(n)
R R1). (C.9)

Equation (C.9) is transcendental and the roots must be solved numerically.

This may be done efficiently by noting that the asymptotic forms of J0(x)

and Y0(x) when xÀ 1 are

J0(x) ∼
√

2

πx
cos
(

x− π

4

)

(C.10)

Y0(x) ∼
√

2

πx
sin
(

x− π

4

)

. (C.11)

Inserting these asymptotic forms into equation equation (C.9) gives the equa-

tion

sin[k
(n)
R (R1 −R0)] = 0 (C.12)
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so kR are approximately given by

k
(n)
R ≈ nπ

R1 −R0

. (C.13)

This may be refined quickly using Newton’s method, together with the fact

that

∂

∂k
[J0(kR1)Y0(kR0) − J0(kR0)Y0(kR1)] = (C.14)

−R1J1(kR1)Y0(kR0) −R0J0(kR1)Y1(kR0)

+R0J1(kR0)Y0(kR1) +R1J0(kR0)Y1(kR1).

Finally, Cmn may be calculated by inserting equation (C.7) into equa-

tion (C.1), multiplying by

sin[k(m′)
z (Z − Z0)]

[

Y0(k
(n′)
R R0)J0(k

(n′)
R R) − J0(k

(n′)
R R0)Y0(k

(n′)
R R)

]

, (C.15)

and integrating over the domain to obtain

[(k
(n)
R )2 + (k

(m)
Z )2]Cmn = (C.16)

1

N

∫ Z1

Z0

dZ sin[k
(m)
Z (Z − Z0)]

×
∫ R1

R0

dRRρ
[

Y0(k
(n)
R R0)J0(k

(n)
R R) − J0(k

(n)
R R0)Y0(k

(n)
R R)

]

after making use of
∫ Z1

Z0

dZ sin2[k
(m)
Z (Z − Z0)] = 1

2
and

N =
1

2

∫ R1

R0

dRR
[

Y0(k
(n)
R R0)J0(k

(n)
R R) − J0(k

(n)
R R0)Y0(k

(n)
R R)

]2

. (C.17)



Appendix D

Scalar Form of Equations

Implemented in M3D-C1

In this section, the scalar forms of the physical equations, equations (2.8a)–

(2.8f) are presented. The scalar forms of the time-advance equations derived

in section 3.3.2.

Before proceeding, the following definitions are made to simplify notation:

∆∗a = R2∇ ·
(∇a
R2

)

〈a, b〉 = ∇a · ∇b
[a, b] = ∇ϕ · ∇a×∇b

〈〈a, b〉〉 = ∇∇a : ∇∇b
[〈a, b〉] = ∇ϕ · ∇∇a×̇∇∇b
[[a, b]] = ∇ϕ · ∇∇a

×
× ∇∇b · ∇ϕ.

For compactness, derivatives are written as subscripts in the following ex-

pressions (i.e. νZ = ∂Zν).

Writing the velocity and magnetic field in the flux/potential form of equa-
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tions (3.37), equations (2.8a) and (2.8c) may be written:

ṅ = − [n, U ] − 〈n, χ〉 − n∇2χ+ σ +Dn∇2n, (D.1)

ṗ = − [p, U ] − 〈p, χ〉 − Γp∇2χ− di
1

n
[I, pe] − diΓpe

[

I,
1

n

]

(D.2)

+ (Γ − 1)

[

diR · J

n
+ diΠe : ∇J

n
−∇ · q

]

.

Acting on equation (2.8b) with the operators −∇ϕ · ∇×, R2∇ϕ·, and ∇·
yields:

n∆∗U̇ +
〈

n, U̇
〉

−R2 [n, χ̇] = (D.3)

R2

[

∆∗ψ

R2
, ψ

]

+

(

I2

R2

)

Z

−R2

[

n
∆∗U

R2
, U

]

− R2

2

[〈U,U〉
R2

, n

]

− (nV 2)Z
R2

− 〈n∆∗U, χ〉 − n∆∗U∆∗χ−R2 [n, [U, χ]]

− 1

2
R2 [〈χ, χ〉 , n] − σ∆∗U − 〈σ, U〉 +R2 [σ, χ]

−R2∇ϕ · ∇ × (ng −∇ · Π)

nV̇ = [I, ψ] − n [V, U ] − n 〈V, χ〉 − σV +R2∇ϕ · (ng −∇ · Π) (D.4)
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n∆∗χ̇+ 〈n, χ̇〉 +
[

n, U̇
]

= (D.5)

−∇2p− 1

R2

[

(∆∗ψ)2 + 〈∆∗ψ, ψ〉
]

− 1

2R2
∆∗
(

I2
)

+
1

R2

[

n(∆∗U)2 + 〈n∆∗U,U〉
]

− 1

2

[

n∇2

(〈U,U〉
R2

)

+

〈

n,
〈U,U〉
R2

〉]

+
1

R

(

nV 2

R2

)

R

− n∇2 [χ, U ] − [n∆∗U, χ] + 〈n, [U, χ]〉

− 1

2

(

n∇2 〈χ, χ〉 + 〈n, 〈χ, χ〉〉
)

− [σ, U ] − σ∇2χ− 〈σ, χ〉
+ ∇ · (ng −∇ · Π)

The scalar equation for the time-evolution of the magnetic flux and to-

roidal field may be found by operating on equations (3.1g) and (3.1e) with

R2∇ϕ·, respectively:

ψ̇ = − [ψ,U ] − 〈ψ, χ〉 + di
1

n
[ψ, I] − di

n
R2∇ϕ · (R −∇ · Πe) (D.6)

İ = −R2

[

I

R2
, U

]

−R2

[

ψ,
V

R2

]

− I∆∗χ− 〈I, χ〉 (D.7)

+R2di

([

∆∗ψ

R2n
, ψ

]

+
1

2

[

1

R2n
, I2

]

+

[

1

n
, pe

])

−R2∇ϕ · ∇ ×
[

di
n

(R −∇ · Πe)

]

,

The scalar form of ∇ · Π is not expanded here, as it contains derivative

of greater than second order and is therefore not useful in this form. The

scalar form of this term after integration by parts is written in the following

section.
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D.1 Weak Form

Equations (D.1–D.7) may now be Taylor expanded and discretized in the

exactly the same manner as equations (2.8a)–(2.8f) were in section 3.3.2.

These scalar equations may then be integrated to yield the weak equations

appropriate for computation with finite elements. The final result of this

process is the set of matrix equations (3.38)–(3.41). The operators comprising

the elements of the matrices in those equations are defined below.

D.1.1 Vorticity Equation

SUUU
n+1 = UUn(U

n+1, n) (D.8)

− θδt

[

UUUn(U
n+1, U, n) + UUUn(U,U

n+1, n)

+ UUχn(U
n+1, χ, n) + UUΠ(Un+1) + UUσ(U

n+1)

]

− θ2δt2

[

UUψψ(Un+1, ψ, ψ) + UUII(U
n+1, I, I)

+ UUng(U
n+1, n)

]

SUV V
n+1 = −θδt

[

UV V n(V
n+1, V, n) + UV V n(V, V

n+1, n)

+ UV Π(V n+1)

]

(D.9)

− θ2δt2
[

UV ψI(V
n+1, ψ, I)

]

SUχχ
n+1 = Uχn(χ

n+1, n) (D.10)

− θδt

[

Uχχn(χ
n+1, χ, n) + Uχχn(χ, χ

n+1, n)

+ UUχn(U, χ
n+1, n) + UχΠ(χn+1) + Vχσ(χ

n+1)

]

− θ2δt2

[

Uχψψ(χn+1, ψ, ψ) + UχII(χ
n+1, I, I)

+ Uχng(χ
n+1, n)

]



APPENDIX D. SCALAR FORM OF EQUATIONS 126

DUUU
n = UUn(U

n, n) (D.11)

+ (1 − θ)δt [UUΠ(Un) + UUσ(U
n)]

+

(

1

2
− θ

)

δt

[

UUUn(U
n, U, n) + UUUn(U,U

n, n)

+ UUχn(U
n, χ, n)

]

+
1

2
δt

[

UUUn(U
n, U 0, n) + UUUn(U

0, Un, n)

+ UUχn(U
n, χ0, n)

]

− θ2δt2
[

UUψψ(Un, ψ, ψ) + UUII(U
n, I, I) + UUg(U

n)
]

DUV V
n = (1 − θ)δt [UV Π(V n)] (D.12)

+

(

1

2
− θ

)

δt [UV V n(V
n, V, n) + UV V n(V, V

n, n)]

+
1

2
δt
[

UV V n(V
n, V 0, n) + UV V n(V

0, V n, n)
]

− θ2δt2 [UV ψI(V
n, ψ, I)]

DUχχ
n = Uχn(χ

n, n) (D.13)

+ (1 − θ)δt [UχΠ(χn) + Uχσ(χ
n)]

+

(

1

2
− θ

)

δt

[

Uχχn(χ
n, χ, n) + Uχχn(χ, χ

n, n)

+ UUχn(U, χ
n, n)

]

+
1

2
δt

[

Uχχn(χ
n, χ0, n) + Uχχn(χ

0, χn, n)

+ UUχn(U
0, χn, n)

]

− θ2δt2
[

Uχψψ(χn, ψ, ψ) + UχII(χ
n, I, I) + Uχng(χ

n, n)
]
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QUψψ
n =

1

2
δt
[

Uψψ(ψn, ψ + ψ0) + Uψψ(ψ + ψ0, ψn)
]

(D.14)

− 1

2
θ2δt2







UUψψ(U 0, ψn, ψ + ψ0) + UUψψ(U 0, ψ + ψ0, ψn)

Uχψψ(χ0, ψn, ψ + ψ0) + Uχψψ(χ0, ψ + ψ0, ψn)

+ UV ψI(V
0, ψn, I + I0)







QUII
n =

1

2
δt
[

UII(I
n, I + I0) + UII(I + I0, In)

]

(D.15)

− 1

2
θ2δt2







UUII(U
0, In, I + I0) + UUII(U

0, I + I0, In)

UχII(χ
0, In, I + I0) + UχII(χ

0, I + I0, In)

+ UV ψI(V
0, ψ + ψ0, In)







QUpp
n = 0 (D.16)

QUnn
n = δt

[

UUUn(U
0, U 0, nn) + UV V n(V

0, V 0, nn)

+ Uχχn(χ
0, χ0, nn) + UUχn(U

0, χ0, nn) + Ung(n
n)

]

(D.17)

+ δt2
[

UUng(U
0, nn) + Uχng(χ

0, nn)
]

D.1.2 Toroidal Velocity Equation

SV UU
n+1 = −θδt

[

VUV n(U
n+1, V, n) + VUΠ(Un+1)

]

(D.18)

− θ2δt2
[

VUψI(U
n+1, ψ, I)

]

SV V V
n+1 = VV n(V

n+1, n) (D.19)

− θδt

[

VUV n(U, V
n+1, n) + VV χn(V

n+1, χ, n)

+ VV Π(V n+1) + VV σ(V
n+1)

]

− θ2δt2
[

VV ψψ(V n+1, ψ, ψ)
]

SV χχ
n+1 = −θδt

[

VV χn(V, χ
n+1, n) + VχΠ(χn+1)

]

(D.20)

− θ2δt2
[

VχψI(χ
n+1, ψ, I)

]
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DV UU
n = (1 − θ)δt [VUΠ(Un)] (D.21)

+

(

1

2
− θ

)

δt [VUV n(U
n, V, n)] +

1

2
δt
[

VUV n(U
n, V 0, n)

]

− θ2δt2 [VUψI(U
n, ψ, I)]

DV V V
n = VV n(V

n, n)(1 − θ)δt [VV Π(V n) + VV σ(V
n)] (D.22)

(

1

2
− θ

)

δt [VUV n(U, V
n, n) + VV χn(V

n, χ, n)]

+
1

2
δt
[

VUV n(U
0, V n, n) + VV χn(V

n, χ0, n)
]

− θ2δt2 [VV ψψ(V n, ψ, ψ)]

DV χχ
n = (1 − θ)δt [VχΠ(χn)] (D.23)

+

(

1

2
− θ

)

δt [VV χn(V, χ
n, n)] +

1

2
δt
[

VV χn(V
0, χn, n)

]

− θ2δt2 [VχψI(χ
n, ψ, I)]

QV ψψ
n =

1

2
δt
[

VψI(ψ
n, I + I0)

]

(D.24)

+
1

2
θδt2

[

VV ψψ(V 0, ψ + ψ0, ψn) + VV ψψ(V 0, ψn, ψ + ψ0)

+ UUψI(U
0, ψn, I + I0) + UχψI(χ

0, ψn, I + I0)

]

QV II
n =

1

2
δt
[

VψI(ψ + ψ0, In)
]

(D.25)

+
1

2
θδt2

[

UUψI(U
0, ψ + ψ0, In) + UχψI(χ

0, ψ + ψ0, In)
]

QV pp
n = 0 (D.26)

QV nn
n = δt

[

VUV n(U
0, V 0, nn) + VV χn(V

0, χ0, nn)
]

(D.27)
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D.1.3 Compressional Velocity Equation

SχUU
n+1 = XUn(U

n+1, n) (D.28)

− θδt

[

XUUn(U
n+1, U, n) +XUUn(U,U

n+1, n)

+XUχn(U
n+1, χ, n) +XUΠ(Un+1) +XUσ(U

n+1)

]

− θ2δt2

[

XUψψ(Un+1, ψ, ψ) +XUII(U
n+1, I, I)

+XUp(U
n+1, p) +XUng(U

n+1, n)

]

SχV V
n+1 = −θδt

[

XV V n(V
n+1, V, n) +XV V n(V, V

n+1, n)

+XV Π(V n+1)

]

(D.29)

− θ2δt2
[

XV ψI(V
n+1, ψ, I)

]

SUχχ
n+1 = Xχn(χ

n+1, n) (D.30)

− θδt

[

Xχχn(χ
n+1, χ, n) +Xχχn(χ, χ

n+1, n)

+XUχn(U, χ
n+1, n) +XχΠ(χn+1) +Xχσ(χ

n+1)

]

− θ2δt2

[

Xχψψ(χn+1, ψ, ψ) +XχII(χ
n+1, I, I)

+Xχp(χ
n+1, p) +Xχg(χ

n+1)

]
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DχUU
n = XUn(U

n, n) (D.31)

+ (1 − θ)δt [XUΠ(Un) +XUσ(U
n)]

+

(

1

2
− θ

)

δt

[

XUUn(U
n, U, n) +XUUn(U,U

n, n)

+XUχn(U
n, χ, n)

]

+
1

2
δt

[

XUUn(U
n, U 0, n) +XUUn(U

0, Un, n)

+XUχn(U
n, χ0, n)

]

− θ2δt2

[

XUψψ(Un, ψ, ψ) +XUII(U
n, I, I)

+XUp(U
np) +XUng(U

n, n)

]

DχV V
n = (1 − θ)δt

[

XV Π(V n+1)
]

(D.32)
(

1

2
− θ

)

δt [XV V n(V
n, V, n) +XV V n(V, V

n, n)]

+
1

2
δt
[

XV V n(V
n, V 0, n) +XV V n(V

0, V n, n)
]

− θ2δt2 [XV ψI(V
n, ψ, I)]

Dχχχ
n = Xχn(χ

n, n) (D.33)

+ (1 − θ)δt [XχΠ(χn) +Xχσ(χ
n)]

+

(

1

2
− θ

)

δt

[

Xχχn(χ
n, χ, n) +Xχχn(χ, χ

n, n)

+XUχn(U, χ
n, n)

]

+
1

2
δt

[

Xχχn(χ
n, χ0, n) +Xχχn(χ

0, χn, n)

+XUχn(U
0, χn, n)

]

− θ2δt2

[

Xχψψ(χn, ψ, ψ) +XχII(χ
n, I, I)

+Xχp(χ, p) +Xχng(χ
nn)

]
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Qχψψ
n =

1

2
δt
[

Xψψ(ψn, ψ + ψ0) +Xψψ(ψ + ψ0, ψn)
]

(D.34)

− 1

2
θ2δt2







XUψψ(U 0, ψn, ψ + ψ0) +XUψψ(U 0, ψ + ψ0, ψn)

+Xχψψ(χ0, ψn, ψ + ψ0) +Xχψψ(χ0, ψ + ψ0, ψn)

+XV ψI(V
0, ψn, I + I0)







QχII
n =

1

2
δt
[

XII(I
n, I + I0) +XII(I + I0, In)

]

(D.35)

− 1

2
θ2δt2







XUII(U
0, In, I + I0) +XUII(U

0, I + I0, In)

XχII(χ
0, In, I + I0) +XχII(χ

0, I + I0, In)

+XV ψI(V
0, ψ + ψ0, In)







Qχpp
n = δt [Xp(p

n)] + θδt2
[

XUp(U
0, pn) +Xχp(χ

0, pn)
]

(D.36)

Qχnn
n = δt

[

XUUn(U
0, U 0, nn) +XV V n(V

0, V 0, nn)

+Xχχn(χ
0, χ0, nn) +XUχn(U

0, χ0, nn) +Xng(n
n)

]

(D.37)

+ δt2
[

XUng(U
0, nn) +Xχng(χ

0, nn)
]

D.1.4 Density Equation

Snnn
n+1 = Nn(n

n+1) (D.38)

− θδt
[

NnU(nn+1, U) +Nnχ(n
n+1, χ) +NnDn

(nn+1)
]

Dnnn
n = Nn(n

n) (D.39)

+ (1 − θ)δt [NnU(nn, U) +Nnχ(n
n, χ) +NnDn

(nn)]

RnUU
n+1 = θδt

[

NnU(n, Un+1)
]

(D.40)

RnV V
n+1 = 0 (D.41)

Rnχχ
n+1 = θδt

[

Nnχ(n, χ
n+1)

]

(D.42)
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QnUU
n = −θδt [NnU(n, Un)] + δt

[

NnU(n0, Un)
]

(D.43)

QnV V
n = 0 (D.44)

Qnχχ
n = −θδt [Nnχ(n, χ

n)] + δt
[

Nnχ(n
0, χn)

]

(D.45)

D.1.5 Pressure Equation

Sppp
n+1 = Pp(p

n+1) (D.46)

− θδt

[

PpU(pn+1, U) + Ppχ(p
n+1, χ)

+ Ppκ(p
n+1) + PpIκ(p

n+1, I) + Ppψψκ(p
n+1, ψ, ψ)

]

Dppp
n = Pp(p

n) (D.47)

+ (1 − θ)δt

[

PpU(pn, U) + Ppχ(p
n, χ)

+ Ppκ(p
n) + PpIκ(p

n, I) + Ppψψκ(p
n, ψ, ψ)

]

RpUU
n+1 = θδt

[

PpU(p, Un+1) + PUχσ(U
n+1, χ)

+ PUUσ(U
n+1, U) + PUUσ(U,U

n+1)

]

(D.48)

RpV V
n+1 = θδt

[

PV V σ(V
n+1, V ) + PV V σ(V, V

n+1)
]

(D.49)

Rpχχ
n+1 = θδt

[

Ppχ(p, χ
n+1) + PUχσ(U

n+1, χ, σ)

+ Pχχσ(χ
n+1, χ) + Pχχσ(χ, χ

n+1)

]

(D.50)
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QpUU
n = (1 − θ)δt [PpU(p, Un)] + δt

[

PpU(p0, Un)
]

(D.51)

+

(

1

2
− θ

)

δt

[

PUχσ(U
n, χ)

+ PUUσ(U
n, U) + PUUσ(U,U

n)

]

1

2
δt

[

PUχσ(U
n, χ0)

+ PUUσ(U
n, U 0) + PUUσ(U

0, Un)

]

QpV V
n =

(

1

2
− θ

)

δt [PV V σ(V
n, V ) + PV V σ(V, V

n)] (D.52)

+
1

2
δt
[

PV V σ(V
n, V 0) + PV V σ(V

0, V n)
]

Qpχχ
n = (1 − θ)δt [Ppχ(p, χ

n)] + δt
[

Ppχ(p
0, χn)

]

(D.53)

+

(

1

2
− θ

)

δt

[

PUχσ(U, χ
n)

+ Pχχσ(χ
n, χ) + Pχχσ(χ, χ

n)

]

1

2
δt

[

PUχσ(U
0, χn)

+ Pχχσ(χ
n, χ0) + Pχχσ(χ

0, χn)

]

Op = δt
[

PpeI(pe, I) + Pψψη(ψ, ψ) + PIIη(I, I)
]

(D.54)

D.1.6 Electron Pressure Equation

Speψψ
n+1 = −θδt

[

Pψψη(ψ
n+1, ψ) + Pψψη(ψ, ψ

n+1)

+ Ppψψκ(pe, ψ
n+1, ψ) + Ppψψκ(pe, ψ, ψ

n+1)

]

(D.55)

SpeII
n+1 = −θδt

[

PIIη(I
n+1, I) + PIIη(I, I

n+1)

+ PpeI(pe, I
n+1) + PpIκ(pe, I

n+1)

]

(D.56)

Spepe
pn+1
e = Pp(p

n+1
e ) (D.57)

− θδt

[

PpU(pn+1
e , U) + Ppχ(p

n+1
e , χ) + PpeI(p

n+1
e , I)

+ Ppκ(p
n+1
e ) + PpIκ(p

n+1
e , I) + Ppψψκ(p

n+1
e , ψ, ψ)

]
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Dpeψψ
n =

(

1

2
− θ

)

δt

[

Pψψη(ψ
n, ψ) + Pψψη(ψ, ψ

n)

+ Ppψψκ(pe, ψ
n, ψ) + Ppψψκ(pe, ψ, ψ

n)

]

(D.58)

+
1

2
δt

[

Pψψη(ψ
n, ψ0) + Pψψη(ψ

0, ψn)

+ Ppψψκ(pe, ψ
n, ψ0) + Ppψψκ(pe, ψ

0, ψn)

]

DpeII
n = −θδt [PpeI(pe, I

n) + PpIκ(pe, I
n)] (D.59)

+ δt
[

PpeI(p
0
e, I

n) + PpIκ(p
0
e, I

n)
]

+

(

1

2
− θ

)

δt [PIIη(I
n, I) + PIIη(I, I

n)]

+
1

2
δt
[

PIIη(I
n, I0) + PIIη(I

0, In)
]

Dpepe
pne = Pp(p

n
e ) (D.60)

+ (1 − θ)δt

[

PpU(pne , U) + Ppχ(p
n
e , χ) + PpeI(p

n
e , I)

+ Ppκ(p
n
e ) + PpIκ(p

n
e , I) + Ppψψκ(p

n
e , ψ, ψ)

]

RpeUU
n+1 = θδt

[

PpU(pe, U
n+1)

]

(D.61)

RpeV V
n+1 = 0 (D.62)

Rpeχχ
n+1 = θδt

[

Ppχ(pe, χ
n+1)

]

(D.63)

QpeUU
n = (1 − θ)δt [PpU(pe, U

n)] + δt
[

PpU(p0
e, U

n)
]

(D.64)

QpeV V
n = 0 (D.65)

Qpeχχ
n = (1 − θ)δt [Ppχ(pe, χ

n)] + δt
[

Ppχ(p
0
e, χ

n)
]

(D.66)

Ope
= 0 (D.67)
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D.1.7 Magnetic Flux Equation

Sψψψ
n+1 = Ψψ(ψn+1) (D.68)

− θδt

[

ΨψU(ψn+1, U) + Ψψχ(ψ
n+1, χ)

+ ΨψI(ψ
n+1, I) + Ψψη(ψ

n+1)+

]

SψII
n+1 = −θδt

[

ΨψI(ψ, I
n+1)

]

(D.69)

Sψpe
pn+1
e = 0 (D.70)

Dψψψ
n = Ψψ(ψn) (D.71)

(1 − θ)δt

[

ΨψU(ψn, U) + Ψψχ(ψ
n, χ)

+ Ψψη(ψ
n)+

]

+ (
1

2
− θ)δt [ΨψI(ψ

n, I)] +
1

2
δt
[

ΨψI(ψ
n, I0)

]

DψII
n = (

1

2
− θ)δt [ΨψI(ψ, I

n)] +
1

2
δt
[

ΨψI(ψ
0, In)

]

(D.72)

Dψpe
pne = 0 (D.73)

RψUU
n+1 = θδt

[

ΨψU(ψ,Un+1)
]

(D.74)

RψV V
n+1 = 0 (D.75)

Rψχχ
n+1 = θδt

[

Ψψχ(ψ, χ
n+1)

]

(D.76)

QψUU
n = −θδt [ΨψU(ψ,Un)] + δt

[

ΨψU(ψ0, Un)
]

(D.77)

QψV V
n = 0 (D.78)

Qψχχ
n = −θδt [Ψψχ(ψ, χ

n)] + δt
[

Ψψχ(ψ
0, χn)

]

(D.79)
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D.1.8 Toroidal Magnetic Field Equation

SIψψ
n+1 = −θδt

[

Iψψ(ψn+1, ψ) + Iψψ(ψ, ψn+1)

+ IψV (ψn+1, V )

]

(D.80)

SIII
n+1 = II(I

n+1) (D.81)

− θδt

[

IIU(In+1, U) + IIχ(I
n+1, χ) + IIη(I

n+1)

+ III(I
n+1, I) + III(I, I

n+1)

]

SIpe
pn+1
e = −θδt

[

Ipe
(pn+1
e )

]

(D.82)

DIψψ
n = (1 − θ)δt [IψV (ψn, V )] (D.83)

+

(

1

2
− θ

)

δt [Iψψ(ψn, ψ) + Iψψ(ψ, ψn)]

+
1

2
δt
[

Iψψ(ψn, ψ0) + Iψψ(ψ0, ψn)
]

DIII
n = II(I

n) + (1 − θ)δt

[

IIU(In+1, U) + IIχ(I
n, χ)

+ IIη(I
n)

]

(D.84)

+

(

1

2
− θ

)

δt [III(I
n, I) + III(I, I

n)]

+
1

2
δt
[

III(I
n, I0) + III(I

0, In)
]

DIpe
pne = (1 − θ)δt [Ipe

(pne )] (D.85)

RIUU
n+1 = θδt

[

IIU(I, Un+1)
]

(D.86)

RIV V
n+1 = θδt

[

IψV (ψ, V n+1)
]

(D.87)

RIχχ
n+1 = θδt

[

IIχ(I, χ
n+1)

]

(D.88)
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QIUU
n = −θδt [IIU(I, Un)] + δt

[

IIU(I0, Un)
]

(D.89)

QIV V
n = −θδt [IψV (ψ, V n)] + δt

[

IψU(ψ0, V n)
]

(D.90)

QIχχ
n = −θδt [IIχ(I, χn)] + δt

[

IIχ(I
0, χn)

]

(D.91)

D.2 Matrix Element Component Terms

The terms in the above equations are categorized and defined in the fol-

lowing sections. Each term has been integrated by parts to arrive at the

simplest expression for which the order of differentiation on the trial func-

tion is roughly equal to that on the physical fields. The integrations by parts

of tensor quantities are aided by use of the following identities, which hold

for any symmetric tensor Π:

R2ν∇ϕ · ∇ × (∇ · Π) = R2νZ∇ϕ · Π · ∇ϕ−∇ν · Π · ∇Z (D.92)

+R∇ϕ ·
[

∇∇(νR)×̇Π
]

+ ∇ · A1

−R2ν∇ϕ · (∇ · Π) = R2∇ν · Π · ∇ϕ+ ∇ · A2 (D.93)

−ν∇ · (∇ · Π) = −∇∇ν : Π + ∇ · A3 (D.94)

where

A1 = −R2ν∇ϕ× (∇ · Π) −RΠ · [∇ϕ×∇(Rν)] + νΠ · ∇z
A2 = −R2νΠ · ∇ϕ
A3 = ∇ν · Π − ν∇ · Π.

In order to simplify the notation of the following terms, A ≡ B is defined

to mean A =
∫

dA B.
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D.2.1 Magnetohydrodynamic Terms

The terms in this section are the basic magnetohydrodynamic terms in the

two-fluid equations, which do not depend on any specific choice of closure.

These terms include convection, internal forces (pressure, Lorentz force), and

electromagnetic induction.

Nn(n) ≡ νn

NnU(n, U) ≡ ν [U, n]

Nnχ(n, χ) ≡ n 〈ν, χ〉 − ∇ · (νn∇χ)

NnDn
(n,Dn) ≡ Dnν∇2n

(D.95)

UUn(U, n) ≡ − 1
R2n 〈R2ν, U〉

+ ∇ · (νn∇U)

Uχn(χ, n) ≡ −R2ν [n, χ]

UUUn(U,U, n) ≡ 1
R2n∆∗U [R2ν, U ] + 1

2R2 〈U,U〉 [R2ν, n]

− [νn∆∗U,U ] −
[

1
2
ν 〈U,U〉 , n

]

UV V n(V, V, n) ≡ 1
2R2 [ν,R2]V V n

−
[

1
R
νnV V,R

]

UUχn(U, χ, n) ≡ 1
R2n∆∗U 〈R2ν, χ〉 − [U, χ] [R2ν, n]

−∇ · (νn∆∗U∇χ) − [R2ν [χ, U ] , n]

Uχχn(χ, χ, n) ≡ 1
2
〈χ, χ〉 [R2ν, n]

−
[

1
2
R2ν 〈χ, χ〉 , n

]

Uψψ(ψ, ψ) ≡ − 1
R2 [R2ν, ψ] ∆∗ψ

− [ψ, ν∆∗ψ]

UII(I, I) ≡ −R2νI
[

I, 1
R2

]

(D.96)

VV n(V, n) ≡ νnV

VUV n(U, V, n) ≡ νn [U, V ]

VV χn(V, χ, n) ≡ −νn 〈χ, V 〉
VψI(ψ, I) ≡ ν [I, ψ]

(D.97)
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XUn(U, n) ≡ ν [n, U ]

Xχn(χ, n) ≡ −n 〈ν, χ〉
+ ∇ · (νn∇χ)

Xp(p) ≡ −ν∇2p

XUUn(U,U, n) ≡ − 1
R2n∆∗U 〈ν, U〉 + 1

2
n
〈

ν, 〈U,U〉
R2

〉

+ ∇ · ( 1
R2νn∆∗U∇U) −∇ ·

[

1
2
νn∇

(

1
R2 〈U,U〉

)]

XV V n(V, V, n) ≡ 1
2
nV V

〈

1
R2 , ν

〉

+ ∇ ·
(

1
R3νnV V∇R

)

XUχn(U, χ, n) ≡ (n∇2ν + 〈n, ν〉) [U, χ] + n∆∗U [ν, χ]

+ ∇ · (νn∇ [U, χ] − n [U, χ]∇ν) − [νn∆∗U, χ]

Xχχn(χ, χ, n) ≡ 1
2
n 〈ν, 〈χ, χ〉〉
− ∇ ·

(

1
2
νn∇〈χ, χ〉

)

Xψψ(ψ, ψ) ≡ 1
R2 ∆

∗ψ 〈ν, ψ〉
− ∇ ·

(

1
R2ν∆

∗ψ∇ψ
)

XII(I, I) ≡ 1
R2 I 〈ν, I〉
− ∇ ·

(

1
R2νI∇I

)

(D.98)

Ψψ(ψ) ≡ νψ

ΨψU(ψ,U) ≡ ν [U, ψ]

Ψψχ(ψ, χ) ≡ −ν 〈χ, ψ〉
ΨψI(ψ, I) ≡ diν

1
n

[ψ, I]

(D.99)
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II(I) ≡ νI

IIU(I, U) ≡ R2ν
[

U, I
R2

]

IψV (ψ, V ) ≡ R2ν
[

V
R2 , ψ

]

IIχ(I, χ) ≡ I
R2 〈R2ν, χ〉 − ∇ · (νI∇χ)

Iψψ(ψ, ψ) ≡ di
∆∗ψ
R2n

[ψ,R2ν] +
[

di
1
n
ν∆∗ψ, ψ

]

III(I, I) ≡ diR
2νI

[

1
R2n

, I
]

Ipe
(pe) ≡ diR

2ν
[

1
n
, pe
]

(D.100)

Pp(p) ≡ νp

PpU(p, U) ≡ ν [U, p]

Ppχ(p, χ) ≡ Γp 〈ν, χ〉 + (Γ − 1)ν 〈p, χ〉 − ∇ · (Γνp∇χ)

PpeI(pe, I) ≡ di
(

1
n
ν [pe, I] + Γνpe

[

1
n
, I
])

(D.101)

Terms Arising From Analytic B Advance The following terms arise

from the procedure outlined in section 3.3.2 of using the analytic form of Ḃ

to eliminate the advanced-time magnetic field from the velocity advance.

UUψψ(U, ψ, ψ) ≡ 1
R2 〈[R2ν, ψ] , [U, ψ]〉 − 1

R2 [R2ν, [U, ψ]] ∆∗ψ

+ [ν∆∗ [U, ψ] , ψ] + [ν∆∗ψ, [U, ψ]]

−∇ ·
(

1
R2 [R2ν, ψ]∇ [U, ψ]

)

UUII(U, I, I) ≡ [R2, ν] I
[

U, I
R2

]

−
[

R2, νI
[

U, I
R2

]]

UV ψI(V, ψ, I) ≡ [R2, ν] I
[

V
R2 , ψ

]

−
[

R2, νI
[

V
R2 , ψ

]]

Uχψψ(χ, ψ, ψ) ≡ − 1
R2 〈[R2ν, ψ] , 〈χ, ψ〉〉 + 1

R2 [R2ν, 〈χ, ψ〉] ∆∗ψ

− [ν∆∗ 〈χ, ψ〉 , ψ] − [ν∆∗ψ, 〈χ, ψ〉]
+ ∇ · 1

R2 [R2ν, ψ]∇〈χ, ψ〉
UχII(χ, I, I) ≡ 1

R2 [ν,R2] I (I∆∗χ+ 〈I, χ〉)
−
[

1
R2νI (I∆∗χ+ 〈I, χ〉) , R2

]

(D.102)
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VUψI(U, ψ, I) ≡ [ν, U ] [I, ψ] + 1
R2 I [U,R2] [ν, ψ]

+
[

R2ν
[

U, I
R2

]

, ψ
]

+ [I, ν [U, ψ]]

VV ψψ(V, ψ, ψ) ≡ − [ν, ψ] [V, ψ] − 1
R2V [ψ,R2] [ν, ψ]

+
[

R2ν
[

V
R2 , ψ

]

, ψ
]

VχψI(χ, ψ, I) ≡ [ν, ψ] (I∆∗χ+ 〈I, χ〉) − 〈χ, ψ〉 [ν, I]

− [ν (I∆∗χ+ 〈I, χ〉) , ψ] − [I, ν 〈χ, ψ〉]

(D.103)

XUp(U, p) ≡ −∇2ν [U, p]

+ ∇ · ([U, p]∇ν − ν∇ [U, p])

Xχp(χ, p) ≡ ∇2ν (Γp∇2χ+ 〈p, χ〉)
+ ∇ · [ν∇ (Γp∇2χ+ 〈p, χ〉) − (Γp∇2χ+ 〈p, χ〉)∇ν]

XUψψ(U, ψ, ψ) ≡ 1
R2 〈ν, [U, ψ]〉∆∗ψ − 1

R2 〈〈ν, ψ〉 , [U, ψ]〉

− ∇ ·
(

1
R2ν∆

∗ψ∇ [U, ψ] + 1
R2ν∆

∗ [U, ψ]∇ψ
− 1

R2 〈ν, ψ〉∇ [U, ψ]

)

XUII(U, I, I) ≡ −∇2νI
[

U, I
R2

]

+ ∇ ·
[

I
[

U, I
R2

]

∇ν − 1
R2ν∇

(

R2I
[

U, I
R2

])]

XV ψI(V, ψ, I) ≡ −∆∗νI
[

V
R2 , ψ

]

+ ∇ ·
[

I
[

V
R2 , ψ

]

∇ν − 1
R2ν∇

(

R2I
[

V
R2 , ψ

])]

Xχψψ(χ, ψ, ψ) ≡ − 1
R2 〈ν, 〈χ, ψ〉〉∆∗ψ + 1

R2 〈〈ν, ψ〉 , 〈χ, ψ〉〉

∇ ·
(

1
R2ν∆

∗ψ∇〈χ, ψ〉 + 1
R2ν∆

∗ 〈χ, ψ〉∇ψ
− 1

R2 〈ν, ψ〉∇ 〈χ, ψ〉

)

XχII(χ, I, I) ≡ 1
R2∇2νI (I∇2χ+ 〈I, χ〉)

+ ∇ ·
{

1
R2ν∇ [I (I∇2χ+ 〈I, χ〉)]

− 1
R2∇νI (I∇2χ+ 〈I, χ〉)

}

(D.104)
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D.2.2 Collisional Forces

Assuming the collisional force R is of the form given by equation (3.2) (which

neglects the thermal force), the contributions to the scalar equations due to

this force are given by

Ψψη(ψ) ≡ νη∆∗ψ

IIη(I) ≡ − 1
R2η 〈R2ν, I〉 + ∇ · (νη∇I)

Pψψη(ψ, ψ) ≡ (Γ − 1) 1
R2νη∆

∗ψ∆∗ψ

PIη(I) ≡ (Γ − 1) 1
R2νη 〈I, I〉 .

(D.105)

D.2.3 Gravity

These terms are obtained assuming a gravitational force of the form given

by equation (3.10). (Note that here the subscripts on g denote vector com-

ponents, not derivatives.)

Ung(n) ≡ gRν [n,R] − gZRν 〈n,R〉
Xng(n) ≡ n

R2 (gR 〈ν,R〉 + gZR [ν,R]) .
(D.106)

Gravitational Terms Arising From Analytic Density Advance The

numerical stability of simulations of gravitational modes may be greatly im-

proved by Taylor expanding n in the gravity term of the velocity advance and

using the analytic form of ṅ to eliminate the advanced-time occurrences of

n in that term (in the same manner as B is treated throughout the velocity

advance). This procedure leads to the following terms:

UUng(U, n) ≡ − [n, U ]
(

1
R
gZ 〈R2ν,R〉 − 1

R2 gR [ν,R]
)

+ ∇ · (RνgZ [n, U ]∇R) − [νgR [n, U ] , R]

Uχng(χ, n) ≡ − (n∇2χ+ 〈n, χ〉)
(

1
R
gZ 〈R2ν,R〉 − 1

R2 gR [ν,R]
)

+ ∇ · [νRgZ (n∇2χ+ 〈n, χ〉)∇R]

− [νgR (n∇2χ+ 〈n, χ〉) , R]

(D.107)
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XUng(U, n) ≡ [U, n]
(

RgZ [ν,R] + 1
R2 gR 〈ν,R〉

)

− [RνgZ [U, n] , R] −∇ ·
[

1
R2νgR [U, n]∇R

]

Xχng(χ, n) ≡ − (n∇2χ+ 〈n, χ〉)
(

RgZ [ν,R] + 1
R2 gR 〈ν,R〉

)

− [RνgZ (n∇2χ+ 〈n, χ〉) , R]

−∇ ·
[

1
R2νgR (n∇2χ+ 〈n, χ〉)∇R

]

.

(D.108)

D.2.4 Heat Flux Terms

These terms are obtained assuming a heat flux density of the form given by

equation (3.6).

Pκ◦(κ, T ) ≡ −(Γ − 1)νκ◦∇2T

Pκ‖(κ‖, T, ψ, ψ,B
−2) ≡ −(Γ − 1)κ‖

1
B2 [ψ, ν] [ψ, T ]

+ ∇ ·
[

(Γ − 1)νκ‖bb · ∇T
]

Pκ×(κ×, T, I, B
−2) ≡ (Γ − 1)κ×

I
B

[ν, T ]

+ [(Γ − 1)νκ×I, T ] ,

(D.109)

where

B2 =
1

R2

[

〈ψ, ψ〉 + I2
]

.

D.2.5 Density Source

The density source term is:

Nσ(σ) ≡ νσ. (D.110)

The contributions to the momentum equation due to the density source
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are:
UUσ(U, σ) ≡ 1

R2 〈R2ν, U〉σ + ∇ · (νσ∇U)

Uχσ(χ, σ) ≡ − [R2ν, χ]σ + [χ,R2νσ]

VV σ(V, σ) ≡ −νV σ
XUσ(U, σ) ≡ [ν, U ]σ + [U, νσ]

Xχσ(χ, σ) ≡ 〈ν, χ〉σ + ∇ · (νσ∇χ)

(D.111)

The contributions to the pressure equation do to the density source are:

Pσ ≡ PUUσ + PV V σ + Pχχσ + PUχσ

PUUσ(U,U, σ) ≡ 1
2R2νσ 〈U,U〉

PV V σ(V, V, σ) ≡ 1
2R2νσV

2

Pχχσ(χ, χ, σ) ≡ 1
2
νσ 〈χ, χ〉

PσUχ(U, χ, σ) ≡ νσ [χ, U ]

(D.112)

D.2.6 Viscosity

The viscous terms are each the sum of the isotropic, parallel, and gyroviscous

contributions:

ABΠ(B) = ABΠ◦(B) + ABΠ‖
(B) + ABΠ∧(B)

where A and B are each one of {U, V, χ}. Each contribution is described in

the following sections.

Isotropic Viscosity

These terms result from isotropic viscosity of the form given by equation (3.4c).
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UUΠ◦(U) ≡ 1
R2 [(〈µ,R2ν〉 + µ∆∗(R2ν)) ∆∗U

+ ∇2µ 〈R2ν, U〉 + ∆∗(R2ν) 〈µ, U〉]
UχΠ◦(χ) ≡ −∇2(R2ν) [µ, χ] − ∆∗µ [R2ν, χ]

− 1
R2 ∆

∗(R2χ) [R2ν, µ]

VV Π◦(V ) ≡
[

〈ν, µ〉 + 1
R2µ∆∗(R2ν)

]

V

XUΠ◦(U) ≡ ∇2ν [µ, U ] + ∇2µ [ν, U ] + ∆∗U [ν, µ]

XχΠ◦(χ) ≡ ∇2ν 〈µ, χ〉 + ∇2µ 〈ν, χ〉 + 2µc∇2ν∇2χ

(D.113)

Parallel Viscosity

These terms are obtained assuming a parallel viscosity of the form given

in equation (3.4a). These equations were obtained using equations (D.92)–

(D.94). For compactness, derivatives are written as subscripts in the follow-

ing expressions (i.e. νZ = ∂Zν).

Each term takes the form

ABΠ‖
(B) ≡ µ‖DASB (D.114)

where A and B are each one of {U, V, χ}.

DU =
3

B2

{

−1

2
R2

[

ν,
〈ψ, ψ〉
R2

]

+ 〈ψ, [ν, ψ]〉 − 1

R2
I2νZ

− 2

R2

[

νZ(ψ2
Z − ψ2

R) + 2νRψRψZ
]

}

DV = −3
I

B2
[ν, ψ]

DX = −∇2ν

(

1 − 3
〈ψ, ψ〉
R2B2

)

+
3

R2B2

(

1

2
R2

〈

ν,
〈ψ, ψ〉
R2

〉

− 〈ψ, 〈ν, ψ〉〉 +
1

R
I2νR

)
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SU =
1

R2B2

(

−1

2
R2

[

U,
〈ψ, ψ〉
R2

]

+ 〈ψ, [U, ψ]〉 − 1

R2
I2UZ

)

SV = − I

B2

[

ψ,
V

R2

]

Sχ =
1

R2B2

(

1

2
R2

〈

χ,
〈ψ, ψ〉
R2

〉

− 〈ψ, 〈χ, ψ〉〉 +
1

R
I2χR + ∇2χ 〈ψ, ψ〉

)

− 1

3
∇2χ

Gyroviscosity

These terms are obtained using equations (D.92)–(D.94) assuming a gyrovis-

cosity of the form given by equation (3.4b).

UUΠ∧(U) ≡ piI

2R3B2

×



















































(

1 + 3
2
〈ψ,ψ〉
R2B2

)

[

([R3νZ ]Z − [R3νR]R)
([

UR

R

]

Z
+
[

UZ

R

]

R

)

−([R3νR]Z + [R3νZ ]R)
([

UZ

R

]

Z
−
[

UR

R

]

R

)

]

+ 9
2RB2

×













(ψ2
Z − ψ2

R)

(

RνZ
[(

UZ

R

)

Z
−
(

UR

R

)

R

]

− 1
R3UZ [(R3νZ)Z − (R3νR)R]

)

+ 2ψRψZ

(

RνZ
[(

UR

R

)

Z
+
(

UZ

R

)

R

]

− 1
R3UZ [(R3νR)Z + (R3νZ)R]

)






























































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UV Π∧(V ) ≡ pi
B2

×



































1
4R2

(

1 − 3I2

B2R2

)

×
(〈

V
R2 , R

4 [ψ, ν]
〉

−
〈

ψ,R4
[

ν, V
R2

]〉

+ 1
R2

[

ν,R6
〈

V
R2 , ψ

〉])

− 3
4B2

[

ψ, V
R2

]

×
(

2 〈ψ, 〈ψ, ν〉〉 −R2
〈

ν, 〈ψ,ψ〉
R2

〉

− ∆∗ν 〈ψ, ψ〉 + 6ψZ [ν, ψ]
)

+ 9I2

2R2B2νZ
〈

ψ, V
R2

〉



































UχΠ∧(χ) ≡ piI

2R3B2

×











































[(χRR − χZZ) ([R3νR]R − [R3νZ ]Z) + 2χRZ ([R3νR]Z + [R3νZ ]R)]

+ 3
R2B2

















(∆∗χ[ψ2
Z − ψ2

R] − χZZψ
2
Z + χRRψ

2
R)

× ([R3νR]R − [R3νZ ]Z)

+ 2χRZ (ψ2
Z [R3νR]Z + ψ2

R[R3νZ ]R)

− 2ψRψZ

(

[

χZZ − 1
R
χR
]

[R3νR]Z

+
[

χRR − 1
R
χR
]

[R3νZ ]R

)



























































VUΠ∧(U) ≡ − pi
4RB2

×































(

1 − 3 I2

R2B2

)

(

〈ψ,R [U, ν]〉 + 〈ν,R [U, ψ]〉
− 1

R3 [U,R4 〈ν, ψ〉] + UR [ν, ψ] + 2
R
ψZ 〈ν, U〉

)

+ 3
RB2 [ψ, ν]

(

2 〈ψ, 〈U, ψ〉〉 − ∆∗U 〈ψ, ψ〉
− 1

R2 〈U,R2 〈ψ, ψ〉〉 + [ψ,R2] [ψ,U ]

)

− 18 I2

R2B2 [U,R] 〈ν, ψ〉































VV Π∧(V ) ≡ −piIR
2

B2

(

1 − 3

2

〈ψ, ψ〉
R2B2

)[

ν,
V

R2

]
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VχΠ∧(χ) ≡ − pi
B2

×











1
4

(

1
R2 〈χ,R2 〈ν, ψ〉〉 − 〈ν, 〈χ, ψ〉〉 − 〈ψ, 〈ν, χ〉〉

)

+ 3
2RB2 [ψ, ν]

(

〈ψ,R [χ, ψ]〉 − 1
2
R [χ, 〈ψ, ψ〉]

)

+ 3
4

I2

R2B2 (〈ψ, 〈χ, ν〉〉 + 〈ν, 〈χ, ψ〉〉 − 〈χ, 〈ν, ψ〉〉 − 2∆∗χ 〈ν, ψ〉)











XUΠ∧(U) ≡ − piI

2R2B2

×











































〈〈ν, U〉〉 −R2 [[ν, U ]] + 1
R

[

UR(νZZ − νRR) − 2UZνRZ − 1
R
URνR

]

+ 3
RB2

















([

UZ

R

]

Z
−
[

UR

R

]

R

) (

νZZψ
2
R − νRRψ

2
Z + 1

R
νR[ψ2

Z − ψ2
R]
)

+ 2νRZ
([

UR

R

]

Z
ψ2
R +

[

UZ

R

]

R
ψ2
Z − 1

R2UZ [ψ2
Z − ψ2

R]
)

− 2ψRψZ







[

UR

R

]

Z
νRR +

[

UZ

R

]

R
νZZ

− 1
R2UZ [νZZ − νRR]

− 1
R
νR
[(

UR

R

)

Z
+
(

UZ

R

)

R

]

































































XV Π∧(V ) ≡ − pi
4B2

×















(

1 − 3
R2

I2

B2

)

(

1
R2

〈

ν,R2
〈

V
R2 , ψ

〉〉

−
〈

ψ,
〈

V
R2 , ν

〉〉

−
〈

V
R2 , 〈ψ, ν〉

〉)

+ 6
B2

[

ψ, V
R2

] (

1
R
〈ψ,R [ν, ψ]〉 − 1

2
[ν, 〈ψ, ψ〉]

)

− 6 I2

B2

〈

ψ, V
R2

〉 [(

νZ

R2

)

Z
+
(

νR

R2

)

R

]















XχΠ∧(χ) ≡ piI

B2

×















(

1 + 3
2R2

〈ψ,ψ〉
B2

)

[〈ν, χ〉]

+ 3
2B2

[

(

−1
2
[χ, 〈ψ, ψ〉] + 1

R
〈ψ,R [χ, ψ]〉

) ([

νR

R2

]

R
+
[

νZ

R2

]

Z

)

−
(

−1
2
[ν, 〈ψ, ψ〉] + 1

R
〈ψ,R [ν, ψ]〉

) ([

χR

R2

]

R
+
[

χZ

R2

]

Z

)

]














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Viscous Heating

The contributions from viscous heating (-Π : ∇u) are

PΠ◦ = PΠ◦UU + PΠ◦V V + PΠ◦χχ + PΠ◦Uχ

PΠ◦UU(U,U) ≡ νµ
(

1
R2 ∆

∗U∆∗U − 1
2
[[U,U ]] − 1

R

[

U, 1
R
UZ
])

PΠ◦V V (V, V ) ≡ νµR2
〈

V
R2 ,

V
R2

〉

PΠ◦χχ(χ, χ) ≡ 2ν(µc − µ)∇2χ∇2χ− 2νµ 〈〈χ, χ〉〉
PΠ◦Uχ(U, χ) ≡ −4νµ

(

[〈U, χ〉] −
[

U, 1
R
χR
])

,

PΠ‖
≡ 3µ‖

(

1
2
b · W · b

)2

PΠ∧ ≡ 0

(D.115)

where 1
2
b · W · b = SU + SV + Sχ, as defined in section D.2.6. Note that

gyroviscosity is not dissipative, and does not contribute to viscous heating.

D.2.7 Electron Viscosity

The contribution from electron viscous heating (diΠe : ∇J
n
) is

PΠe
≡ νλ

[

n

〈

∆∗ψ

nR
,
∆∗ψ

R

〉

+
1

R4
(∆∗ψ)2 (D.116)

+
1

R2

(

〈〈I, I〉〉 − 2

R2
I2
R +

1

2
nR4

〈

1

nr2
,
〈I, I〉
R2

〉)]
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O. Klüber, M. Kornherr, P. B. Kotzé, K. Lackner, M. Lenoci, G. Lisi-

tano, A. Mahdavi, H.-M. Mayer, K. McCormick, D. Meisel, V. Mertens,

E. R. Müller, H. Murmann, H. Niedermeyer, W. Poschenreider,

H. Rapp, F. Ryter, J. Roth, F. Schneider, G. Siller, P. Smeulders,
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