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We use the 3D MHD code M3D-C1 [S. Jardin, et al, Comput. Sci. & Disc., 5, 014002 (2012)] to
examine the MHD stability and subsequent evolution of NSTX shot 129169. This discharge had a
period with a non- monotonic safety-factor profile, q, (reversed shear) which was terminated by a
MHD event which abruptly lowered the central safety factor, q0, and greatly reduced the peakedness
of the pressure profile. We show that the equilibrium just before the MHD event occurred was
linearly unstable to many pressure-driven infernal modes. Modes with toroidal mode number n ≥ 3
all had rational surfaces very close to the minimum value of q. However, a non-resonant pressure-
driven (1, 1) mode was also present, and this dominated the non-linear evolution. The final state
in the simulation, after the MHD activity subsided, had a reduced and flattened pressure profile
and a nearly monotonic q-profile, in qualitative agreement with experimental results. The initial
state was also unstable to the resistive interchange criteria in the reversed-shear region, but the
final state was stable everywhere. The ”double tearing mode” (DTM) does not appear to play a
role in the MHD activity of this discharge. In Appendix A we show that in a torus, the DTM is
strongly stabilized by pressure, but it is destabilized in cylindrical geometry (which has been the
most extensively analyzed in the literature),

PACS numbers: 52.30.Cv 52.55.Fa 52.65.kj

I. INTRODUCTION

Recent and present-day spherical tokamaks such as
NSTX [1], MAST [2], NSTX-U [3], MAST-U [4], and
Globus-M [5] tend to have relatively short pulses, where
external heating power is applied before the current pro-
file is fully penetrated and relatively stationary. This
makes them potentially susceptible to a class of pressure-
driven magnetohydrodynamic (MHD) instabilities that
can occur when the central safety factor is above unity,
q0 > 1.

Several recent papers have examined the MHD sta-
bility of NSTX discharges with monotonic q-profiles in
which neutral-beam heating power was applied early in
the discharge when the central safety factor was well
above unity [6–8]. It was found that both non-resonant
and resonant (infernal mode) MHD instabilities could be
excited, in some cases destroying the innermost flux sur-
faces, leading to a flattening of the electron temperature
profile.

Here, we extend this analysis to examine early-time
NSTX discharges in which the q-profile is non-monotonic
(ie. reversed shear). These can arise when early central
heating is applied, and often are associated with a ”trans-
port barrier” leading to elevated electron and ion temper-
atures. However, these discharges are often accompanied
by a ”MHD event” which affects the improved confine-
ment [9, 11].

Several authors have used 3D MHD codes to study
the MHD stability properties of reversed-shear discharges
in conventional aspect ratio tokamaks including DIII-
D [12], TFTR [13–15], Tore-Supra [16, 17], JET [18, 19],
JT-60SA [20], and some generic configurations [21, 22].

These and other calculations have highlighted the role of
resistive interchange modes [12], the (2,1) double tearing
mode (DTM) [15, 23, 24], the (3,1) DTM [25, 26], and
ballooning, infernal, and resonant modes [20]. These un-
stable modes can lead to localized pressure crashes [15,
24], explosive bursts [21–23, 26],reconnection [19, 25],
and/or confinement degradation [18, 20].

In Sec. II we summarize the experimentally observed
MHD properties of NSTX reversed shear discharge
129169. In Sec. III we examine the linear stability prop-
erties of this discharge at a time just before a MHD event
was observed to occur in the experimental discharge. Sec-
tion IV presents the results of a 3D nonlinear MHD simu-
lation starting from this time in which both a minor and
a semi-major MHD event occur (not a DTM). The first
MHD event affects the pressure profile, and the second al-
ters both the current and pressure profiles sufficiently so
that the discharge becomes completely MHD stable and
the flux surfaces reform. This stable final state is dis-
cussed in Sec. V. In Sec. VI we provide a summary with
some discussion. We also include Appendix A in which
we discuss the stability to DTMs of a model equilibrium
with reversed shear in both cylindrical and toroidal ge-
ometry. It is shown that pressure is strongly stabilizing
to DTMs in toroidal geometry while it is strongly desta-
bilizing in cylindrical geometry.

II. A TYPICAL CASE

Consider NSTX shot 129169 which had central re-
versed shear early in the discharge and was of interest
because of the transport barriers associated with the re-
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versed shear region [9]. The reconstructed safety-factor
and surface averaged pressure profiles for several times
are shown in Fig. 1, and magnetic fluctuation data is
shown in Fig.2. The equilibria were reconstructed with
the LRDFIT code [10] using magnetics, motional Stark
effect (MSE), temperature isotherms, and rotation con-
straints.
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FIG. 1. Experimentally reconstructed profiles for the safety
factor and surface averaged pressure from NSTX shot 129169
at four times.

This discharge had a toroidal field of 0.55 T, and a flat-
top current of 1 MA. It was an L-mode discharge, heated
by neutral beam injection (NBI) and high harmonic fast
wave (HHFW). We examine the linear and nonlinear sta-
bility properties of this discharge at time t = 247 ms in
Sec. III and IV. The central electron temperature was
about 2.8 keV at this time.
It is clear from Fig. 2 that some MHD activity began

just before 270 ms. From the top graph in Fig. 2 it is
seen that there was first a strong rapid onset toroidal
mode number n = 1 signal, starting at about 270 ms
and lasting only a ms or less. This is followed by a more
slowly growing n = 1 mode that grows for about 20 ms
and then disappears. From Fig. 1, it is seen that both
the pressure and q-profiles changed significantly during
this period between 267 and 277 ms, presumably due to
the MHD activity.

Also seen from Fig. 1 is that there is a broadening
of the pressure profile that occurs between 247 and 267
ms. Fig. 2 does not show any obvious MHD activity
during this time, but it could be associated with a purely
internal MHD mode that did not register a signal on the
external δB probe.

III. LINEAR STABILITY PROPERTIES

In this section we first present the results of a linear
stability analysis of the equilibrium of interest using the
linearized version of the M3D-C1 code. The equations
being solved are the linearized form of those given in
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FIG. 2. Magnitude and frequencies of MHD activity during
the period 215 - 310 ms.

Sec. V. We also compute the linear stability of the same
configuration but with the resistivity and pressure varied
to better understand the nature of the unstable modes.
We also evaluate the equilibrium with regard to a local
criteria for resistive interchange modes.

The equilibrium at time t = 247 ms is unstable to
many MHD modes, the eigenfunctions of the first 8 are
shown in Fig. 3. We show in Fig. 4 the computed growth
rates of the first 18 unstable modes (n = 1 − 18) using
the actual Spitzer resistivity. Also shown in the figure
(dashed lines) are the growth rates when the resistivity
is increased everywhere by a factor of 10. The fact that
these differ by only a few percent for modes with n > 2
indicates that these are ideal MHD modes.

As a further check on this, we repeated the stability
calculations with zero resistivity. The growth rates were
reduced by less than 1%, except for the n=2 mode, for
which we could not get a convergent result at zero resis-
tivity.

To better understand the drive for these instabilities,
we generated a series of equilibrium with the same q-
profile but reduced pressure profiles. Also shown in Fig. 4
are the stability results for an equilibrium so generated
with β reduced by 5% but the central value of pressure re-
duced by 12% (slightly broadened pressure profile). The
fact that the growth rates are greatly reduced (or made
stable) indicates that these are pressure-driven modes.

For each n, the eigenfunction develops a distinct
poloidal mode number m as shown in Fig. 3. These are
listed in Table I. We see that the ratio ofm/n in the table
for n > 2 ranges from 1.20 to 1.33. The minimum value
of q in this equilibrium is 1.203, so these modes mostly
have resonances where m−nq = 0 very close to the mini-
mum value of q, though several are slightly non-resonant
(withm/n < 1.203). These are infernal modes, similar to
those found in studies with monotonic q-profiles [6, 7, 27]

The n = 1 linear instability is predominantly a non-
resonant m = 1 mode. It is somewhat less localized to
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n=1 n=8n=2 n=3 n=4 n=5 n=6 n=7

FIG. 3. The first 8 linear eigenfunctions showing the perturbed pressure for the reconstructed equilibrium from NSTX shot
129169 at 247 ms. Also shown in each frame are the 2 q = 2 contours, the plasma/vacuum boundary, and the computational
boundary.
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FIG. 4. Growth rates for the first 18 linearly unstable modes
for the reconstructed equilibrium from NSTX shot 129169 at
247 ms using Spitzer resistivity (black solid) and 10 times
Spitzer resistivity (black dashed). Also shown are the growth
rates when the β is reduced by 5% (peak central pressure by
12%.

a particular surface than are the higher-n modes. It is
also predominately an ideal MHD mode as its growth
rate changes very little as the resistivity is increased by
a factor of 10.

It has been known since the 1960’s that confinement
configurations that are stabilized against ideal inter-
change instabilities [28] primarily by magnetic shear can
be subject to resistive interchange instabilities in the
presence of resistivity [29]. In the 1970’s, a general local
criteria for stability to resistive interchange instabilities
was derived [30, 31]. It was shown that if the surface
quantity, DR (see Appendix C), was positive, a resistive
interchange instability could occur with a growth rate
proportional to the 1/3rd power of the resistivity. Sev-
eral authors have noted that reversed shear discharges

with peaked pressures can be unstable to resistive inter-
change modes [10, 12, 32, 33].

The equilibrium reconstructed at time t = 247 ms had
DR positive in the region interior to the minimum value
of q, indicating instability to the resistive interchange
mode in this region. We return to this in Sec. V. How-
ever, this is apparently not the dominant instability for
all n except possibly n = 2, which has a relatively small
growth rate that does increase when the resistivity is in-
creased.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
m 1 3 4 5 6 7 9 10 11 12 13 15 16 17 18 20 21 22

TABLE I. Poloidal mode number m for each of first 18 un-
stable modes shown in Fig. (4)

As noted above, these modes are all pressure driven. It
is likely that the actual experimental profiles were at or
near marginal stability at the time of this equilibrium as
the error in the equilibrium reconstruction has not been
taken into account. Also, kinetic effects and sheared rota-
tion, not included in our calculation, could be stabilizing
these modes near the marginal point.

We note here that although there are many unstable
modes, they are all localized near the same rational sur-
face. We call them different modes because they have
different n and m values, but they largely overlap in the
poloidal flux coordinate.

IV. A NONLINEAR SIMULATION

We show in Figs. 5-9 the results of a 3D nonlinear sim-
ulation, starting from the equilibrium considered in Sec-
tion III. (To clarify the essential 3D effects, we also have
performed a 2D axisymmetric calculation using the same
transport coefficients.) For these calculations, we used
the single fluid option of the nonlinear M3D-C1 code [34]
in which the following equations are evolved in time:
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   FIG. 5. The magnetic energy in the different toroidal harmonics vs time for the nonlinear M3D-C1 simulation. Energies for
n = 5− 8 and n ≥ 9 are included in the calculation but are negligible for all times plotted. Note: 1 τA = 0.00046 ms.
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∂t
+∇ · (nV) = ∇ ·D∇n (1)
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·E (3)
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∂V

∂t
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)
+∇p = J×B−∇ ·Π (5)

3

2

[
∂p

∂t
+∇ · (pV)

]
= −p∇ ·V + J ·E−∇ · q+ SE

(6)

The magnetic field and current density are then deter-
mined by B = ∇×A and J = ∇×B. The symbol ∇⊥
in Eq. (3) refers to the gradient in the (R,Z) plane in
a (R,ϕ, Z) cylindrical coordinate system, and ∆∗ is the
standard toroidal elliptic operator that appears in the
Grad-Shafranov equation. Equation (3) follows from the
gauge condition on A, ∇⊥ ·R−2A = 0. The temperature
is the pressure divided by the density, T ∼ p/n. The
linear form of the code used for linear stability studies is
just the linearized form of these same equations.

The particle diffusion term D in Eq. (1) is a small
term included to aid numerical stability. The resistiv-
ity η in Eq. (4) is the temperature-dependent Spitzer
function [35] with possible enhancement as described in
Appendix B. The term involving λH is hyper-resistivity.
A small value is used to improve numerical stability as
discussed in Appendix B.

The stress tensor in Eq. (5) is of standard form for
viscosity [36], with viscosity coefficient µ. The heat flux
vector, q in Eq. (6) has both an isotropic part and a part
parallel to the magnetic field: q = −κ∇T − κ∥bb · ∇T ,
where b is a unit vector in the direction of the magnetic
field. The numerical values of the transport coefficients
used in the calculation are given in Appendix B.

Note that the source term SE given in Eq. (6) was zero
for these calculations. An energy source is not needed to
sustain the profiles for a calculation spanning such short
times with such small transport coefficients.

The M3D-C1 code uses finite elements in all three di-
mensions. In the (R,Z) plane these are unstructured
”Bell” triangular elements [37] that, for the baseline cal-
culation have a typical size of 1.2 cm. with a total of
26130 vertices per plane. In these calculations we used
24 planes, with structured equally spaced Hermite cu-
bic finite elements. As seen in Fig. 6, the computational
grid extends slightly beyond the last closed flux surface
(LCFS). The region between the LCFS and the computa-
tional boundary is treated as a high-resistivity low pres-
sure plasma.

In Fig. 5, we plot the magnetic energy in the dominant
toroidal harmonics as a function of time for the 3D non-
linear calculation. It is seen from the figure that there
are two seemingly disconnected events occurring in the
time interval 0-2500 τA (about 1.0 ms) after the start
at time 247 ms. The first event, peaking at about 125
τA involves primarily a n = 9 mode, which we see from
Fig. 4 had one of the highest linear growth rates. The
second, higher amplitude and longer lasting event, peaks
at about 1100 τA. It predominantly involves modes with
n = 1, 2, 3, 4 respectively.

To see the effect of the first event, we show in Fig. 6
contours of the difference in the pressure at time 300 τA
from that at time 0 in the simulation. Also shown are
the 2 contours of the q = 2 surfaces, the LCFS, and
the computational boundary. It is seen that the effect of
the first instability event was to slightly redistribute the
pressure in the region interior to the 2 q = 2 surfaces.

We plot in Fig. 7 the q and pressure profiles at the end
of the 3D nonlinear calculation. Also shown are the same
profiles at the end of the companion 2D (axisymmetric)
calculation with the same transport coefficients. We see
that the effect of the 3D instabilities was to lower both
the central safety factor and the central pressure.

We note here the central role of the n = 1 mode in
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FIG. 6. Contours of the difference in the pressure at time
300 τA from that at time 0 in the simulation. Also shown
are the 2 contours of the q = 2 surfaces, the LCFS, and the
computational boundary. (2D contour plot is at the ϕ = 0
plane.)
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FIG. 7. Shown in solid are the q-profile and surface averaged
pressure profile at the end of the nonlinear calculation. Also
shown, in dashed lines, are the q and p profiles for a compan-
ion 2D calculation with the same transport coefficients.

modifying the central p and q profiles. This is an ideal,
non-resonant, pressure driven mode. It is the only mode
with a substantial m = 1 component, which is needed to
affect the profiles near the magnetic axis.

The 3D MHD calculation presented here was per-
formed on the Perlmutter supercomputer at NERSC. It
utilized 1152 processors and required a wall-clock time of
over 200 hours.

V. A FINAL STABLE STATE

The final state of the 3D nonlinear MHD calculation
presented in Sec. IV is nearly axisymmetric and appar-
ently completely MHD stable. A blow-up of the magnetic
energy vs time plot of Fig. 5 shows that the energy in all
the diagnosed toroidal harmonics, up to n = 12, have
magnitudes that are decreasing in time at t = 2500 τA.
Figure 8(f) shows that the surfaces have largely reformed
with only a few small island chains, most notably a (3, 1)
island near the q = 3 surface.
We see from Fig. 7 that the central safety factor, q0,

has dropped from near 6 to just above 2, greatly reducing
the region of reversed shear and its magnitude. In Fig. 9
we plot the resistive interchange stability parameter DR

at the initial and final time of the nonlinear calculation.
We see that at the final time it is negative everywhere,
indicating stability to resistive interchange modes. This
is due to both the reduction in the magnitude of the
reversed shear region and the reduction of the pressure
gradient in this region as seen in Fig. 7.
In this calculation the plasma β was reduced from

3% to 2.3% while the central pressure declined from
µ0p = 0.035 to µ0p = 0.018. To better understand if
it was the drop in q0 or the decrease in the pressure that
most influenced the stability to the resistive interchange
modes, we produced another equilibrium with the same
q-profile as in the initial state but with a reduced pressure
with a β = 1.9% and a central value of µ0p = 0.020. This
equilibrium still had a positive DR in the reversed shear
region, although at lower values than the original. This
indicates that the reversed shear is critical for producing
instability to the resistive interchange mode.

VI. SUMMARY AND DISCUSSION

The nonlinear 3D MHD calculation presented in
Sec. IV produced qualitatively similar results as the
experimental diagnostic measurements and the equilib-
rium reconstructions shown in Figs. 1 and 2. The rear-
rangement of the q and pressure profiles in these non-
monotonic q discharges was not due to double tearing
modes, as often has been speculated [15, 16, 19, 20, 26,
32, 33]. Rather, it was likely due to nearly ideal MHD
modes as shown in Fig. 5.

The unstable modes with n ≥ 3 as shown in Fig. 3 are
ideal infernal modes, similar to those found for mono-
tonic q-profile discharges with q0 > 1 [6, 7]. These modes
have their resonance, the surface with q value that satis-
fies m − nq = 0, very close to the minimum in q where
the magnetic shear is low. As seen in the figure, these
modes are all localized in a narrow band between the two
q = 2 surfaces. Nonlinearly, these modes will tend to re-
duce the pressure gradient where they are localized, as
seen in Fig. 6. Even though they are basically ideal MHD
pressure-driven modes, they can also break magnetic sur-
faces in their vicinity, even in the limit of vanishingly
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(a) (b) (c) (d) (e) (f)

FIG. 8. Poincare plots at times (a)300 τA, (b) 500 τA, (c) 700 τA, (d) 900 τA, (e) 1400 τA, and (f) 2500 τA.
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FIG. 9. The resistive interchange (RI) stability parameter,
DR [31] as a function of the square root of the normalized
poloidal flux for the nonlinear calculation described in Sec. IV
and depicted in Figs. 5 and 8. Plasma is unstable to RI if
DR > 0.

small resistivity [38].

It is very likely that these higher-n modes were re-
sponsible for the relatively small decrease in the pressure
profile shown in the experimental Fig. 1 between 247 and
267 ms. In the monotonic shear cases we have examined
previously [6, 7] these modes could also destroy the inte-
rior magnetic surfaces, leading to temperature flattening.
In the present, reversed shear case, the magnetic shear is
low only near qmin, and so the interior surfaces are not
as susceptible to breakup.

To nonlinearly change the q and pressure profiles in
these equilibria requires a mode with a substantialm = 1
component. This is accomplished by the predominantly
n = 1 harmonic that peaks in Fig. 5 at about t = 1000
τA after the start of the simulation. We see from the first
frame of Fig. 3 that it is a pressure driven non-resonant
(1, 1) mode that is likely responsible for the large change

in the central q and pressure values. We speculate that
this mode could also be responsible for the internal re-
connection events (IRE) observed in MAST-U discharges
with rapid current ramp-up rates [39].

In comparing the computational results from Fig. 5
with the experimental MHD signals from Fig. 2, it is
clear that the agreement is not exact. The upper graph
in Fig. 2 shows a n = 1 mode with a large amplitude
millisecond blip at about t = 270 ms. This has a very
rapid onset and decay, and we believe it is the (1, 1) mode
calculated in Fig. 5. The experimental n = 1 mode in
Fig.2 then starts slowly growing again over the next 20
ms. We speculate that this is a NTM that grows from
the perturbation, but eventually stabilizes as the pres-
sure decreases sufficiently. This NTM does not occur
in the nonlinear simulation as the required neoclassical
phyics equations are not being solved. Also, the close fit-
ting computational boundary used here tends to stabilize
these modes.

The (1, 1) event in the simulation occurs at an ear-
lier time (247+ ms) than in the experiment (270 ms).
We think that the onset of this mode is sensitive to the
value of qmin and the details of the pressure profile and
that our equilibrium reconstruction has error bars that
are difficult to quantify so that we may not be able to
predict the exact time of the (1, 1) mode onset. Also, as
mentioned previously, kinetic effects and sheared toroidal
rotation, not included in our non-linear simulation, may
play a role in determining the exact onset time. How-
ever, it is clear that both in the simulation and in the
experiment there is a MHD event that drastically lowers
the value of q0 and the central pressure, and that after
this event the discharge is stable to MHD modes, albeit
at a lower value of β.

Finally, we comment on the implications of the q0 > 1
instabilities found here and in previous studies [6, 7] for
the next generation of STs which will presumably be of
larger size with stronger magnetic fields. These instabili-
ties can in principle be avoided by lengthening the current
ramp-up time and avoiding early auxiliary heating. Or,
it may be deemed beneficial to ”grow” the plasma during
the current ramp-up to quicken the current penetration
by layering, as has been proposed for ITER [40].
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Appendix A: Stability of Model Equilibrium

Here we describe the stability of model equilibrium
with circular cross sections, both in toroidal and cylindri-
cal (or slab) geometry. Consider a toroidal equilibrium
with major radius R = 3.2m, minor radius a = 1.0m,
and toroidal field on axis B0 = 1T . We take the pressure
and safety factor profiles to be the following functions of
the normalized poloidal flux, ψ [15]:

p(ψ) = p0
(
1.0− ψβp

)αp
(A1)

q(ψ) = q0 ×

[
1 +

(
ψ

r20

)λ
] 1

λ

×
[
1 +Aexp

(
−ψ
δ2

)]
/ (1 +A)

(A2)

Here we used βp = 1.0, αp = 2.0, q0 = 4.5, r0 = 0.612,
λ = 6.48, A = 1.64, and δ = 0.23 . These profiles are
shown in Fig. 10.

At zero pressure, p0 = 0, both the toroidal and cylin-
drical equilibria are unstable to both n=1 and n=2 dou-
ble tearing modes. In M3D-C1, the fluid velocity is rep-
resented as V = R2∇U ×∇ϕ+ωR2∇ϕ+R−2∇⊥χ. Here
R is the major radius in the torus and a constant in the
cylinder. Similarly, ϕ is the toroidal angle in the torus
but the symmetry direction in the cylinder. The oper-
ator ∇⊥ is the gradient in the (R,Z) plane (orthogonal
to ∇ϕ). The eigenfunctions for the velocity stream func-
tion, U , are shown in Fig. 11 for a calculation with a
dimensionless resistivity of η = 1.× 10−6.

As we increase the pressure, the growth rates for the
n = 1 and n = 2 modes in the torus first decrease, and
then stabilize. In the cylindrical geometry, just the op-
posite occurs, as the growth rates increase with β. These
dependencies are shown in Fig. 12. These linear calcula-
tions used a uniform resistivity with dimensionless value
of η = 1. × 10−6 as was used in the calculation shown
in Fig. 11. Note that the strong stabilizing effect of β in
toroidal geometry is consistent with what was found in

FIG. 10. Profiles for the q and pressure as defined in Equa-
tions A1 and A2

(a) (b)

(c) (d)

FIG. 11. Velocity stream function, Φ, for (a) the n=1 mode
in a torus, (b) the n=2 mode in a torus, (c) the n=1 mode
in a cylinder, and (d) the n=2 mode in a cylinder. The lines
next to the non-zero areas are the contours of q = 2.

Ref.[12].
To determine the scaling of the linear growth rates with

resistivity, we repeated the zero-β calculation shown in
Fig. 12 with two other values of resistivity: η = 0.5×10−6

and η = 2.0×10−6. The results are shown in Fig. 13. The
dashed lines connecting the n = 1 results in the cylinder
and the torus are what was predicted in Ref. [41] for the
n = 1 double tearing mode in a cylinder using reduced
MHD.
Note that the results presented in this section are not
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FIG. 12. In the torus, the growth rates for both the n = 1
and n = 2 double tearing modes decrease with β, eventually
stabilizing. In contrast, in the cylinder, the growth rates for
both modes increase with β.

meant to be general, and apply only to the geometry and
profiles used here. However, they do confirm that the
stability results of a reversed shear configuration can be
very different in cylindrical and toroidal geometry, as was
observed in Ref. [12].

FIG. 13. Growth rates of the n=1 and n=2 modes for the
Toroidal and Cylindrical geometries shown in Fig. 11 as a
function of resistivity. Dashed lines show η1/3 scaling for the
n=1 modes.

Appendix B: Transport Coefficients in nonlinear
calculation

In Table II we list the numerical values of the normal-
ized transport coefficients appearing in Eq. 1-6 that were
used in the nonlinear calculation presented in Sec. IV.
The resistivity used was the Spitzer resistivity [35] mul-
tiplied by a uniform factor, fη, so that η = fη ×
ηSpitzer(Te). In the code’s dimensionless units, the ini-
tial value of the resistivity at the magnetic axis was
η = 4.E − 9. Note that some of the values were changed
partway through the calculation to overcome numerical
stability issues.
As one of our convergence tests, the nonlinear calcula-

tion was repeated with half the value for λH . The result
for the q-profile at the final time was very similar to that
presented in Fig. 7.

variable M3D-C1 t < 900 τA t ≥ 900 τA
ν AMU 1.E-5 2.E-5
D DENM 1.E-6 1.E-5
κ KAPPAT 1.E-6 1.E-6
κ|| KAPPAR 1.0 1.0
λH HYPER 1.E-9 1.E-9
fη ETA FAC 1.0 2.0

TABLE II. Transport coefficients for the nonlinear calculation
of Sec. IV

Appendix C: Expression for DR

For an axisymmetric configuration, the M3D-C1 rep-
resentation for the magnetic field reduces to:

B = ∇ϕ×∇ψ + F (ψ)∇ϕ. (C1)

In terms of these variables, the plasma pressure p and the
volume enclosed by a flux surface with label ψ, V (ψ), the
resistive interchange parameter DR can be computed as
follows [31].

E = − p′V ′

q′2(2π)2

〈
B2

|∇ψ|2

〉[
Fq′

< B2 >
+

V ′′

(2π)2

]
(C2)

F =

(
p′V ′

(2π)2q′

)2 [
F 2

(〈
B2

|∇ψ|2

〉〈
1

B2|∇ψ|2

〉
−
〈

1

|∇ψ|2

〉2
)

+

〈
B2

|∇ψ|2

〉〈
1

B2

〉] (C3)

H =
−Fp′V ′

(2π)2q′

(〈
1

|∇ψ|2

〉
−
〈

B2

|∇ψ|2

〉
1

⟨B2⟩

)
(C4)

DR = E + F +H2 (C5)

Here, < a > is the standard flux surface average operator
that makes B ·∇a vanish. The plasma is locally unstable
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to resistive interchange modes if DR > 0.
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