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Here we describe a technique for solving the four-field extended-magnetohydrodynamicsMHDd
equations in two dimensions. The introduction of triangular high-order finite elements with
continuous first derivativessC1 continuityd leads to a compact representation compatible with direct
inversion of the associated sparse matrices. The split semi-implicit method is introduced and used
to integrate the equations in time, yielding unconditional stability for arbitrary time step. The
method is applied to the cylindrical tilt mode problem with the result that a nonzero value of the
collisionless ion skin depth will increase the growth rate of that mode. The effect of this parameter
on the reconnection rate and geometry of a Harris equilibrium and on the Taylor reconnection
problem is also demonstrated. This method forms the basis for a generalization to a full
extended-MHD description of the plasma with six, eight, or more scalar fields. ©2005 American
Institute of Physics. fDOI: 10.1063/1.1864992g

I. INTRODUCTION

It has been recognized for some time that it is necessary
to go beyond the simple “resistive magnetohydrodynamic
sMHDd” description of the plasma in order to get the correct
quantitative results for the growth and saturation of global
dissipative modes in a fusion device. The inclusion of a more
complete “generalized Ohms law” and the off-diagonal terms
in the ion pressure tensor introduce whistler waves, kinetic
Alfvén waves, and gyroviscous waves, all of which are dis-
persive and require special numerical treatment. We describe
a numerical approach to solve these extended-MHD equa-
tions using a compact representation that is specifically de-
signed to yield efficient, high-order-of-accuracy implicit so-
lutions of a general formulation of the extended-MHD
equations. The representation is based on a triangular finite
element with fifth-order accuracy that is constructed to have
continuous first derivatives across element boundaries. The
Galerkin technique allows this element to be applied to sys-
tems of equations containing spatial derivative operators of
up to fourth order. The final set of discrete block matrix
equations is solved using a parallel sparse direct solver.

For the general formulation, the magnetic and velocity
fields are decomposed without loss of generality in a poten-
tial, stream function form as in Ref. 1. Formulating the prob-
lem in these variables allows two nontrivial subsets of equa-
tions that can be studied before embarking on the full set of
equations. The two-variable system described in Ref. 2 is the
well-known two-field “reduced MHD” equations consisting
of a single flux function for the magnetic field and a single
stream function for the velocity. The present paper describes
the method applied to a more complex subsystem: the four-
field reduced MHD equations, also known as the reduced
two-fluid MHD equations. This set of equations contains

both MHD behavior associated with the shear Alfvén wave
and the essential features of the whistler and kinetic Alfvén
wave physics. Variations of these equations have been exten-
sively studied in the literature.3–5

We present the four-field equations in Sec. II, and then
describe the split semi-implicit method for their solution in
Sec. III and the numerical stability of this method in Sec. IV.
Sections V–VII present applications of this method to three
model problems: presenting new results on the effect of the
collisionless ion skin depth on the growth rate of the tilt
mode in Sec. IV and confirming the importance of this term
on reconnection rates in Secs. VI and VII. The paper is sum-
marized with discussion in Sec. VIII.

II. THE EQUATIONS

The reduced two-dimensionalsx,yd two-fluid MHD
equations in the limit of zero electron mass can be written3 as

]

]t
¹2f = ff,¹2fg + f¹2c,cg + m¹4f, s1ad

]Vz

]t
= ff,Vzg + fI,cg + m¹2Vz − mh¹4Vz, s1bd

]c

]t
= ff,cg + difc,Ig + h¹2c − n¹4c, s1cd

]I

]t
= ff,Ig + dif¹2c,cg + fVz,cg + h¹2I − n¹4I . s1dd

Here we have utilized the Poisson bracket notation

fa,bg ; ¹ a 3 ¹ b · ẑ.

Here,f is the in-plane velocity stream function,Vz is thez
component of the velocity,c is the magnetic flux function,
and I is the z component of the magnetic field. Thus, the
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magnetic field andsincompressibled fluid velocity are repre-

sented asBW = ¹c3 ẑ+ Iẑ andVW = ¹f3 ẑ+Vzẑ. It is shown in
Ref. 3 that Eqs.s1ad–s1dd are valid in the low guide-field
limit in which whistler waves are the dominant two-fluid
effect, but that a very similar set of equations is valid in the
high guide-field limit in which the kinetic Alfvén wave is
prominent. Thus, we take Eqs.s1d to be typical of the ex-
tended MHD equations in two dimensions.

The fluid viscosity, electrical resistivity, hyper-resistivity
sor electron viscosityd, and collisionless ion skin depth are
given bym, h, n, anddi, respectively. The parameterh is a
hyperviscosity coefficient added to damp spurious oscilla-
tions that might otherwise develop. Terms involving the elec-
tron mass have been neglected. The two-field reduced MHD
system studied in Ref. 1 are just Eqs.s1ad ands1cd with the
parameterdi set to zero.

Equationss1d have the energy integralsin the absence of
sourcesd

1
2

]

]t
E E hu ¹ fu2 + Vz

2 + u ¹ cu2 + I2jdA

= −E E Hmu¹2fu2 + mu ¹ Vzu2 + hu¹2cu2 + hu ¹ I u2

+ mhu¹2Vzu2 + nu ¹ s¹2cdu2 + nu¹2I u2 JdA

+R d , n̂ · ¹ c¹2c. s2d

To derives2d, we have assumed the perturbed variables obey
the boundary conditions

f̃ = mn̂ · ¹ f̃ = Ṽz = mh ¹ Ṽz

= c̃ = n¹2c̃ = Ĩ = nn̂ · ¹ Ĩ = 0.

III. THE NUMERICAL METHOD

To derive the implicit system, we Taylor expand the
right-hand side of Eq.s1d in time to center the spatial deriva-
tives at the advanced time:tn+u; tn+udt, keeping only the
terms through first order in the time stepdt. This gives

¹2ḟ = ff,¹2fg + udtfḟ,¹2fg + udtff,¹2ḟg + f¹2c,cg

+ udtf¹2ċ,cg + udtf¹2c,ċg + m¹4f + udtm¹4ḟ,

s3ad

V̇z = ff,Vzg + udtfḟ,Vzg + udtff,V̇zg + fI,cg + udtfİ,cg

+ udtfI,ċg + m¹2Vz + mudt¹2V̇z − mh¹4Vz

− mhudt¹4V̇z, s3bd

ċ = ff,cg + udtfḟ,cg + udtff,ċg + difc,Ig + diudtfċ,Ig

+ diudtfc, İg + h¹2c + hudt¹2ċ − n¹4c − nudt¹4ċ,

s3cd

İ = ff,Ig + udtfḟ,Ig + udtff, İg + dif¹2c,cg

+ diudtf¹2ċ,cg + diudtf¹2c,ċg + fVz,cg + udtfV̇z,cg

+ udtfVz,ċg + h¹2I + hudt¹2İ − n¹4I − nudt¹4İ .

s3dd

The split semi-implicitmethod consists of using Eqs.s3cd
and s3dd, but with the field time derivativesċ and İ on the
right of the equal sign set to zero and ignoringssmalld dissi-

pative terms, to eliminate time derivativesċ and İ from Eqs.
s3ad and s3bd. This has the effect of isolating the linearized
Alfvén wave characteristics in those two equations. Thus, the
modified velocity equations become

¹2ḟ = ff,¹2fg + f¹2c,cg + m¹4f + udtHf¹2sff,cg + difc,Igd,cg + f¹2c,sff,cg + difc,Igdg

+ fḟ,¹2fg + ff,¹2ḟg + m¹4ḟ
J

+ sudtd2hf¹2fḟ,cg,cg + f¹2c,fḟ,cggj, s3a8d

V̇z = ff,Vzg + fI,cg + m¹2Vz − mh¹4Vz

+ udt5fsff,Ig + dif¹2c,cg + fVz,cgd,cg

+ fI,sff,cg + difc,Igdg + fḟ,Vzg + ff,V̇zg

+ m¹2V̇z − mh¹4V̇z

6
+ sudtd2hfsfḟ,Ig + fV̇z,cgd,cg + fI,fḟ,cggj. s3b8d

The systems3a8d, s3b8d, s3cd, and s3dd is solved each
time step as two pairs of equations, with Eqs.s3a8d ands3b8d
being solved first to obtain the velocity time derivativesḟ

and V̇z, and these being substituted into Eqs.s3cd and s3dd,

which are then solved to obtain the field time derivativesċ

and İ.
The motivation is to form two compact systems that can

be efficiently solved each time step using elementary matrix
methods. The Courant time step restriction associated with
the Alfvén waves is eliminated by the implicit simultaneous
solution of s3a8d and s3b8d. Since Eqs.s3cd and s3dd contain
the mechanism for the whistler waves, at least in the electron
MHD sEMDd model,6 these can next be solved implicitly to
remove the severe time-step restriction associated with the
dispersive whistler waves.

A similar technique, but applied to the Alfvén wave only,
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has been called the “differential approximation” in Refs. 7
and 8. The present treatment differs from those in the time-
centering of the variables and in the retention of terms linear
in dt in the modified equationss3a8d ands3b8d. However, the
major difference between this and previous work is in the
extension of this technique to the whistler wave through Eqs.
s3cd and s3dd. The numerical stability of this system is dis-
cussed in Sec. IV.

To obtain the discrete matrices, we first define the finite
difference in time, with the notationfnsx,yd;fsx,y,tnd,
with n being the time index. If we define the time stepdtn

; tn+1− tn then the second-order expression for the time de-
rivative, centered about t= tn+1/2, is dtḟsx,y,tn+1/ 2d
>fn+1sx,yd−fnsx,yd. By making use of the readily verified
identity,

¹2fa,bg = f¹2a,bg + fa,¹2bg + 2fax,bxg + 2fay,byg, s4d

straightforward manipulation gives the following set of equa-
tions relating the variables at time leveln+1 to those at time
level n:

h¹2 − udtL11
1v − sudtd2L11

2vjfn+1

= h¹2 − udtL11
1v + dtL11

3v − usu − 1dsdtd2L11
2vjfn

+ usdtd2R1
2v + dtR1

1v, s5ad

h− sudtdL21
1v − sudtd2L21

2vjfn+1 + h1 − udtL22
1v − sudtd2L22

2vjVz
n+1

= h− udtL21
1v + dtL21

3v − usu − 1dsdtd2L21
2vjfn

+ h1 − udtL22
1v + dtL22

3v − usu − 1dsdtd2L22
2vjVz

n

+ usdtd2R2
2v + dtR2

1v, s5bd

h1 − udtL11
1pjcn+1 − udtL12

1pIn+1

= h1 + s1 − uddtL11
1pjcn − udtL12

1pIn + dtR1
1p, s5cd

− udtL21
1pcn+1 + h1 − udtL22

1pjIn+1

= − udtL21
1pcn + h1 + s1 − uddtL22

1pjIn + dtR2
1p. s5dd

Here, we have defined the operators:

L11
1vhfn+1j = ffn+1,¹2fg + ff,¹2fn+1g + m¹4fn+1,

L11
2vhfn+1j = †ffn+1,¹2cg,c‡ + †f¹2fn+1,cg,c‡

+ †¹2c,ffn+1,cg‡ + 2†ffx
n+1,cxg,c‡

+ 2†ffy
n+1,cyg,c‡,

L11
3vhfnj = ff,¹2fg + m¹4f,

R1
2v = di†f¹2c,Ig,c‡ + di†fc,¹2Ig,c‡ + di†¹

2c,fc,Ig‡

+ 2di†fcx,Ixg,c‡ + 2di†fcy,Iyg,c‡,

R1
1v = f¹2c,cg, s6ad

L21
1vhfn+1j = ffn+1,Vzg,

L21
2vhfn+1j = †ffn+1,Ig,c‡ + †I,ffn+1,cg‡,

L22
1vhVz

n+1j = ff,Vz
n+1g + m¹2Vz

n+1 − mh¹4Vz,

L22
2vhVz

n+1j = †fVz
n+1,cg,c‡,

L21
3vhfnj = 1

2ff,Vzg,

L22
3vhVz

nj = 1
2ff,Vzg + m¹2Vz − mh¹4Vz,

R2
2v = di†f¹2c,cg,c‡ + di†I,fc,Ig‡,

R2
1v = fI,cg, s6bd

L11
1phcn+1j = ff,cn+1g + difcn+1,Ig + h¹2cn+1 − n¹4cn+1,

L12
1phIn+1j = difc,In+1g,

R1
1p = uffn+1 − fn,cg,

L21
1phcn+1j = dif¹2cn+1,cg + dif¹2c,cn+1g + fVz,c

n+1g,

L22
1phIn+1j = ff,In+1g + h¹2In+1 − n¹4In+1,

R2
1p = + uhffn+1 − fn,Ig + fVz

n+1 − Vz
n,cgj + dif¹2c,cg

+ fVz,cg. s6cd

We next represent each of the unknown scalar fields as a
set of time-varying amplitudes multiplying time-independent
spatial basis functions.2 The domain is divided intoM trian-
gular regions. Within each trianglem, 18 basis functions are
defined,hnm,isx,yd ; i =1,18j with the properties:sid each of
the basis functions is a quintic polynomial insx,yd that has
the value unity at one node for either the function or one of
its first five derivatives, with the others being zero,sii d the
basis function and its first five derivatives are zero at the two
other nodes, andsiii d the quintic terms in the polynomial are
constrained so that the normal derivative of the basis func-
tion is at most a cubic function along each side of the tri-
angle. These conditions are enough to uniquely determine
the 21 polynomial coefficients for each basis function and to
insure that any scalar field represented in terms of these basis
functions will be continuous and have continuous first de-
rivatives across triangle boundaries. This continuity property
is denoted in the literature byC1.9 Since the basis functions
are capable of representing a complete quartic polynomial, it
follows from a Taylor’s series expansion that the error should
go like h5, whereh is a typical size of a triangle.

Using these basis functions, the unknown quantities take
the physical significance of being the function, its two first,
and three second derivatives at each of the nodes. For ex-
ample, the stream function is represented as a sum over each
of the 18 basis functions in each of theM triangles

fnsx,yd = o
m=1

M

o
i=1

18

nm;isx,ydFm;i
n . s7d

The unknownshFi
n; i =1,18j for trianglem break into three

sets of six:hFm,i
n ; i =1,6j correspond tof, fx, fy, fxx, fxy,

fyy at the first node,hFm,i
n ; i =7,12j are the same quantities at
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the second node, andhFm,i
n ; i =13,18j are these quantities at

the third node. Note that all the unknowns in Eq.s7d are
located at the nodes and are thus shared with all triangles
using that node. Since there are asymptotically an average of
six triangles utilizing each node, there are approximately a
total of 3M unknowns for the global representation of each
scalar field, rather than18M, which might be inferred from
Eq. s7d.

The discrete expansions7d for each of the four scalar
fields is substituted into the four equationss5d. The Galerkin
method consists of multiplying each of equationss5ad–s5dd
by each of the basis functionssor trial functionsd and inte-
grating these over the domain to obtain matrix equations for
the discrete unknowns. Integration by parts is used to shift
derivatives onto the trial functions so that no higher than
second spatial derivatives appear in the final integrals. These
are allowable in this procedure since the basis functions were
constructed to have continuous first derivatives across tri-
angle boundaries.

We next represent each quantity as the sum of an equi-
librium part that is independent of time and a perturbed part,
thus Fn→F0+Fn, etc. This yields the two sets of matrix
equations that can be solved sequentially:

FS11
v 0

S21
v S22

v GFFm;i
n+1

Vzm,i
n+1 G = FD11

v 0

D21
v D22

v GFFm;i
n

Vzm,i
n G

+ FR11
v R12

v

R21
v R22

v GFCm;i
n

Im,i
n G , s8d

FS11
p S12

p

S21
p S22

p GFCm;i
n+1

Izm,i
n+1 G = FD11

p D12
p

D21
p D22

p GFCm;i
n

Izm,i
n G

+ FR11
p 0

R21
p R22

p GFFm;i
n+1

Vzm,i
n+1 G

+ FQ11
p 0

Q21
p Q22

p GFFm;i
n

Vzm,i
n G . s9d

The block matrix elements appearing here are defined in Ap-
pendix B. The matrix equationss8d and s9d are solved se-
quentially using the distributed version of the direct sparse
matrix software packageSUPERLU.10 This solution procedure
is exceptionally efficient for a linear system, since only a

one-time LU decomposition of the two matrices appearing
on the left of the equals sign is required. A nonlinear problem
requires performing the LU decomposition whenever there is
significant change in the values of the matrix elements.

IV. NUMERICAL STABILITY

The split semi-implicit time advance method given by
Eqs.s8d ands9d is based on advancing the velocity variables
first each time step, followed by advancing the field vari-
ables. This clearly leads to a more efficient numerical
method than if the coupled system were advanced together,
since the rank of each matrix appearing on the left-hand side
in Eq. s9d is half of what it would be for the combined
system. To understand how this leads to an unconditionally
stable time advance, let us consider a simpler problem that
has the essential features of the one under investigation.

Consider the simplified Hall MHD system for the fluid

velocity VW , the perturbed magnetic fieldBW , and the perturbed

current densityJW = ¹ 3BW . Assume for simplicity that the
equilibrium magnetic field is uniform and in theẑ direction,
and that the density is spatially constant. In suitably normal-
ized units, the linearized momentum equation and the curl of
the induction equation become simply

]VW

]t
= JW 3 BW 0, s10ad

]JW

]t
= ¹ 3

]BW

]t
= ¹ 3 ¹ 3 fsVW − diJWd 3 BW 0g. s10bd

SettingBW 0= ẑ, and specializing for simplicity to wave propa-

gation in theẑ direction so that¹→ ẑs] /]zd; ẑ]z, and bothJW

and VW are in thex̂-ŷ plane, the split semi-implicit time ad-
vance corresponding to Eqs.s5d is

f1 − sudtd2¹2gsVW n+1 − VW nd

= dthudtf¹2VW n − di¹
2JWngj − dtẑ3 JWn, s11ad

f1 + udtdiẑ3 ¹2gsJWn+1 − JWnd

= dtẑ3 ¹2fuVW n+1 + s1 − udVW ng − dtdiẑ3 ¹2JWn, s11bd

or in matrix component form

3
1 − sudtd2]z

2 0 0 0

0 1 − sudtd2]z
2 0 0

0 udt]z
2 1 − udtdi]z

2

− udt]z
2 0 udtdi]z

2 1
4 ·3

Vx

Vy

Jx

Jy

4
n+1

=3
1 − usu − 1dsdtd2]z

2 0 − usdtd2di]z
2 dt

0 1 − usu − 1dsdtd2]z
2 − dt − usdtd2di]z

2

0 su − 1ddt]z
2 1 − su − 1ddtdi]z

2

− su − 1ddt]z
2 0 su − 1ddtdi]z

2 1
4 ·3

Vx

Vy

Jx

Jy

4
n

. s12d

The numerical stability is determined by replacing the spatial derivative by an effective wave number,¹2=]z
2→−kef f

2 , and by
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introducing the amplification factorr for the vector in Eq.s12d. The amplification factor is thus determined by the generalized
eigenvalue equation

det3
1 − r + usdtd2kef f

2 s 0 usdtd2dikef f
2 dt

0 1 − r + usdtd2kef f
2 s − dt usdtd2dikef f

2

0 − dtkef f
2 s − r − didtkef f

2 s

dtkef f
2 s 0 − didtkef f

2 s − r
4 = 0, s13d

with s;fs1−rdu−1g. Evaluation of Eq.s13d with both a gen-
eralized eigenvalue solver and by symbolic expansion of the
determinant and using a polynomial root finder give identical
results: the amplification factorur uø1, and thus the system is
stable, for arbitrary realkef f

2 .0, dt.0, anddi .0 provided
the implicit parameter satisfiesuù1/2.

V. THE TILTING CYLINDER

Here we apply the method to an extension of the analysis
of the tilting cylinder problem considered in Ref. 2 to the
four-field model. Following Refs. 2, 11, and 12 we define an
initial force free bipolar vortex equilibrium state

c0sx,yd = Hf2/kJ0skdgJ1skrdcosu, r , 1

sr − 1/rdcosu, r . 1,
J1skd = 0.

s14ad

We have defined a polar coordinate system such thaty
=r cosu, x=r sinu. The initial toroidal field is defined as

I0sx,yd =HÎk2c2sx,yd + B0
2, r , 1

B0, r . 1.
s14bd

It is readily verified that these satisfy the equilibrium condi-
tion

¹2c0 + 1
2

dI02

dc
= 0. s14cd

This equilibrium is known to be unstable to a tilting motion.
As in Ref. 2, the simulation box is a square with sides of

length 4 that is divided into(N−1)3 (N−1) rectangular re-
gions, each with two right trianglessusing the diagonal that
runs from upper right to lower leftd. Conducting, no slip
boundary conditions are applied at the walls. Thus, at they
boundary, we impose

c =
]c

]x
=

]2c

]x2 = 0, I =
]I

]x
=

]2I

]x2 = 0,

s15d

Vz =
]Vz

]x
=

]2Vz

]x2 = 0, f =
]f

]x
=

]2f

]x2 =
]f

]y
=

]2f

]x ] y
= 0,

with similar but rotated boundary conditions applied at thex
boundary.

The baseline solution used uniform values ofh=m
=0.001, h=2(Dx)2, n=(Dx)2h. The instability is known to
persist even ath=0 and is thus considered an ideal instabil-
ity. To examine the effect of the Hall term on this mode, we

specify a value of the ion skin depthdi and run the code in a
linear mode to calculate the linear growth rate. Figure 1
gives this growth rate as a function of the square ofdi, for
which it is seen to have a near linear dependence. Results for
bothN=15 andN=31 are shown, with those forN=61 being
indistinguishable from theN=31. This study was performed
with time stepDt=0.05, but the growth rates changed by less
than 2% when going from this value toDt=0.20. The initial
equilibrium and corresponding eigenmode for the case with
N=61 and di =0.2 are shown in Figs. 2sad–2sfd where we
display contours of the equilibrium poloidal flux as well as
perturbed values of the magnetic fluxc, the current density
J;¹2c, the stream functionf, thez-directed magnetic field
I, and thez component of the velocityVz.

To determine the effect of the dissipation coefficientsh
andn on the solution, we have recomputed the configuration
shown in Fig. 2 with a range of values of these. We find that
if we write h=C1(Dx)2 and n=C2(Dx)2h, then we require
C1ù0.5 and C2ù0.5 sapproximatelyd for numerical stabil-
ity. However, the computed growth rate increases by only
0.013% in varyingC1 in the rangef0.5, 2.0g, and by 0.53%
when varyingC2 in this same range.

VI. HARRIS RECONNECTION

We define a Harris equilibrium and perturbation similar
to the one used in the geospace environmental modeling

FIG. 1. Dependence of the linear growth rate for the tilt mode on the square
of the ion skin depthdi

2. Results are shown for calculations with 15315 and
31331 rectangles, each divided into 2 triangles.
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sGEMd magnetic reconnection challenge,13 but within the
limitations of the four-field equations. The initial equilib-
rium, shown in Fig. 3, is defined by an equilibrium and a
perturbed magnetic flux function as follows:

c0sx,yd =
1

2
lnscosh 2yd, csx,yd = « coskxx coskyy

s16d

with all the other quantities initialized to zero. The initial
equilibrium and perturbed current densities are just the La-
placian of the flux,J0=¹2c0, J=¹2c. The computation is
carried out in a rectangular domain −Lx/2øxøLx/2 and
−Ly/2øyøLy/2. The system is taken to be periodic in thex
direction with ideal conducting boundaries, Eq.s15d, at y
= ±Ly/2. As in Ref. 11, we chose the parameters such that

kx=2p /Lx, ky=p /Ly, with Lx=25.6,Ly=12.8,«=0.1.
We illustrate the results from a pair of comparison cal-

culations in Figs. 3–7. Both cases hadN=61, h=m=0.001,
h=C1(Dx)2, n=C2(Dx)2h, C1=4, C2=1, time stepDt=0.25,
and implicit parameteru=0.6. The first case had the ion skin
depth set to zero,di =0, while the second case haddi =1.0.

Figures 4 and 5 show the poloidal magnetic fluxstopd
and current densitysbottomd for the two cases at timet
=37.5. We see in Fig. 4 that the case withdi =0 sresistive
MHDd has a thin current layer on the midplane, known as the
Sweet–Parker14 layer. The corresponding case withdi =1.0
sHall-MHDd is shown in Figs. 5 and 6. In comparing Figs. 4
and 5, we see that the Sweet–Parker layer is much shorter
with di =1, and the reconnection region has essentially
changed character from aY-point to an X-point as
expected.15 In Fig. 6 we see the out-of-planesz-directedd
velocity stopd and magnetic fieldsbottomd in the Hall-
reconnection case withdi =1. Large in-out flows develop as a

FIG. 2. sColor onlined. Linear eigenmodes for one of the calculations per-
formed for Fig. 1 withN=61 and di =0.2. Shown are contours ofsad the
equilibrium magnetic fluxC0; sbd the perturbed values of the magnetic flux
c; scd the perturbed current densityJ; sdd z-directed magnetic field I;sed the
stream functionf; and sfd the z component of the velocityVz. The region
s−1.5,1.5d
3 s−1.5,1.5d is shown while the calculation was performed on a
s−2.0,2.0d3 s−2.0,2.0d domain with conductor boundary conditions
imposed.

FIG. 3. sColor onlined. Initial equilibrium poloidal magnetic fluxc stopd and
current densityJ sbottomd for the Harris reconnection problem.

FIG. 4. sColor onlined. Poloidal magnetic fluxstopd and current density
sbottomd for the “resistive MHD” reconnection at timet=37.5with di =0.

FIG. 5. sColor onlined. Poloidal magnetic fluxstopd and current density
sbottomd for the “Hall-MHD” reconnection at timet=37.5with di =1.0.
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result of the reconnecting fields. Thez component of the
magnetic field forms the characteristic quadrupole structure
near the midplane.

We define the reconnected magnetic fluxas c(t)
=1/2[c(0,0,t)−c(Lx/2,0,t)] and thereconnection rateas
the time derivative of this. In Fig. 7 we show a comparison
of the amount of reconnected fluxsdark curvesd and the re-
connection ratessred curvesd vs time for the two cases, with
several values of the hyperdissipation coefficients for thedi

=1.0 case. It is seen that the Hall reconnection case withdi

=1.0 causes reconnection to occur about eight times faster
than the resistive MHD case withdi =0 for these parameters,
and the results are relatively insensitive to the values ofC1

and C2 as long as these are near unity. VaryingC1 in the
rangef0.75,1.25g or C2 as in the rangef2.0,4.0g each cause
the maximum growth rate to increase by less than 1.5%,
indicating that the solution is adequately converged in these
parameters.

VII. THE TAYLOR PROBLEM

The Taylor problem3 consists of an initial magnetic field
given by the flux function

c0syd = − 1
2y2. s17d

The z component of the magnetic field,I0sx,yd, is initially
zero, as are the velocity variablesf0 and Vz

0. For times t
ù0, the top and bottom boundaries are perturbed as follows:

csx, ± 1d = «stdcosskxd,

s18d

fsx, ± 1d = 7
1

k
«̇stdsinskxd.

The left and right boundaries are periodic. The time-
dependent perturbation function is defined as

«std = «0f1 − s1 + t / tdexps− t/tdg. s19d

This problem has been studied both theoretically16 and
numerically17 for the case of resistive MHDsdi =0d, but only
numerical results3 exist for the “two-fluid” or “Hall MHD”
case of nonzerodi.

The results of a series of calculations with«0= .01, t
=1.0, k=2p /Lx, h=m=10−4, h=(Dx)2, n=(Dx)2h are pre-
sented in Fig. 8. The reconnected fluxstopd and reconnection
rate sbottomd vs time are shown for different values of the
collisionless ion skin depthdi. The parameterdi is seen to
have a significant impact on the reconnection rate, especially

FIG. 6. sColor onlined. Out of planesz-directedd velocity stopd and magnetic
field in the Hall-reconnection case withdi =1 sbottomd. Large in-out flows
develop as a result of the reconnecting fields. Thez component of the mag-
netic field forms the characteristic quadrupole structure near the midplane.

FIG. 7. Comparison of the amount of reconnected fluxsdark curvesd and the
reconnection ratessred curvesd vs time for the two cases. Three runs are
shown for thedi =1 case withC1=1,C2=2 sdashedd, C1=1,C2=4 sdashedd,
C1=0.75,C2=4 sdashed-dottedd. The reconnected flux and reconnection rate
are essentially independent of these dissipation parameters over this range.

FIG. 8. Reconnected fluxstopd and reconnection ratesbottomd vs time for
the Taylor problem for different values of the collisionless ion skin depthdi.
Other physical parameters wereh=m=10−4, h=(Dx)2 The parameterdi is
seen to have a significant impact on the reconnection rate, especially at early
time.
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at early time. These results are seen to be qualitatively simi-
lar to Fig. 1 of Ref. 3, but extend those results to a nonlinear
regime with a larger perturbation amplitude. More generally,
the fact thatdi, or the Hall term, can greatly accelerate the
rate of forced magnetic reconnection is consistent with re-
sults reported in earlier studies.

The calculations presented in Fig. 8 were performed on a
domain with Lx=8, Ly=2, which was broken up into 60
360 rectangles, each divided into two triangles with a line
from upper right to lower left. The other numerical param-
eters used weredt=0.5 andu=0.6. As in the other studies in
this paper, there was no attempt to concentrate resolution in
the reconnection layer, although this could dramatically in-
crease the efficiency of this method and will be pursued in
future studies.

VIII. SUMMARY AND DISCUSSION

A new technique for solving the extended MHD equa-
tions has been described and applied to the four-field model.
This is a generalization of Appendix D of Ref. 2 where the
MHD two-field model was discussed. The further generali-
zation of this method to the fully compressible six-field or
eight-field system of the full extended MHD equations is
underway.

The method is characterized by representing the fluid
and field in a potential/stream-function representation1 in
which higher derivatives occur. The higher derivatives are
handled by using a compact triangular high-order finite ele-
ment representation withC1 continuity rather than by intro-
ducing auxiliary variables that would increase the rank of the
matrices.

The split semi-implicit time advance is introduced which
breaks the time advance into two steps each cycle. In the first
step, the implicit method avoids time-step restrictions due to
the Alfvén waves by inverting the ideal MHD force operator.
In the second step, the implicit field advance avoids time-
step restrictions due to the dispersive waves. It was shown in
Sec. IV that the combined two-step time advance is uncon-
ditionally stable for arbitrary time step as long as the implic-
itness parameteru is greater than1

2. The relatively small
matrices that need to be inverted make a direct sparse matrix
inversion practical. A side benefit is that for linear problems,
the LU decomposition only needs to be performed once,
making the method exceptionally efficient.

The present work demonstrated the validity of this
method by calculating the effects of the collisionless ion skin
depth on the ideal MHD tilt mode, and on the rate of mag-
netic reconnection for both a self-reconnecting and a forced
reconnection system. Future work will extend this to a higher
order system of equations, to toroidal geometry, and to three
dimensions.

Finally we remark that we did not take advantage of the
geometrical flexibility that is offered by triangles in the ap-
plications presented here. Triangular elements offer the po-
tential to fit complex domain boundaries and to easily add
refinement where needed. This will be exploited in future
studies.
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APPENDIX A: DEFINITIONS AND SYMMETRY
RELATIONS

The matrix and tensor quantities used in the text are
defined as follows. These are evaluated by closed form inte-
gration of the local polynomial expansions as described in
Appendixes B and D of Ref. 2:

Di,jF j ;E E visj,hdfsj,hddjdh,

Ai,jF j ;E E visj,hd¹2fsj,hddjdh,

Bi,jF j ;E E visj,hd¹4fsj,hddjdh,

Gi,j ,kC jFk ;E E visj,hdf¹2c,fgdjdh = − Gk,j ,iC jFk,

Ki,j ,kC jFk ;E E visj,hdfc,fgdjdh = − Ki,k,jC jFk,

Pi,j ,k,lC jFkZl ;E E visj,hd†ff,¹2cg,z‡djdh

= − Pl,j ,k,iC jFkZl ,

snote:Pk,j ,i,lC jFkZl =E E visj,hd†¹2c,fz,fg‡djdh

= − Pl,j ,i,kC jFkZld,

Qi,j ,k,lF jCkZl ;E E visj,hd†ff,cg,z‡djdh

= − Qi,k,j ,lF jCkZl

= − Ql,j ,k,iF jCkZl = Ql,k,j ,iF jCkZl ,

Ri,j ,k,lF jCkZl ;E E visj,hdh†ffx,cxg,z‡

+ †ffy,cyg,z‡jdjdh

= − Rl,j ,k,iF jCkZl

= − Ri,k,j ,lF jCkZl = Rl,k,j ,iF jCkZl ,

Di,jJj ; Ai,jC j ,
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Ci,j ,k,l
0 ; FPk,j ,i,l − Pi,j ,k,l + Pi,k,j ,l + 2Ri,j ,k,l

Pk,l,i,j − Pi,l,k,j + Pi,k,l,j + 2Ri,l,k,j
G ,

Gi,j ,k ; sGi,k,j + Gi,j ,kd,

Qi,j ,k,l ; 1
2sQi,j ,k,l + Qi,j ,l,kd.

APPENDIX B: THE MATRIX ELEMENTS

Making use of the definitions and symmetry relations in Appendix A, the matrix elements are given as follows:

S11
v =HAi,j + udtf− mBi,j + Gi,j ,ksFk + Fk

0dg

+ sudtd2Ci,k,j ,l
0 1

2sCk + Ck
0dsCl + Cl

0d J ,

S21
v = H− udtKi,j ,ksVzk+ Vzk

0 d
− sudtd2Qi,j ,k,lfsIk + Ik

0dsCl + Cl
0d − sCk + Ck

0dsI l + I l
0dg J ,

S22
v = HDi,j − udtfmsAi,j − hBi,jd + Ki,k,jsFk + Fk

0dg
− sudtd2Qi,j ,k,lsCk + Ck

0dsCl + Cl
0d J ,

D11
v =HAi,j + dts1 − udmBi,j + dtGi,j ,kfusFk + Fk

0d − s 1
2Fk + Fk

0dg
+ usu − 1dsdtd2Ci,k,j ,l

0 1
2sCk + Ck

0dsCl + Cl
0d J ,

D21
v =HdtKi,j ,kf− usVzk+ Vzk

0 d + s 1
2Vzk+ Vzk

0 dg
− usu − 1dsdtd2Qi,j ,k,lfsIk + Ik

0dsCl + Cl
0d − sCk + Ck

0dsI l + I l
0dg
J ,

D22
v =HDi,j + dt†s1 − udmsAi,j − hBi,jd + Ki,k,jfs 1

2Fk + Fk
0d − usFk + Fk

0dg‡
− usu − 1dsdtd2Qi,j ,k,lsCk + Ck

0dsCl + Cl
0d

J ,

R11
v =HdtGi,j ,ks 1

2Ck + Ck
0d + usdtd2hGi,k,jJk

+ usdtd2diCi,j ,k,l
0 3 fsIk + Ik

0ds 1
2Cl + Cl

0dg J ,

R12
v = husdtd2diCi,k,j ,l

0 3 f 1
2Ck

0Cl
0gj ,

R21
v = 5− dtKi,j ,ks 1

2Ik + Ik
0d

+ usdtd2S− difPi,j ,k,l + Pi,k,j ,l + Pi,l,k,jg 3 fCk
0Cl

0 + 1
2sCkCl

0 + ClCk
0d + 1

3CkClg
− diQi,j ,k,lfIk

0I l
0 + 1

2sIkI l
0 + I lIk

0d + 1
3IkI lg + hsGi,k,j − Gi,j ,kds 1

2Ik + Ik
0d D 6 ,

R22
v = 5+ dtKi,j ,ks 1

2Ck + Ck
0d

+ usdtd2ShfsGi,j ,k − Gi,k,jds 1
2Ck + Ck

0dg
− difQi,k,j ,l + Qi,k,l,jg 3 fCk

0I l
0 + 1

2sCkI l
0 + I lCk

0d + 1
3CkI lg D 6 ,

S11
p = hDi,j − udtfhAi,j − nBi,j + Ki,k,jsFk + Fk

0d + diKi,j ,ksIk + Ik
0dgj,

S12
p = − udtdiKi,k,jsCk + Ck

0d,

S21
p = − udtfdiGi,j ,ksCk + Ck

0d + Ki,k,jsVzk+ Vzk
0 dg,

S22
p = hDi,j − udtfKi,k,jsFk + Fk

0d + hAi,j − nBi,jgj,

D11
p =HDi,j + dtFs1 − udshAi,j − nBi,jd + Ki,k,jf− usFk + Fk

0d + 1
2Fk + Fk

0g
+ diKi,j ,kf− usIk + Ik

0d + 1
2Ik + Ik

0g GJ ,
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D12
p = dtdiKi,k,jf− usCk + Ck

0d + 1
2Ck + Ck

0g ,

D21
p = dtHdiGi,j ,kf− usCk + Ck

0d + 1
2Ck + Ck

0g
+ Ki,k,jf− usVzk+ Vzk

0 d + 1
2Vzk+ Vzk

0 g J ,

D22
p = hDi,j + dtfKi,k,jh− usFk + Fk

0d + 1
2Fk + Fk

0j + s1 − udshAi,j − nBi,jdgj ,

R11
p = dtuKi,j ,ksCk + Ck

0d,

R21
p = dtuKi,j ,ksIk + Ik

0d,

R22
p = dtuKi,j ,ksCk + Ck

0d,

Q11
p = dtKi,j ,kf− usCk + Ck

0d + 1
2Ck + Ck

0g ,

Q21
p = dtKi,j ,kf− usIk + Ik

0d + 1
2Ik + Ik

0g ,

Q22
p = dtKi,j ,kf− usCk + Ck

0d + 1
2Ck + Ck

0g .
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