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Implicit solution of the four-field extended-magnetohydrodynamic
equations using high-order high-continuity finite elements

S. C. Jardin® and J. A. Breslau
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(Received 15 November 2004; accepted 6 January 2005; published online 7 Apnil 2005

Here we describe a technique for solving the four-field extended-magnetohydrodyfahiix)
equations in two dimensions. The introduction of triangular high-order finite elements with
continuous first derivative@C! continuity) leads to a compact representation compatible with direct
inversion of the associated sparse matrices. The split semi-implicit method is introduced and used
to integrate the equations in time, yielding unconditional stability for arbitrary time step. The
method is applied to the cylindrical tilt mode problem with the result that a nonzero value of the
collisionless ion skin depth will increase the growth rate of that mode. The effect of this parameter
on the reconnection rate and geometry of a Harris equilibrium and on the Taylor reconnection
problem is also demonstrated. This method forms the basis for a generalization to a full
extended-MHD description of the plasma with six, eight, or more scalar field2® American
Institute of Physicg DOI: 10.1063/1.1864992

I. INTRODUCTION both MHD behavior associated with the shear Alfvén wave
_ ) o and the essential features of the whistler and kinetic Alfvén
It has been recognized for some time that it is necessanyayve physics. Variations of these equations have been exten-
to go beyond the simple “resistive magnetohydrodynamiosi\,e|y studied in the literature?
(MHD)” description of the plasma in order to get the correct  \p\e present the four-field equations in Sec. I, and then
quantitative results for the growth and saturation of globaljescribe the split semi-implicit method for their solution in
dissipative modes in a fusion device. The inclusion of a moresec. 1| and the numerical stability of this method in Sec. IV.
complete “generalized Ohms law"” and the off-diagonal termssections V-VII present applications of this method to three
in the ion pressure tensor introduce whistler waves, kinetignggel problems: presenting new results on the effect of the
Alfvén waves, and gyroviscous waves, all of which are dis-cq|jisionless ion skin depth on the growth rate of the tilt
persive and require special numerical treatment. We describggde in Sec. IV and confirming the importance of this term

a numerical approach to solve these extended-MHD equasn reconnection rates in Secs. VI and VII. The paper is sum-
tions using a compact representation that is specifically deywarized with discussion in Sec. VIIL.
signed to yield efficient, high-order-of-accuracy implicit so-
Iut|on§ of a general form.ulat!on of the exte.nded—MH.D_ Il. THE EQUATIONS
equations. The representation is based on a triangular finite
element with fifth-order accuracy that is constructed to have The reduced two-dimensionalx,y) two-fluid MHD
continuous first derivatives across element boundaries. Thequations in the limit of zero electron mass can be written
Galerkin technique allows this element to be applied to sys-
tems of equations containing spatial derivative operators of  —V2¢=[¢,V2¢ ]|+ [V24, ] + uVe, (1a)
up to fourth order. The final set of discrete block matrix at
equations is solved using a parallel sparse direct solver.

For the general formulation, the magnetic and velocity Vs =[] +[I, 9] + uV2V, - uhV4V (1b)
fields are decomposed without loss of generality in a poten- 4t ’ ’ ‘ “
tial, stream function form as in Ref. 1. Formulating the prob-
lem in these variables allows two nontrivial subsets of equa- ¢ _ 2 4
tions that can be studied before embarking on the full set of E =Lo ]+ dlg ]+ Vo= 0¥y, (10
equations. The two-variable system described in Ref. 2 is the
well-known two-field “reduced MHD” equations consisting al 5 5 4
of a single flux function for the magnetic field and a single ;= [p, 1]+ d[VZg ] + [V 4] + pVI = vV (1d)
stream function for the velocity. The present paper describes
the method applied to a more complex subsystem: the foutere we have utilized the Poisson bracket notation
field reduced MHD equations, also known as the reduced [ab]=VaXx Vb-%

two-fluid MHD equations. This set of equations contains
Here, ¢ is the in-plane velocity stream functioW, is thez

Tpaper PI1 B1, Bull. Am. Phys. S0d9, 286 (2004). component of the velocityy is the magne_tic _qux function,
Pinvited speaker. and | is the z component of the magnetic field. Thus, the
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magnetic field andincompressiblefluid velocity are repre- Ill. THE NUMERICAL METHOD

sented aB=V X 2+12 andV="V ¢ X Z+V,z It is shown in To derive the implicit system, we Taylor expand the
Ref. 3 that Egs(1a—(1d) are valid in the low guide-field right-hand side of Eq.l) in time to center the spatial deriva-
limit in which whistler waves are the dominant two-fluid tives at the advanced timé**?=t"+6st, keeping only the
effect, but that a very similar set of equations is valid in theterms through first order in the time stép This gives
high guide-field limit in which the kinetic Alfvén wave is 27 _ 2 o2 2° 2
prominent. Thus, we take Eqél) to be typical of the ex- Vi=1oV g1+ 001 V-l + 0L V-1 + (V4]
tended MHD equations in two dimensions. + OS[ V2, ] + OS[V24h, ] + uVAp + OStuV e,
The fluid viscosity, electrical resistivity, hyper-resistivity (3a)
(or electron viscosity and collisionless ion skin depth are
given by u, », v, andd;, respectively. The paramethbris a o . : .
hyperviscosity coefficient added to damp spurious oscilla- Vo= [ Vo] + 0B Vo] + 0 Vo] + (1, ]+ 681, 9]

tions that might otherwise develop. Terms involving the elec- + 0811 i/f] + UV +M9&V2V — phv4v
tron mass have been neglected. The two-field reduced MHD R z ‘ z
system studied in Ref. 1 are just Eq$a) and(1c) with the - uhostvav,, (3b)

parameted; set to zero. _ _ _
Equationg1) have the energy integréh the absence of =[] + O b, ] + OS[ b, ] + A, 1]+ 0, OS 4, 1]
sourcey ) : )
+d, 03[, 1]+ PV2+ nOStV 2 — vV — vOStV Ay,

(30
2] [ v arever v e ian | |
| =[p, 1]+ 03,11+ 63, 1]+ [ V2, ]
BIVZRP + | V V2 + V22 + | VI 2 . : :
) + uh[VA2+ o]V (V2w v 9 + 0 OS2, ] + A OS24, ] + [V ] + OS]
+ OS[V,, 4] + PV + SV — vV - vOSVAL .
+j£d€ﬁ-vzpv2¢;. (2 34

The split semi-implicitmethod consists of usmg Eq&30)
To derive(2), we have assumed the perturbed variables obeynq (3¢), but with the field time derivativess and | on the

the boundary conditions right of the equal sign set to zero and ignorigsgnal) dissi-
pative terms, to eliminate time derivativgsand| from Egs.
b=ph-Vo=V,=uhVV, (38 and(3b). This has the effect of isolating the linearized
Alfvén wave characteristics in those two equations. Thus, the

= 1/1 vV2¢/—~I: v - V1=0. modified velocity equations become

[v2<[¢.¢]+di[w,|]>,¢]+[v2¢,<[¢.¢]+di[w,l]>]}

V2 =[, V2] + V2 f] + uViep + eat{

+[$, V2] +[$, V2] + uV'e
+(68)X[VL b, ],y + [V [, ]}, (3a)
|
V,=[, V] +[1, 4] + uV2V, - uhv4v, which are then solved to obtain the field time derivatives
o2 andl.

[T+ dlVoyyl + [V fﬁ])’l’ﬂ _ The motivation is to form two compact systems that can
+ 05t +[1, (Lo, ] + A1 D]+ [,V ]+ [0, V,] be efficiently solved each time step using elementary matrix
2 _ a methods. The Courant time step restriction associated with

+ uVV, — uhv*y,

' the Alfvén waves is eliminated by the implicit simultaneous
+(0H[([ 11+ [V o)), ] +[1,[,4]]}.  (3b))  solution of (3a) and (3b'). Since Egs(3c) and(3d) contain
the mechanism for the whistler waves, at least in the electron

) The system(Sd)., (30", (3C?' and (_3d) is §olved ee}ch MHD (EMD) model® these can next be solved implicitly to
time step as two pairs of equations, with EG&) and (3b') remove the severe time-step restriction associated with the

being solved first to obtain the velocity time derivativeés dispersive whistler waves.
andV,, and these being substituted into E¢&c) and (3d), A similar technique, but applied to the Alfvén wave only,
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has been called the “differential approximation” in Refs. 7
and 8. The present treatment differs from those in the time-
centering of the variables and in the retention of terms linear
in &t in the modified equation@a’) and(3b’). However, the
major difference between this and previous work is in the
extension of this technique to the whistler wave through Eqgs.
(3c) and (3d). The numerical stability of this system is dis-
cussed in Sec. IV.

To obtain the discrete matrices, we first define the finite
difference in time, with the notatio"(x,y) = ¢(x,y,t"),
with n being the time index. If we define the time stép
=t"1-t" then the second-order expression for the time de-
rivative, centered aboutt=t™2 is Ste(x,y,t"1/?)
= ¢"™(x,y) - ¢"(x,y). By making use of the readily verified

Phys. Plasmas 12, 056101 (2005)
LEVI = [, VO] + VAT = uhvAy,
L3VE Y =[1Vy ™, vl v,
L3 ¢™ = 504, V2,
L3AVE = 5[4, V] + uV2V, = uhVAV,
RS = Gi[[V2y, ], ¢l + A1 [ 1,
Ry =[1,4], (6b)

LIy = [, T+ d [ 1]+ pV2gnt = vV iy,

identity,
VZa,b]=[V?,b] +[a,V?b] + 2a.bd + 2a,by], (4

straightforward manipulation gives the following set of equa-
tions relating the variables at time levet 1 to those at time

level n:
(V2= 6atLY, - (08)2L2} ™2
={V2- 0atLY + AL - 6(6- D(H)2LE} 4"
+ O(3)?RE + SRY, (53
{= (0A)LE; — (9A0PLE5} ™ +{1 - 0aULE) — (2L 55 V5 ™
= {~ 03I + ALY - 6(6 - 1) () 2LL} "
+{1- 05tLL + A3~ 6(6 - (LI
+ 0(61)°RY + StRY, (5b)

{1- 08ty - gstLihIm?
={1+(1-0SLEY - OSLIEI" + SRIP, (5¢)

- OSLIR Y™+ {1 - gL
== 0SLERY + {1+ (1 - ) ALY+ SRS, (5d)
Here, we have defined the operators:
Lﬂ{(ﬁn+l} - [¢n+1iv2¢] + [¢,V2¢n+l] + MV4¢H+11

L2 ™Y = [[™2, V2], ] + [[V2™ 2, ¢, ]
+ V2, L™ gl + 2L s, ]
+ 2[5 0,1, 41,

LI o™ = [, V2] + uV9h,

R = di[[V2y, 11, 9] + d[[ 4, V2], 4] + d[ V2, [,11]
+ 2di[[wx1|x]a (ﬂ] + 2di[[¢yl Iy]a lﬂ],

Ry =[V2y, 4], (6a)
La{a™ Y =[4™LV,],
L™ =[[™ 511,91 + [1,[¢™% i1,

LB{1™ Y = di[ 1 ™1,

RiP= 04" - ¢y,

L™ = A V2L, ] + A V2, 1] + [V, ™Y,
LIB(I™ Y =, 1M + V2™ L - 4T,

R = + 0{[ ™= " 11+ VI =V, g} + d[ V2, 4]
+ Vo], (69)

We next represent each of the unknown scalar fields as a
set of time-varying amplitudes multiplying time-independent
spatial basis functiorsThe domain is divided intd/ trian-
gular regions. Within each triangha, 18 basis functions are
defined,{vyi(X,y);i=1,18 with the properties(i) each of
the basis functions is a quintic polynomial (r,y) that has
the value unity at one node for either the function or one of
its first five derivatives, with the others being zef) the
basis function and its first five derivatives are zero at the two
other nodes, andii) the quintic terms in the polynomial are
constrained so that the normal derivative of the basis func-
tion is at most a cubic function along each side of the tri-
angle. These conditions are enough to uniquely determine
the 21 polynomial coefficients for each basis function and to
insure that any scalar field represented in terms of these basis
functions will be continuous and have continuous first de-
rivatives across triangle boundaries. This continuity property
is denoted in the literature b@.° Since the basis functions
are capable of representing a complete quartic polynomial, it
follows from a Taylor’s series expansion that the error should
go like h®, whereh is a typical size of a triangle.

Using these basis functions, the unknown quantities take
the physical significance of being the function, its two first,
and three second derivatives at each of the nodes. For ex-
ample, the stream function is represented as a sum over each
of the 18 basis functions in each of th triangles

M 18
$"00Y) = 2 2 v () Pl (7)
m=1i=1
The unknowng®}';i=1,18 for triangle m break into three
sets of six{®y,;;i=1,6 correspond tap, ¢y, ¢y, dex Pxy
¢y at the first node{dy, ;;i=7,12 are the same quantities at
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the second node, ar{d)ﬂli;i=13,18 are these quantities at one-time LU decomposition of the two matrices appearing
the third node. Note that all the unknowns in E@) are  on the left of the equals sign is required. A nonlinear problem
located at the nodes and are thus shared with all triangle®quires performing the LU decomposition whenever there is
using that node. Since there are asymptotically an average sfgnificant change in the values of the matrix elements.
six triangles utilizing each node, there are approximately a
total of 3M unknowns for the global representation of each'V- NUMERICAL STABILITY
scalar field, rather that8M, which might be inferred from The split semi-implicit time advance method given by
Eq. (7). Egs.(8) and(9) is based on advancing the velocity variables
The discrete expansio(V) for each of the four scalar first each time step, followed by advancing the field vari-
fields is substituted into the four equatioi®s. The Galerkin ~ ables. This clearly leads to a more efficient numerical
method consists of multiplying each of equatigqss)—(5d) method than if the coupled system were advanced together,
by each of the basis functior(sr trial functions and inte- since the rank of each matrix appearing on the left-hand side
grating these over the domain to obtain matrix equations foin Eq. (9) is half of what it would be for the combined
the discrete unknowns. Integration by parts is used to shifsystem. To understand how this leads to an unconditionally
derivatives onto the trial functions so that no higher thanstable time advance, let us consider a simpler problem that
second spatial derivatives appear in the final integrals. Thedeas the essential features of the one under investigation.
are allowable in this procedure since the basis functions were Consider the simplified Hall MHD system for the fluid

constructed to have continuous first derivatives across trivelocity\?, the perturbed magnetic ﬁeét and the perturbed

angle boundaries. _ current densityJ=V X B. Assume for simplicity that the
_ We next represent each quantity as the sum of an equisquilibrium magnetic field is uniform and in ttedirection,
librium part that is independent of time and a perturbed partanq that the density is spatially constant. In suitably normal-

thus @7 — @7+ @7, etc. This yields the two sets of matrix j;eq ynits, the linearized momentum equation and the curl of
equations that can be solved sequentially: the induction equation become simply

{5”11 0 ”fbﬂzﬁ}_{% 0 {% N
- v v —=JX
S S Vg+ml| D2, D3, Qmi at J % Bo, (103
1 Rz || Y N N
VR ino| (8) adJ JB - = -
21 N22 mi E:V XE:V X V X [(V-dJ) X Bgl. (10b)
n+l p p n N
[S(fl 9‘1’2] [‘I’m; } _ {Dn D12:| [‘I’m;i 1 SettingB,=2, and specializing for simplicity to wave propa-
n+ n A 4. . N A~ >
1 o]l 1omi Db D% L 17mi gation in theZ direction so tha¥ — 2(/ 9z) = 24,, and bothJ
R), O || &yt andV are in theX-y plane, the split semi-implicit time ad-
+ RS, RS, Vn+’1_ vance corresponding to Eq®) is
zmi
ng’l 0 } . } [1 (680272 (V™E = V")
+ ’ 9) - - .
Qb1 QI Vomi = YOSV - d V2T - 2 x N, (11a

The block matrix elements appearing here are defined in Ap- ~ ov el T
pendix B. The matrix equation) and (9) are solved se- [1+6otdiz X V](I™" -7
quenpally using the distributed 1\éers[on of t_he direct sparse  _ S X V2[6,\7n+1+ (1- 9)\7n] - 8tdz x szn, (11b
matrix software packagg&UuPERLU " This solution procedure

is exceptionally efficient for a linear system, since only aor in matrix component form

n+l

1-(08)%% 0 0 0 V,
0 1-(08)%% 0 0 v,
0 oSt 1 —oad? | | Iy
- 082 0 5td; 2 1 Jy

1-6(0-1)(8)2% 0 - 6(8)%d; 2 ot v, |

_ 0 1-6(0-1)(8)%62 -t - 6(&%)%d 2 Nz 2
0 (6-1) &t 1 -(6-Datdi | | I |
-(0-1)8t 0 (0-1)6td, 2 1 Jy

The numerical stability is determined by replacing the spatial derivative by an effective wave nﬂﬁm@ﬁ—kiff, and by
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introducing the amplification factarfor the vector in Eq(12). The amplification factor is thus determined by the generalized

eigenvalue equation

1-r+0(80)A% s 0 6(8t)2dikz ot
0 1-r+ 6(8)%K2 -& 6(8t)2di k>
de (2 ) KetS (oY) |2keff -0, (13)
0 — OtkggsS - - dotkges
&k(zaffs 0 - d; &kgffs -r

with s=[(1-r)#-1]. Evaluation of Eq(13) with both a gen-

specify a value of the ion skin depth and run the code in a

eralized eigenvalue solver and by symbolic expansion of théinear mode to calculate the linear growth rate. Figure 1
determinant and using a polynomial root finder give identicalgives this growth rate as a function of the squaredpffor

results: the amplification factdr| <1, and thus the system is
stable, for arbitrary redkgff> 0, 8t>0, andd,>0 provided
the implicit parameter satisfigg=1/2.

V. THE TILTING CYLINDER

which it is seen to have a near linear dependence. Results for
bothN=15andN=31 are shown, with those fd¥=61 being
indistinguishable from th&l=31. This study was performed
with time stepAt=0.05 but the growth rates changed by less
than 2% when going from this value txt=0.2Q The initial
equilibrium and corresponding eigenmode for the case with

Here we apply the method to an extension of the analysifj=61 and d,=0.2 are shown in Figs. )-2(f) where we

of the tilting cylinder problem considered in Ref. 2 to the

display contours of the equilibrium poloidal flux as well as

four-field model. Following Refs. 2, 11, and 12 we define anperturbed values of the magnetic flyx the current density

initial force free bipolar vortex equilibrium state
[2/kJp(K)]Jq(kr)cosH, r<1
me={ :
(143

(r = 1/r)cosé, r>1,
We have defined a polar coordinate system such yhat
=r cos#h, x=r sin 6. The initial toroidal field is defined as
s
IeyP(xy) + B, <1

0 —
I (X7y) - {B

It is readily verified that these satisfy the equilibrium condi-
tion

Jl(k) =0.

(14b)

0 r>1.

1d|02_

zdl,b_

This equilibrium is known to be unstable to a tilting motion.

V2P + 0. (140

As in Ref. 2, the simulation box is a square with sides of

length 4 that is divided intgN-1) X (N-1) rectangular re-
gions, each with two right trianglesising the diagonal that

runs from upper right to lower left Conducting, no slip
boundary conditions are applied at the walls. Thus, atythe
boundary, we impose
oy Py al &+l
170:(9—:—2:0, =—=—=0,
X IX X X
(19
e e P 08 _Fb_os_ P,
2k T ax X gy oxay

with similar but rotated boundary conditions applied atxhe
boundary.

The baseline solution used uniform values pEu
=0.001, h=2(Ax)?, v=(Ax)?7. The instability is known to
persist even a=0 and is thus considered an ideal instabil-

J=V?y, the stream functiom, the z-directed magnetic field
I, and thez component of the velocity,.

To determine the effect of the dissipation coefficients
and v on the solution, we have recomputed the configuration
shown in Fig. 2 with a range of values of these. We find that
if we write h=C,(Ax)? and v=C,(Ax)?7, then we require
C,=0.5and C,=0.5 (approximately for numerical stabil-
ity. However, the computed growth rate increases by only
0.013% in varyingC; in the rangg0.5, 2.0, and by 0.53%
when varyingC, in this same range.

VI. HARRIS RECONNECTION

We define a Harris equilibrium and perturbation similar
to the one used in the geospace environmental modeling

5

Linear Growth Rate y

1

T T T T
0.0 02 04 0.6 0.8 1.0

square of the ion skin depth: d?

FIG. 1. Dependence of the linear growth rate for the tilt mode on the square
of the ion skin depti?. Results are shown for calculations with»245 and

ity. To examine the effect of the Hall term on this mode, we31x 31 rectangles, each divided into 2 triangles.
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FIG. 2. (Color onling. Linear eigenmodes for one of the calculations per-
formed for Fig. 1 withN=61 and d,=0.2 Shown are contours dB) the
equilibrium magnetic fluxl®; (b) the perturbed values of the magnetic flux
; (c) the perturbed current densify (d) z-directed magnetic field ke) the
stream functiong; and (f) the z component of the velocity, The region
-15,1.
(><(—1.5,51.5 is shown while the calculation was performed on a
(-2.0,2.0X(-2.0,2.0 domain with conductor boundary conditions
imposed. ke=2m/Ly, ky=m/L,, with L,=25.6,L,=12.8,6=0.1.
We illustrate the results from a pair of comparison cal-
i i L culations in Figs. 3—7. Both cases hb&61, »==0.001
(_GI_EM) magnetic reconnection ch_allenbaebut_ yv_lthm th_e_ h=C,(AX)2, v=Cy(AX)?7, C,=4, C,=1, time stepAt=0.25
I|_m|tat|ons of_the_four-fl_eld e_quanns. The |_n_|t|§I equilib- and implicit paramete®=0.6. The first case had the ion skin
rium, shown in Flg. 3, is deﬂ_ned by an equilibrium and adepth set to zercd, =0, while the second case hag=1.0.
perturbed magnetic flux function as follows: Figures 4 and 5 show the poloidal magnetic fitop)
1 and current densityfbottom) for the two cases at time
Pxy) = Eln(COSh %), P(xy) =& coskx coskyy =37.5 We see in Fig. 4 that the case with=0 (resistive
MHD) has a thin current layer on the midplane, known as the
(16) Sweet—Parkéf layer. The corresponding case witk=1.0
with all the other quantities initialized to zero. The initial (Hall-MHD) is shown in Figs. 5 and 6. In comparing Figs. 4
equilibrium and perturbed current densities are just the Laand 5, we see that the Sweet-Parker layer is much shorter
placian of the flux,J°=V2yP, J=V2y. The computation is With di=1, and the reconnection region has essentially
carried out in a rectangular domain_#2<x<L,/2 and changed character from &-point to an X-point as
-L,/2<y=<L,/2. The system is taken to be periodic in the expected® In Fig. 6 we see the out-of-plang-directed
direction with ideal conducting boundaries, Hd5), aty  Velocity (top) and magnetic field(bottom) in the Hall-
=+L,/2. As in Ref. 11, we chose the parameters such thateconnection case witth=1. Large in-out flows develop as a

FIG. 4. (Color online. Poloidal magnetic fluxtop) and current density
(bottom for the “resistive MHD” reconnection at timie=37.5with d;=0.

FIG. 3. (Color onling. Initial equilibrium poloidal magnetic fluxs (top) and FIG. 5. (Color onling. Poloidal magnetic fluxtop) and current density
current densityd (bottom) for the Harris reconnection problem. (bottom) for the “Hall-MHD” reconnection at timé=37.5with d;=1.0.



056101-7 Phys. Plasmas 12, 056101 (2005)

Implicit solution of the four-field...

0.001
0.000
-0.001 H
-0.002 +
-0.003 +
-0.004 -

-0.005 -
0.0002 -

0.0001 H
0.0000 H
-0.0001 -
-0.0002 -
-0.00083 -
-0.0004

Reconnected Flux

Reconnection Rate

30 40

FIG. 6. (Color onling. Out of planegz-directed velocity (top) and magnetic
field in the Hall-reconnection case with=1 (bottom). Large in-out flows
develop as a result of the reconnecting fields. Zlsemponent of the mag-
netic field forms the characteristic quadrupole structure near the midplaneFIG. 8. Reconnected flugtop) and reconnection ratédottom) vs time for
the Taylor problem for different values of the collisionless ion skin dehth
Other physical parameters werg= u=10"%, h=(Ax)?> The parameted, is
result of the reconnecting fields. Thecomponent of the Z;eerT to have a significant impact on the reconnection rate, especially at early

magnetic field forms the characteristic quadrupole structure
near the midplane.

We define thereconnected magnetic flwas ¢(t) andC, as long as these are near unity. Varyi@g in the
=1/2[y(0,0,t)-¢(L,/2,0,t)] and thereconnection rateas  range[0.75,1.25 or C, as in the rang¢2.0,4.0 each cause
the time derivative of this. In Fig. 7 we show a comparisonthe maximum growth rate to increase by less than 1.5%,
of the amount of reconnected flygark curvey and the re- indicating that the solution is adequately converged in these
connection rategred curvey vs time for the two cases, with parameters.
several values of the hyperdissipation coefficients fordhe
=1.0case. It is seen that the Hall reconnection case dith VIl. THE TAYLOR PROBLEM
=1.0 causes reconnection to occur about eight times faster
than the resistive MHD case with=0 for these parameters,
and the results are relatively insensitive to the value€pf

Time

The Taylor probler‘?‘l consists of an initial magnetic field
given by the flux function

o)==y
The z component of the magnetic fielth(x,y), is initially

17

1.2 0.05
. zero, as are the velocity variable® and vg For timest
- =0, the top and bottom boundaries are perturbed as follows:
1.0 4 P s WU PO
ey S Y(x, £ 1) = e(t)cogkx),
x // i .4/.\.\ ..G_J, (18)
2 08 - o /¢ o
o ,/ £ a \\\ x _ 1. .
3 g V4 By [ 5 Hx, £1)= F Es(t)sm(kx).
3 oo R AR
= i 4'7/ | ) - The left and right boundaries are periodic. The time-
§ 7 - 8 dependent perturbation function is defined as
[0}
& o s(t) = 91 - (1L +t/ Dexp— t/7)]. (19)
I 0.01
This problem has been studied both theoreti¢allgnd
numerically’ for the case of resistive MHII; =0), but only
0.00 numerical resultexist for the “two-fluid” or “Hall MHD”

Time

case of nonzerd,.
The results of a series of calculations wigf=.01
=1.0, k=27/L,, p=p=10" h=(Ax)?, v=(Ax)?7n are pre-

FIG. 7. Comparison of the amount of reconnected filerk curvegand the

reconnection rate§red curves vs time for the two cases. Three runs are : :
shown for thed, =1 case withC,=1,C,=2 (dashedl C,=1.C,=4 (dashedl rate (bottom vs time are shown for different values of the

C,=0.75C,=4 (dashed-dotted The reconnected flux and reconnection rate COllisionless ion skin deptid;. The parameted; is seen to
are essentially independent of these dissipation parameters over this rangaave a significant impact on the reconnection rate, especially

sented in Fig. 8. The reconnected flig@p) and reconnection
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at early time. These results are seen to be qualitatively sSimiACKNOWLEDGMENTS

lar to Fig. 1 of Ref. 3, but extend those results to a nonlinear ) ) ) )
regime with a larger perturbation amplitude. More generally, 1€ authors benefited from many useful discussions with
the fact thatd,, or the Hall term, can greatly accelerate the N€ir colleagues: J. Chen, P. Fischer, G. Fu, W. Park, R. Sam-

rate of forced magnetic reconnection is consistent with ref@ney, C. Sovinec, H. Strauss, and L. Sugiyama in particular.

sults reported in earlier studies. This work was supported by U.S. Department of Energy

The calculations presented in Fig. 8 were performed on &ontract No. DE-AC02-76CHO03073 and by the Department
domain with L,=8, L,=2, which was broken up into 60 of Energy SciDAC Center for Extended Magnetohydrody-

X 60 rectangles, each divided into two triangles with a linen@mic Modeling.

from upper right to lower left. The other numerical param-

eters used werét=0.5and #=0.6. As in the other studies in  APPENDIX A: DEFINITIONS AND SYMMETRY
this paper, there was no attempt to concentrate resolution IRELATIONS

the reconnection layer, although this could dramatically in-

crease the efficiency of this method and will be pursued in ~_The matrix and tensor quantities used in the text are
future studies. defined as follows. These are evaluated by closed form inte-

gration of the local polynomial expansions as described in
Appendixes B and D of Ref. 2:

VIIl. SUMMARY AND DISCUSSION

D; ®

ij
A new technique for solving the extended MHD equa-

tions has been described and applied to the four-field model.

This is a ggneralization of Appendix D of Ref. 2 where thg A D = f f vi(& 7)V2(£ m)dédy,

MHD two-field model was discussed. The further generali-

zation of this method to the fully compressible six-field or

eight-field system of the full extended MHD equations is

Endorway, | By = J J (& V(£ m)dedy,
The method is characterized by representing the fluid

and field in a potential/stream-function representa]ctibn

which higher derivatives occur. The higher derivatives are  G;; \W;®, = f f vil&, p)[V2y, $pldédn = -Gy V;Py,

handled by using a compact triangular high-order finite ele-

ment representation wit@* continuity rather than by intro-

;jnuagtlrri]cgezfjxmary variables that would increase the rank of the K ¥ Py = f f vié& D¢, Pldédn = = K; ¥ Dy,
The split semi-implicit time advance is introduced which

breaks the time advance into two steps each cycle. In the first

step, the implicit method avoids time-step restrictions due to  Pij k¥ Puli = f f vi(& D¢, V2], {ddédn

the Alfvén waves by inverting the ideal MHD force operator.

In the second step, the implicit field advance avoids time- =-Pki¥PZ;,

step restrictions due to the dispersive waves. It was shown in

Sec. IV that the combined two-step time advance is uncon- B )

ditionally stable for arbitrary time step as long as the implic-  (M°t€Pkj i1 Pz ‘ff”i(f' VL pl1dédy

ithess parameted is greater than%. The relatively small

matrices that need to be inverted make a direct sparse matrix

inversion practical. A side benefit is that for linear problems,

the LU decomposition only needs to be performed once, _

making the method exceptionally efficient. Qi Py ¥is = f f vi(& L ¥, £ldedn
The present work demonstrated the validity of this _

method by calculating the effects of the collisionless ion skin =~ Quu®¥idy

depth on the ideal MHD tilt mode, and on the rate of mag- == Qjki®VZ =Q ki P ViZ,

netic reconnection for both a self-reconnecting and a forced

reconnection system. Future work will extend this to a higher

order system of equations, to toroidal geometry, and to three  Rijxi®jWiZ; = J J vi(& ML . ]

dimensions.

=-P;i¥®Z),

Finally we remark that we did not take advantage of the +[[ ey, ], {T}dédn
geometrical flexibility that is offered by triangles in the ap- =-R, O W,Z
plications presented here. Triangular elements offer the po- it
tential to fit complex domain boundaries and to easily add =-R k1 ®WVZ =R ;P Wiz,

refinement where needed. This will be exploited in future
studies. Dl,j‘]j = Ai,j\Pj!
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Pijit = Pijkt ¥ Pikji + 2R j i Qij = 3(Qjss + Qiju)-

Chix1 =
i Piiij = Piikj * Pikij 2Rk

Gijk=(Giyxj+Gij,

APPENDIX B: THE MATRIX ELEMENTS

Making use of the definitions and symmetry relations in Appendix A, the matrix elements are given as follows:

A it Ot uB; J +6I g (@ + (I)E)]
7]+ (0002C0  B(Wi o+ WO (W, + WD)

— OSK; (Vg + V2
— (08)2Q; j [(L+ 1D (W +¥D) = (W, + T (1 +1D)] )

_ [y~ oatu, -8, >+Klk,<q>k+c1>°>]}
— (68)2Q, sy (W + W) (W) + W) ’

A+ S = OB + AG, ;[ H(D+ DY) — (3D, + DY) |
+ 6’(9 D)’y 3 (Wi + WR (W) + W) ’

{&K,,k [ 00V VB + (Ve VB ] }

00— 1)(8)°Q [+ 1) () + WP) = (Wi + TR (1, +17)]

D| J + &[(1 Q)M(A| Bl hB| j) + KI kJ[(l(I)k+ q)(k)) - 9((I)k+ ‘1’8)]] }
- 6(6- 1)(3)°Q I+ W) +97)

. AG; k(3 W+ W) + 632 7Gi I
BT+ 002 C X [+ 1) (Gw + )] |

Riz= {‘9(&)2dicﬁk,j,l X [%\Ifﬁ\pf’]},

= 3K i3+ 1)

R3:1 = o = AilPijki * Pigji + Piigl X (WP + 3 (WP + W) + 50,0 ] o,
+6(dt) _ 0,0, 1/ 40 0, 1 _ 1 0
L diQi,j,k,I[IkII +5(Ldy + 1) + 3|kll] + 9(Gj i Gi,j,k)(2|k+ Ik)

+ &Ki,j,k(%‘l’k +wP)
ﬁ[(Gi,j,k—Gi,k,j)(%‘l'k“”l’g)] ) '
—ai[Qixji+ Qikiil X [‘I’(k)ho + (WP + 1P + %‘I’kh]

v _—
R22_

+ 0(5t)2<

S, =1{D;j = O 9A j = By j + K1 j(Py+ DY) + diKi w1 + 1D},
Sy == 08K (W + V),

1= = 0A[A G ((Tie+ W) + Ki i (Vs VEQI,

,=1{Dij = 0K o (P + DY) + mA = vB; [T},

D=\ D+ & (1_6)(7]Ai’j_VBi’j)+Ki'k'j[_o(q)k"'(pg)"'%(bk"'q)g] ,
i +diKi’j'k[_6(|k+|8)+%|k+|(k):|
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DY, = &diKi,k,j[_ Oy + WD) + 30, + 07,

diai,j,k[_ OV + ) + %‘I’k + ‘I’g]
+ Ki,lq[— OVt Vo) + 3V + V] |

DB, = &t
D8, ={Dy; + S[Ki 1 ;{~ 0D, + D) + 1y + D + (1 - 0)(mA - 1B ) ]}
R0y = 80K (W + D),

RS, = oK j Iy + 19,

R, = 8tOK; (W + D),

Qb= &Ki,j,k[_ oWy + W) + 50, + W],

Qby = K[~ O+ 1D + 31 +17],

Q5= &Ki,j,k[‘ oWy + W) + 30, + WP
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