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The growth of a tearing mode is described by reduced MHD equations. For a cylindrical

equilibrium, tearing mode growth is governed by the modified Rutherford equation, i.e., the

nonlinear D0ðwÞ. For a low beta plasma without external heating, D0ðwÞ can be approximately

described by two terms, D0qlðwÞ; D0AðwÞ [White et al., Phys. Fluids 20, 800 (1977); Phys. Plasmas

22, 022514 (2015)]. In this work, we present a simple method to calculate the quasilinear stability

index D0ql rigorously, for poloidal mode number m � 2. D0ql is derived by solving the outer equation

through the Frobenius method. D0ql is composed of four terms proportional to: constant D00, w,

wlnw, and w2. D0A is proportional to the asymmetry of island that is roughly proportional to w. The

sum of D0ql and D0A is consistent with the more accurate expression calculated perturbatively [Arcis

et al., Phys. Plasmas 13, 052305 (2006)]. The reduced MHD equations are also solved numerically

through a 3D MHD code M3D-C1 [Jardin et al., Comput. Sci. Discovery 5, 014002 (2012)]. The

analytical expression of the perturbed helical flux and the saturated island width agree with the sim-

ulation results. It is also confirmed by the simulation that the D0A has to be considered in calculating

island saturation. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4966243]

I. INTRODUCTION

The tearing mode is a very important MHD instability in

tokamaks. It may cause confinement deterioration and even

disruptions as it connects the core and the edge directly. It

has also long been a candidate to explain major disruptions5

and the tokamak density limit.6–9 Furth et al. first calculated

the linear growth rate of a tearing mode in slab and cylindri-

cal geometry.10,11 Rutherford then calculated the nonlinear

tearing mode growth when the island width exceeds the size

of the tearing layer but is still small compared with the sys-

tem size.12 White first proposed the quasilinear stability

index D0ql in Ref. 1 and added the asymmetry stability index

D0A in Ref. 2 to describe the island growth

dw

dt
¼ 1:22

g
l0

D0 wð Þ � 1:22
g
l0

D0ql wð Þ þ D0A wð Þ
� �

; (1)

where D0ql ¼ w01j
rr

rl
=w1ðrsÞ, w1 is the first harmonic of the per-

turbed helical flux, rs; rl; rr are the minor radius of rational

surface, left (inner) and right (outer) edges of the island,

respectively. The helical flux w is defined through

w ¼ 2p
Ð r

0
~B � rsrdr, where s ¼ h� n/=m. A more accurate

constant 1.22 is used according to Ref. 13. In this work, we

present a rigorous method to calculate D0ql as an extension of

the quasilinear calculation in Ref. 1. We also show that the

solution of w1ðrÞ in the outer region captures the island

structure accurately.

II. ANALYTICAL CALCULATION OF D0ql AND D0A

This work is performed in cylindrical geometry. The

variables ðr; h; zÞ form a right-handed coordinate system,

and / ¼ z=R (2pR is the periodic length in the z direction).

The current density in the / direction is expressed through

Ampere’s law

j ¼ 1

l02pR
r2
?wh þ

2n

l0m

B/

R
; (2)

where r? ¼ rr@r þrh@h; B/ is the /̂ component of the

equilibrium magnetic field. Consider a single harmonic per-

turbation of the helical flux

whðr; sÞ ¼ w0ðrÞ þ w1ðrÞ cosðmsÞ: (3)

Outside the island, the plasma inertia is negligible. Taking

the first harmonic of Eq. (2), w1 is the solution of

d2

dr2
þ 1

r

d

dr
� m2

r2

� �
w1 ¼ 2pl0R

dj0

dw0

w1; (4)

with a conducting wall boundary condition w1ðaÞ ¼ 0.

Expand Eq. (4) near the rational surface r ¼ rs. Let x ¼ r
�rs and keep the terms up to O(x)

w001 þ ðr�1
s � r�2

s xÞw01 � ðKx�1 þ LþMxÞw1 ¼ 0; (5)

K ¼ 2pl0Rj 1ð Þ

w 2ð Þ
0

����
r¼rs

; (6)

L ¼ m2

r2
s

þ 2pl0Rj 2ð Þ

w 2ð Þ
0

� pl0Rj 1ð Þw 3ð Þ
0

w 2ð Þ
0

� �2

�����
r¼rs

; (7)

M ¼ � 2m2

r3
s

þ pl0Rj 1ð Þ w 3ð Þ
0

� �2

2 w 2ð Þ
0

� �3
� w 4ð Þ

0

3 w 2ð Þ
0

� �2

2
664

3
775

� pl0Rj 2ð Þ w 3ð Þ
0

w 2ð Þ
0

� �2
þ pl0Rj 3ð Þ 1

w 2ð Þ
0

�����
r¼rs

; (8)
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where the superscript in parentheses denotes derivative with

respect to r. x¼ 0 is a regular singular point of this equation.

Assume w1ðxÞ ¼ xr
P1

n¼0 anxn, then the indicial equation is

rðr � 1Þa0 ¼ 0. Choosing the larger solution r1 ¼ 1 gives

y1ðxÞ ¼
P1

n¼0 anxnþ1, with a0 a free parameter, and

a1 ¼
1

2
K � 1

rs

� �
a0; (9)

a2 ¼
1

3r2
s

� K

4rs
þ 1

12
K2 þ 1

6
L

� �
a0; (10)

an ¼ �
1

nþ 1ð Þn

"
n

rs
�K

� �
an�1 �

n� 1

r2
s

þ L

� �
an�2

�Man�3

#
; n � 3: (11)

Assume the second solution to be y2ðxÞ ¼ y1ðxÞ � lnjxj
þ
P1

n¼0 bnxn. We find a recurrence relation with b0 and b1

two free parameters, and

a0 ¼ Kb0; (12)

b2 ¼ �
3

2
a1 þ

1

2
K � 1

rs

� �
b1 �

1

2rs
a0 þ

1

2
Lb0; (13)

bn ¼ �
1

n n� 1ð Þ

"
2n� 1ð Þan�1 þ

n� 1

rs
� K

� �
bn�1

þ 1

rs
an�2 �

n� 2

r2
s

þ L

� �
bn�2 �

1

r2
s

an�3

�Mbn�3

#
; n � 3: (14)

There appear to be two free parameters in the second solu-

tion, but a change in b1 only changes y2ðxÞ by adding some

multiple of y1ðxÞ. Thus, choose b1 ¼ 0, rewrite the free

parameters as C1 and C2, and keep terms up to Oðx3Þ, then

the general solution is

w1 xð Þ ¼ C1 � xþ 1

2
K � 1

rs

� �
x2 þ 1

3r2
s

� K

4rs
þ 1

12
K2 þ 1

6
L

� �
x3

" #

þC2

(
xþ 1

2
K � 1

rs

� �
x2 þ 1

3r2
s

� K

4rs
þ 1

12
K2 þ 1

6
L

� �
x3

" #
lnjxj

þ 1

K
þ � 3

4
K þ 1

4rs
þ L

2K

� �
x2 þ � 1

9r2
s

þ 5

12

K

rs
� 7

36
K2 � 1

18
L� 1

6

L

rsK
þ 1

6

M

K

� �
x3

)
: (15)

Substituting x¼ 0, find C2 ¼ Kw1ð0Þ. Rewrite C1 as

C1 ¼
�Aw1ð0Þ if x < 0;

�Bw1ð0Þ if x > 0;

(
(16)

then, the first order derivative of w1ðxÞ for x< 0 is

w01 xð Þ
w1 0ð Þ

¼�A � 1þ K� 1

rs

� �
xþ 1

r2
s

�3K

4rs
þ1

4
K2þ1

2
L

� �
x2

" #

þ 1þ K� 1

rs

� �
xþ 1

r2
s

�3K

4rs
þ1

4
K2þ1

2
L

� �
x2

" #
�Klnjxj

þKþ �K2þLð Þxþ k2

rs
�1

2
K3�1

2

L

rs
þ1

2
M

� �
x2;

(17)

and w01ðxÞ for x> 0 only differs by replacing A with B.

For small island width w, the island is roughly symmetric.

Thus, we have xl ¼ rl � rs � �w=2; xr ¼ rr � rs � w=2

and w ¼ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w1ðrsÞ=ð�w000ðrsÞÞ

q
. Then, D0ql as a function of

w is

D0ql¼A�Bþ � 0:5Aþ0:5Bþ0:69Kð Þ K� 1

rs

� �
�K2þL

� 	
w

þK K� 1

rs

� �
wlnwþ1

4
A�Bð Þ 1

r2
s

�3

4

K

rs
þ1

4
K2þ1

2
L

� �
w2;

(18)

where the w2 term is usually much smaller than the first three

terms. The asymmetry stability index D0A is due to an imbal-

ance of the mth harmonic of the current, given by

D0A ¼ �
2pRl0

w1 rsð Þ
m

p

ðp=m

�p=m

dh
ð~r r hð Þ

~r l hð Þ
drdj rð Þcos mhð Þ; (19)

�� 2pRl0

w1 rsð Þ
fF

m

p

ðp=m

�p=m

dh
ð~r r hð Þ

~r l hð Þ
dr j0 rxð Þ � j0 rð Þ

 �

cos mhð Þ;

(20)

where fF is a positive flattening factor less than 1, accounting

for the degree of current profile flattening inside the island.

If the left edge rl and right edge rr of the island are known at

h¼ 0, the location of the island separatrix can be approxi-

mated by

~rl hð Þ ¼ 1

2
rl � rxð Þcos mhð Þ þ 1

2
rl þ rxð Þ; (21)
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~rr hð Þ ¼ 1

2
rr � rxð Þcos mhð Þ þ 1

2
rr þ rxð Þ: (22)

Then, for the small island width

D0A��
2pRl0

w1 rsð Þ
fF

m

p

ðp=m

�p=m

dh
ð~r r hð Þ

~r l hð Þ
dr �j00 rxð Þ

 �

r� rxð Þcos mhð Þ;

(23)

¼�2pRl0

w1 rsð Þ
fF

m

p

ðp=m

�p=m

dh �1

8
j00 rxð Þ

� �
w rlþ rr� 2rxð Þ

� cos mhð Þ cos mhð Þþ 1ð Þ2; (24)

¼ pRl0

2w1 rsð Þ
fFj00 rxð Þw rl þ rr � 2rxð Þ; (25)

� pRl0

4w1 rsð Þ
fF �j00 rxð Þ

 �

w2As; (26)

¼
l04pRj0 rxð Þ

w000 rsð Þ
fFAs; (27)

where As ¼ ðrx � rlÞ=ðrr � rxÞ � 1 is a positive number rep-

resenting the degree of the island asymmetry, which is

roughly proportional to the island width.2 This expression

has been obtained in Ref. 2 though with a different numerical

coefficient. In Ref. 3, Arcis et al. derived the nonlinear D0ðwÞ
using a perturbative method, giving

D0 ¼ A� Bþ ½�0:20ðAþ BÞ ~K � 1:81 ~K
2

þ 0:33 ~K=rs þ 0:41 ~L�wþ 0:41 ~K
2
wlnw; (28)

where ~K¼ j0ðrÞ=jðrÞ � ð1�2=sÞjrs
; ~L¼ j00ðrÞ=jðrÞ � ð1�2=sÞjrs

;
s¼ rqðrÞ0=qðrÞjrs

. In fact, simple algebra shows that ~K ¼
l0jð1Þ=wð2Þ0 jr¼rs

¼ K and ~L ¼ l0jð2Þ=wð2Þ0 jr¼rs
. This expression

has included the asymmetry effect implicitly. Eq. (28) has

similar terms to the combination of Eqs. (18) and (27),

except for the numerical coefficients and some higher order

terms.

III. COMPARISON OF THE FROBENIUS METHOD
AND NUMERICAL CALCULATION

We now compare the results of the Frobenius method

with a fully nonlinear numerical calculation obtained with

the code M3D-C1.4 The code uses a finite element represen-

tation of the radial functions and solves the reduced MHD

equations in cylindrical geometry. We use the FRS equilib-

rium for comparison11

j rð Þ ¼ j0

1þ r=r0ð Þ2�
h i1þ1=�

; q rð Þ ¼ q0 1þ r=r0ð Þ2�
h i1=�

;

(29)

where j0 is the current density on the axis, r0 is the width of

the current channel, � is a parameter controlling the peaked-

ness of the current profile, and q0 ¼ 2B/=ðl0Rj0Þ is the

safety factor on the axis. First, Eq. (4) is solved numerically

and the two constants A and B in the analytical expression

Eq. (15) are determined by fitting the semi-analytical solu-

tion of w1ðxÞ with the local expansion expression near the

rational surface. Then, the perturbed helical flux and its

derivative are fully determined as in Eqs. (15) and (17). The

case under consideration is an equilibrium with q0 ¼ 1:15;
� ¼ 1:0; r0 ¼ 0:81, unstable to the 2/1 tearing mode. In Fig.

1 are shown w1ðrÞ and w01ðrÞ given by the semi-analytical

calculation, Frobenius method, and simulation. The semi-

analytical results agree with the fully nonlinear simulation

within 1% except for some deviation of w01ðrÞ near rs, as the

simulation includes modification in the island interior. The

Frobenius method results show good agreement with the

semi-analytical result for r> 0.5. More important are the

island parameters entering into any nonlinear evaluation of

saturation properties. They include the island width, the posi-

tions of the outside and inside island edges, the locations of

the island O-points and X-points, the island asymmetry, and

the island saturation width. It is clearly seen that the shift of

the O-point from the rational surface is larger than the shift

of the X-point, this result is due to the difference in the mean

slope of the radial eigenfunction inside and outside the ratio-

nal surface, and directly related to the linear growth rate of

the mode. Shown in Table I are the values given by the simu-

lation and the local expansion. The results are seen to be

FIG. 1. Comparison of w1ðrÞ and w01ðrÞ. w1ðrÞ is normalized to 1 at rs. The

results at the beginning of the island growth (Start) and at saturation (End)

from simulation are plotted.
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accurate within 1% except for As, which is 8%. The simula-

tion gives a saturated width of 0.1214. The semi-analytical

calculation gives the same width if we use fF¼ 0.17. The

degree of flattening fF can also be calculated from the simu-

lation result

fF ¼

m

p

ðp=m

�p=m

dh
ð~r r

~r l

dr j r; hð Þ � j0 rð Þ

 �

cos mhð Þ

m

p

ðp=m

�p=m

dh
ð~r r

~r l

dr j rxð Þ � j0 rð Þ

 �

cos mhð Þ
; (30)

where jðr; hÞ is the current density at saturation. This formula

gives fF¼ 0.25, not very different from what the semi-

analytical calculation requires.

IV. SUMMARY

In this work, D0ql and D0A are derived analytically and

used to calculate island saturation. Although this method is

not as accurate as Ref. 3, it is much simpler. The comparison

with the numerical simulation confirms that the island asym-

metry must be considered in calculating island saturation.

The island characteristics, w1ðrÞ and w01ðrÞ, from the analyti-

cal calculation and the simulation show good agreement.

This result is important because it demonstrates that the lin-

ear eigenfunction can be used to calculate the properties of

an island state, including saturation width, and that the solu-

tion external to the island is not significantly changed by the

internal island dynamics.

ACKNOWLEDGMENTS

This work was supported by the U.S. Department of

Energy Grant under Contract Nos. DE-AC02-09CH11466

and DE-SC0004125.

1R. B. White, D. A. Monticello, M. N. Rosenbluth, and B. Waddell, Phys.

Fluids 20, 800 (1977).
2R. B. White, D. A. Gates, and D. P. Brennan, Phys. Plasmas 22, 022514

(2015).
3N. Arcis, D. F. Escande, and M. Ottaviani, Phys. Plasmas 13, 052305

(2006).
4S. C. Jardin, N. Ferraro, J. Breslau, and J. Chen, Comput. Sci. Discovery

5, 014002 (2012).
5R. B. White, D. A. Monticello, and M. N. Rosenbluth, Phys. Rev. Lett. 39,

1618 (1977).
6P. H. Rebut and M. Hugon, Plasma Phys. Controlled Nucl. Fusion

Res., London 2, 197 (1984); see http://www.iaea.org/inis/collection/

NCLCollectionStore/_Public/16/055/16055667.pdf#page=215.
7D. A. Gates and L. Delgado-Aparicio, Phys. Rev. Lett. 108, 165004

(2012).
8D. A. Gates, D. P. Brennan, L. Delgado-Aparicio, and R. B. White, Phys.

Plasmas 22, 060701 (2015).
9Q. Teng, D. P. Brennan, L. Delgado-Aparicio, D. A. Gates, J. Swerdlow,

and R. B. White, Nucl. Fusion 56, 106001 (2016).
10H. P. Furth, J. Killeen, and M. N. Rosenbluth, Phys. Fluids 6, 459 (1963).
11H. P. Furth, P. H. Rutherford, and H. Selberg, Phys. Fluids 16, 1054

(1973).
12P. H. Rutherford, Phys. Fluids 16, 1903 (1973).
13R. Fitzpatrick, Phys. Plasmas 2, 825 (1995).

TABLE I. Characteristics of the magnetic island.

rl rr rx ro rs As w

Analytic 0.6272 0.7485 0.7051 0.6858 0.6964 0.7964 0.1214

Simulation 0.6266 0.7480 0.7036 0.6849 0.6964 0.7342 0.1214

102515-4 Teng et al. Phys. Plasmas 23, 102515 (2016)

http://dx.doi.org/10.1063/1.861939
http://dx.doi.org/10.1063/1.861939
http://dx.doi.org/10.1063/1.4913433
http://dx.doi.org/10.1063/1.2199208
http://dx.doi.org/10.1088/1749-4699/5/1/014002
http://dx.doi.org/10.1103/PhysRevLett.39.1618
http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/16/055/16055667.pdf#page=215
http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/16/055/16055667.pdf#page=215
http://dx.doi.org/10.1103/PhysRevLett.108.165004
http://dx.doi.org/10.1063/1.4922472
http://dx.doi.org/10.1063/1.4922472
http://dx.doi.org/10.1088/0029-5515/56/10/106001
http://dx.doi.org/10.1063/1.1706761
http://dx.doi.org/10.1063/1.1694467
http://dx.doi.org/10.1063/1.1694232
http://dx.doi.org/10.1063/1.871434

	s1
	d1
	s2
	d2
	d3
	d4
	d5
	d6
	d7
	d8
	d9
	d10
	d11
	d12
	d13
	d14
	d15
	d16
	d17
	d18
	d19
	d20
	d21
	d22
	d23
	d24
	d25
	d26
	d27
	d28
	s3
	d29
	f1
	d30
	s4
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	t1

