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During the course of our research work on the theory of transport phenomena 
in tokamaks and stellarators, we learned to appreciate the convenience and utili- 
ty of the special types of coordinate systems in which the magnetic field lines 
appear as straight lines. These so-called flux coordinates sweep, so to speak, the 
complexity of the magnetic-field structure "under the rug", and permit the user 
to concentrate on the (other) physical issues. 

Although frequently used in theoretical calculations, at least in a formal way, 
it is striking that these coordinate systems are employed with little or no con- 
sistency, often in (over-)simplified form, and, regrettably, sometimes incorrectly. 
In addition, every researcher or group seems to have an individual preference 
concerning the type of flux-coordinate system used. It was rather surprising that 
there was no comprehensive review available that relates these flux-coordinate 
systems to each other in a rigorous but readable way. 

Therefore, the idea grew to include a short survey of this subject as an appen- 
dix to one of our writings on transport. However, we soon discovered the 
unrealistic nature of our attempt and had to recognize that it was merely wishful 
thinking. In order to d'o a proper job, by which we mean producing a document 
that is comprehensive but still comprehensible for an audience of non- 
specialists, we realized that the quantity of material to be covered would by far 
surpass the volume of a reasonable appendix. This is the genesis of this book. 

As we stated above, the target group of this monograph consists mainly of 
non-specialists. More specifically, we hope to reach an audience as varied as 
beginning graduate students in the field of plasmas and controlled fusion, as 
well as established researchers (especially experimentalists and those who under- 
take modeling in trying to interpret experimental results based on the available 
theories). Even for physicists with a more general interest in mathematical phys- 
ics, or for applied mathematicians, this monograph might be useful in that it 
provides a self-contained treatment of curvilinear coordinates. The material on 
flux coordinates is then to be seen as an extensive example, illustrating the fun- 
damental concepts. 

In this spirit, we decided to concentrate our efforts on writing a document 
that is easily readable, but still quite rigorous. It aims to teach the reader. 
Therefore, we develop almost everything from first principles and cover the sub- 
ject step by step, culminating in a fairly advanced level at the end of the treatise. 
In addition to the bare presentation of formulae and expressions, we give 
clarifications and provide comments and interpretations which help to put 
everything into context. 



VIII Preface 

The book is divided into three parts. 
In Part I we establish the foundation on which the remainder of the text is 

built. It comprises a first chapter on basics concerning vectors, differential 
geometry and curvilinear coordinates (Chap. 2), a second chapter deals with 
tensors (Chap. 3) and the last chapter of Part I (Chap. 4) deals with the basic 
concepts of the magnetic-field geometry in toroidal and open-ended devices. 
Chapters 2 and 4 in particular should be considered as prerequisites for the rest. 

Part I1 treats the various distinct flux-coordinate systems. In Chaps. 5 
through 9, we discuss Clebsch coordinates, the generic straight-field-line coor- 
dinate system, the Boozer toroidal flux coordinates, Hamada coordinates and 
the form of flux coordinates in axisymmetric tokamaks. In addition, we treat 
two coordinate systems that superficially resemble flux coordinates, but which 
are not flux coordinates: symmetry coordinates in a tokamak and so-called 
canonical coordinates. 

In Part I11 of this monograph, we consider some topics that deserve atten- 
tion, but which were tangential to the main issues in the previous chapters. Here, 
we treat "proper" toroidal coordinates (Chap. lo), the dynamic equilibrium of 
an ideal tokamak plasma (Chap. 1 I), the relationship between the proper length 
of a field line j dl/B and the specific volume of a flux surface dV/dYto, (Chap. 
12), the transformation properties of vector and tensor components (Chap. 13), 
and finally two alternative derivations for the divergence of a vector (Chap. 14). 

There are a number of people who have been helpful in getting this mono- 
graph into its present shape 

We are most grateful to Mrs. Sarah Cohen, for whom it must have been a 
nightmare to type the various formulae with their variety of superscripts and 
subscripts. She retired soon after having finished this manuscript; we hope that 
we are not to blame for this decision. 

We also would like to thank Springer-Verlag and its Physics Editor, Dr. H.-U. 
Daniel, for the professional handling of our request for the publication of this 
work. We also appreciate that we had the opportunity to update the manuscript 
with regard to recently (1988, 1989) published scientific literature Also, we wish 
to express our gratitude to the referees for their useful comments. 

One of us (W. D'H) wishes to thank Dr. J. A. Tataronis for numerous discus- 
sions on the subject of magnetic-field structure 

This work was supported by the US Department of Energy through Grants 
No. ~~-FG02-87ER53216, No. DE-FG02-85ER53201 and No. DE- 
FG02-86ER53218, and in Part by the Wisconsin Alumni Research Foundation. 

We hope that the reader who works through all the steps given will reach 
a level where hdshe can consider co- and contravariant representations to be 
quite simple. Whether we have succeeded in fulfilling this expectation must be 
judged by those patient and persistent enough to have worked through the book. 

Garching and Madison, 
November 1990 

W D. D 'haeseleer W N. G. Hitchon 
J D. Callen J L. Shohet 
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1. Introduction and Overview 

This treatise on magnetic-flux coordinates is intended to present a self- 
contained treatment of what are the natural coordinate systems for the 
description of magnetically confined plasmas. Flux coordinates are carefully 
chosen curvilinear coordinates with the property that the equation of a 
magnetic-field line, expressed in those coordinates, takes the form of a straight 
line. Sometimes we shall also refer to these coordinates systems as straight-B 
systems. 

There does not appear to be a comprehensive review of the subject and so 
this document will attempt to provide a comprehensible and fairly complete 
treatment. This should help to make theoretical plasma calculations more access- 
ible to non-specialists and researchers new to the field. To achieve this, we shall 
develop the mathematical tools such as tensor analysis in curvilinear coordinates 
from first principles as far as possible. 

There is little or n o  consistency in definitions, nomenclature, interpretations 
and even conclusions in the area of tensors, dyadics, curvilinear coordinates and 
flux coordinates. The use of the words covariant and contravariant vectors is 
especially confusing, but ideas such as tensors, dyads and dyadics are no better. 
In this monograph we have tried to retain the most logical and straightforward 
formulations or the ones put forward most frequently. We are convinced that 
this important area deserves some clarification. 

The above does not imply that no useful treatments of magnetic-flux co- 
ordinates exist. Useful contributions containing interesting material on magne- 
tic-flux coordinates, magnetic geometries and/or equilibrium have been written 
by Morozov and Solov'ev (1966), Shafranov (1966), Solov'ev and Shafranov 
(1970), Solov'ev (1975), Greene and Johnson (1962), Boozer (1980, 1981, 1982, 
1983), Kieras (1982), Hirshman (1982) and Hazeltine and Meiss (1985). Some 
basic ideas are presented in textbook treatments by Bateman (1978), Miyamoto 
(1980), Balescu (1988) and White (1989). However, although much of the plasma- 
physics literature uses these coordinates and some papers provide a discussion 
of them, all assume considerable familiarity with the subject (or its mathematical 
foundations). Many times, simplified forms are given for axisymmetric systems, 
or vacuum fields are used. 

Since this monograph is to provide practical formulae and concepts, it is not 
appropriate to dwell on the theoretical framework behind the vector and tensor 
formalism, originating in an interplay between linear algebra and differential 
geometry. Rather, the focus is on the geometrical properties of vectors and 
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tensors in curvilinear coordinates. Because magnetic-flux coordinates are located 
in the three-dimensional configuration space, we limit our discussion to three 
dimensions (3-D). 

The book consists of three parts. 
In Part I, containing Chapts. 2,3 and 4, the mathematical groundwork is laid 

and the basic concepts concerning the magnetic geometry in magnetic-fusion 
devices are introduced. The chapter following this introduction, Chap. 2, will 
address the vector-related issues. Chapter 3 will generalize some ideas developed 
in Chap. 2 to tensors, because a vector can be considered as a very simple kind 
of tensor. In these two chapters, we shall treat vectors, dyads, triads (polyads) 
and tensors. The related, but for plasma physics unimportant, topic of qua- 
ternions will be skipped entirely here. (For a very elementary discussion on 
quaternions, see Kramer (1981), Chaps. 4 and 28; for more advanced treatments, 
see Morse and Feshbach (1953), Chap. 1, and Behnke (1974), Vol. 1, Chap. 8.) In 
Chap. 4, containing a preliminary discussion on magnetic geometries, the follow- 
ing subjects are considered: the equation of a magnetic-field line, the frozen-flux 
theorem, magnetic pressure and tension, field-line curvature, flux surfaces, types 
of coordinate systems in devices with "simple" flux surfaces, magnetic-surface 
labeling, the rotational transform, the flux-surface average and the magnetic 
differential equation. 

Part I1 deals with the flux-coordinate systems. We treat each of the important 
flux-coordinate systems and, importantly, find the relationships between them. 
We start with the Clebsch system (Chap. 5), which is useful mainly in open-ended 
fusion devices and which has an intimate relationship with toroidal straight-B 
coordinates. A relative of the Clebsch system, the "Boozer-Grad" coordinate 
system, is also treated in considerable detail. The Boozer-Grad system has the 
property that one of its coordinates reduces to the magnetic scalar potential in 
vacuum. 

In Chapt. 6, the flux coordinates for general toroidal systems are handled. 
After having introduced the generic form for toroidal straight-B coordinates in 
arbitrary toroidal confinement systems (with "good" magnetic surfaces), we 
specialize to the simplified case of an axisymmetric tokamak. In a next section, 
we discuss a special type of coordinate system that can always be constructed 
when an ignorable coordinate is present, but which is generally distinct from a 
flux-coordinate system. An important fact to recognize is that flux coordinates, 
in a general non-axisymmetric toroidal system, are not uniquely determined. 
Depending on how the extra degree of freedom is "consumed", the so-called 
toroidal Boozer flux-coordinate system or the Hamada coordinate system 
emerges. The Boozer system has the property that the periodic part of the scalar 
magnetic potential vanishes. There exists a simple linear relationship between 
the Boozer angle variables and a streaming function of the Boozer-Grad system. 
That streaming function reduces to the scalar magnetic potential in vacuum. The 
Hamada system has the convenience that both the magnetic-field lines and the 
current-density lines are straight. A further advantage is that the Jacobian is a 
constant. 
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In Chap. 7, we comment on the conversion from Clebsch-type coordinates 
to toroidal angle flux coordinates. Both the generic Clebsch system and the 
Boozer-Grad systems are treated. 

Chapter 8 deals with the establishment of the flux-coordinate transforma- 
tion. Besides being a recapitulation of the methods scattered through the text, it 
gives us the opportunity to say a few words on equilibrium calculations. 

A second non-flux-coordinate system, appearing in Part I1 of this mono- 
graph, is developed in Chap. 9. The so-called "canonical coordinates" have the 
property that the magnetic-field expression in those coordinates resembles that 
written in flux coordinates. For special cases, these generalized coordinates 
reduce to flux coordinates. We shall stress the similarities and differences between 
the two types of coordinates. 

Some important but less crucial topics have been deferred to Part 111, 
Selected Topics, in order not to interrupt the flow of reading in the earlier 
parts. In Chap. 10, we treat "proper" toroidal coordinates, which are a three- 
dimensional version of bipolar coordinates. In Chap. 11, we examine the time- 
dependent tokamak dynamics of an ideal plasma. Here we show that both the 
plasma and the flux surfaces shrink radially inward under the influence of a 
perpendicular electric field, which is in turn induced by the change in transformer 
flux. In Chap. 12, we study the relationship between the specific flux volume 
dV/dK,,, and the integral jdl/B. Chapter 13 deals with the transformation prop- 
erties of vector and tensor components. It will explain where the names covariant 
and contravariant come from. Finally, in Chap. 14, we consider two alternatives 
to the derivation of the divergence formula given in the text. 

A few comments on the notation used are appropriate. Vectors are repre- 
sented by boldface Roman italic symbols, e.g., A. Second-order tensors or dyadics 
are denoted by boldface sanserifitalic characters, e.g., A. 

Th_ese symbols are more elegant than the "arrow" or "over/un~er bar" nota- 
tions: A, 2 or A for vectors (which are first-order tensors) and A, A or A for 
second-order tensors and dyadics. These notations have the advantage, though, 
that they reflect the tensorial order: n "arrow heads" or "over/under bars" for 
n-th-order tensors. 

Because we ran out of reasonable typographical symbols, we shall use the 
"arrow" notation to denote the third-order tensors that we shall encounter in 
Chap. 3, e.g., 3. 





Before one is ready to attack the different flux-coordinate systems studied in this 
book, the reader must possess a reasonable background in vector and tensor 
quantities in general curvilinear coordinate systems, on the one hand, and in 
magnetic-field-structure related concepts on the other. 

Chapters 2 and 3 deal with mathematical preliminaries. Chapter 2, on 
vectors, is a prerequisite for the remainder of the book; it introduces basic ideas 
such as co- and contravariant vector components, the Jacobian, the metric 
coefficients and vector differentiation (including Christoffel symbols). Chapter 
3, treating tensors, is not really required to understand what follows, but it 
completes the discussion of the previous chapter. Tensors, dyads, dyadics and 
the fundamental or metric tensor are considered. 

Chapter 4, then again, is essential. Here we consider a variety of properties 
of the magnetic field and its structure in toroidal and open-ended devices. These 
"magnetic preliminaries" give us the vocabulary to deal with the rest of the text. 
This chapter deals with the following subjects. First, the equation of a magnetic- 
field line is derived. It will be clear that the B-field components to be used are of 
the contravariant type. Next, we prove the "frozen-flux" theorem. We show that 
in a plasma with i~lrinite conductivity the magnetic field is frozen into the plasma. 
Then, we discuss the concepts of magnetic pressure and tension. These seem to 
be very useful concepts for qualitative arguments in magnetically-confined plas- 
mas. In the next section, we carefully define the magnetic-field-line curvature. 
The "normal" and "geodesic" curvature with respect to the flux surfaces are 
discussed. As a next topic, flux surfaces are rigorously defined. We say a few 
words on their "existence" in actual devices. Then the stage is set for a qualitative 
discussion of curvilinear coordinates in toroidal devices with "simple" magnetic 
surfaces. Here, we point out that a Clebsch system can be rather confusing in 
toroidal devices and that an angular system is preferable. In the following section, 
the different ways to label magnetic-flux surfaces are explained. We concentrate 
on the poloidal and toroidal magnetic fluxes and the volume inside a flux surface. 
The section before last of Chap. 4 defines the concept of rotational transform 
and gives an expression in terms of the ratio of (the change of) poloidal and 
toroidal magnetic fluxes. Finally, we consider an important type of differential 
equation, known as the magnetic differential equation because it contains the 
operator B .  V.  We sketch the solution procedure and discuss its solubility 
conditions. 

In this chapter we derive and compile some fundamental relations concerning 
the 3-D vector algebra and calculus in curvilinear coordinates. More detailed 
treatments (containing additional material which is less important for our needs) 
can be found in standard works on vectors and tensors such as Borisenko and 
Tarapov (1968), Wrede (1963), and Spiegel (1959). Classic textbooks on mathe- 
matical physics such as Morse and Feshbach (1953), Margenau and Murphy 
(1976), Mathews and Walker (1970) and Butkov (1968), contain some instructive 
chapters on the subject matter. Also worth mentioning are the treatments in 
well-known physics and engineering books such as Symon (1971, Mechanics), 
Stratton (1941, Electromagnetic Theory), Milne-Thomson (1968, Hydrodyna- 
mics) and Bird, Stewart and Lightfoot (1960, Transport Phenomena). 

As we try to develop a self-consistent formalism, we must be most careful 
with the notation. Only by consistent and straightforward usage of a correct 
notation can these mathematical tools prove their power. 

In this Chapter, we take a pragmatic approach without spending too much 
space on abstract foundations on the one hand or elementary concepts on the 
other. The treatment will be quite rigorous but will assume that the reader knows 
what a vector, a basis, a curve, a surface, etc. are. 

In Sect. 2.2, we introduce the important concept of reciprocal sets of basis 
vectors. This idea is then used in Sect. 2.3. to define two kinds of basis vectors in 
a general curvilinear-coordinate system, leading to the concept of covariant and 
contravariant components of a vector. In Sect. 2.4, co- and contravariant "vec- 
tors" are discussed. In the Euclidean space we work in, no such things exist; only 
vectors exist. Section 2.5 treats some properties of curvilinear-coordinate systems: 
the metric coeficients, the Jacobian, the form of the dot and cross products, and 
the differential arc length, area and volume. In Sect. 2.6, vector differentiation in 
curvilinear systems is put in perspective. We explain why "covariant derivative" 
might not be a good name and show how the Christoffel symbols arise naturally 
from differentiation of the basis vectors. These symbols are discussed here be- 
cause they are occasionally used in plasma physics (see e.g., Stacey, 1981). In Sect. 
2.6, we also write the proper forms of the gradient, divergence and curl in 
curvilinear coordinates. Section 2.7 consists of a few words on the perpendicular 
and parallel components of one vector with respect to another. To conclude the 
chapter, Sect. 2.8 summarizes the most important vector identities. 
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2.2 ReciprocaI Sets of Vectors 

The concept of reciprocal sets of vectors is a crucial building block for the vector 
description of vectors in curvilinear coordinates. Below we shall see that the usual 
basis vectors along which a vector is expanded are reciprocal vectors in the sense 
to be explained. 

The sets of vectors A, B, C and a, b, c are called reciprocal sets of vectors 
if: 

Each vector of one set is orthogonal to two vectors of the other set, and produces 
a dot product of unity with the remaining vector of that other set. These relations 
can only be satisfied if the sets a, b, c and A, B, C are each comprised of linearly 
independent vectors (non-coplanar, nor parallel). This implies that their respec- 
tive triple products a.(b x c) and A.(B x C) are non-zero, meaning that the 
parallelepiped formed by their arrow heads and a common origin has a finite 
volume. 

To find the vectors of one set a, b, c in terms of its reciprocal set A, B, C, we 
have the inter-relationship: 

a =  
B x C  

b =  
C x A  

C = 
A x B  

A.(Bx C) ' B.(Cx A) ' C.(A x B) ' (2.2.2) 

where A . B x C = B. C x A = C. A x B # 0. Actually, (2.2.1) are necessary and 
suficient conditions for a, b, c and A, B, C to be reciprocal sets. Equation (2.2.2) 
also holds with the pairs a, A; b, B; and c, C interchanged. That (2.2.1) and (2.2.2) 
are equivalent can be shown as follows. From the properties a .  B = a .  C = 0 one 
concludes that a must be perpendicular to B and C. For B and C being non 
collinear vectors, this means that a is along +(B x C), or a = K(B x C); where 
K is a constant. After this expression has been dot-multiplied by the vector A, 
one finds that the constant K equals (A. (B x C))-' because a .  A = 1. This gives 
the first expression in (2.2.2). The formulae for b and c can be proved similarly 
or obtained by cyclic permutation. 

The fact that each set a, b, c and A, B, C consists of vectors forming a 
trihedron with non-zero volume suggests that they can be utilized to express any 
3-D vector as a linear combination of them. In other words, the sets a, b, c and 
A, B, C qualify as legitimate sets of basis vectors in 3-D. Indeed, any vector W 
can be written as 
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Application of the so-called "bac-cab" rule to the expression x x (C x W) E 
(A x B) x (C x W), i.e., with A x B considered as one vector x, leads to 

(A x B) x (C x W) = C(A x B. W)- W(A x B.C) 

=C(A.Bx W)- W(A.Bx C)  . (2.2.4) 

The same rule performed on (C x W) x (A x B) = y x (A x B) gives 

(A x B) x (C x W) = -(C x W) x (A x B) 

= -A(C x W.B) + B(C x W.A) 

= -A(B.C x W) + B(A.C x W) . (2.2.5) 

Equating the right-hand sides of both equations, and solving for Win the second 
term of (2.2.4), we obtain 

W= 
A(B.Cx W) - B(A-Cx W)+C(A.Bx W) (2.2.6) 

A.(B x C) A.(B x C)  A.(B x C)  

or 

B x C  C x A  A x B  
W=AW. 

A - B  x c + B W . ~ . ~  x c + C W . ~ . ~ x  c 
With (2.2.2), this becomes 

proving relation (2.2.3a). Thus, the expansion coeficients of a vector Wexpressed 
along the basis set A, B, C can be found from the dot product of W with the 
"complementary" vector of the set a, b, c which is reciprocal to the original basis 
set. As can be seen from (2.2.3b), we could also expand along the set a, b, e. The 
expressions in (2.2.3) are of crucial importance for our upcoming development 
of non-orthogonal coordinate systems. 

Specializing to the Cartesian coordinate system, the set of unit basis vectors 
and i ,  is reciprocal to itself. (Unit vectors are denoted by " *".) This implies 

that in such a system, a vector W can be written as 

or equivalently, 

We used a bracketed notation for the indices rather than subscripts or super- 
scripts. The notation will be adjusted after we have established the difference 
between subscripts and superscripts. Equation (2.2.9) is the "usual" expansion of 
a vector in its components in the Cartesian coordinate system. 
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2.3 Curvilinear Coordinates 

This section on curvilinear coordinates contains the fundamental ideas on which 
the development of flux coordinates is based. At the end of this section we arrive 
at the important conclusion that a vector can be conveniently expanded along 
two reciprocal sets of basis vectors having a most natural relationship to the 
chosen coordinate system. This leads to the concepts of covariant and con- 
travariant components. 

We first establish the curvilinear transformation and define coordinate curves 
and coordinate surfaces. Then, a first set of basis vectors, namely the tangent- 
basis vectors, is introduced. The second set of basis vectors will be comprised of 
the gradients to the coordinate surfaces. 

We assume a knowledge of differential geometry, as described by Stoker 
(1969), Goetz (1970), Guggenheimer (1977), Spivak (1970), Buck (1965), Mathews 
and Walker (1970), or Spiegel(1959), among others. 

2.3.1 Transformation to Curvilinear Coordinates 

Consider a transformation R(ul, u2, u3) by means of which any point, determined 
by the position vector R of 3-D space, is expressed as a function of three 
parameters ul, u2 and u3. When we expand R in its components x, y, z in a 
Cartesian coordinate system, we can rewrite this transformation as 

If the transformation is one-to-one, it can be inverted: 

u1 = ul(x, Y,Z) 

u2 = u2(x, y,z) (2.3.2) 

u3 = u3(x,y,z) . 

The requirements for a transformation to be invertible are that the functions x, 
y, z of (2.3.1) must have continuous partial derivatives with respect to ul, u2 . and u3 respectively, and that the determinant made up by the nine partial 
derivatives ax/aul, ax/au2, dx/du3, ay/dul, . . . . is not zero (at least in the domain 
under consideration). Below, we shall call this determinant the Jacobian of 
the transformation. (For a detailed discussion, see Buck (1965).) Then the 
correspondence between (x, y, z)  and (ul, u2, u3) is unique. In some practical cases 
the single-valuedness does not hold, e.g., for periodic functions on "closed" 
surfaces such as spheres, cylinders and tori; this problem can usually be 
circumvented. 
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Equation (2.3.2) shows that a certain point (determined by) R with Cartesian 
coordinates (x, y, z) can also be described uniquely by the independent param- 
eters ul, u2 and u3, so they are coordinates as well. (The (u1,u2, u3) coordinates 
will be called curvilinear as a generalization of "rectilinear".) The reason for using 
a superscript notation (which could at times be confused with powers) will become 
clear below. The position of the indices is important. 

In the curvilinear system there are three naturally occurring families of 
coordinate surfaces, obtained when one coordinate ui is held fixed while the other 
two are varied continuously. The equations for these surfaces are: 

u1 = c1 (u2,u3 variable) 

u2 = c2 (ul, u3 variable) 

u3 = c3 (ul, u2 variable) . 

cl, c2 and c3 are arbitrary constants. It will be assumed that a unique surface of 
each family goes through any given point determined by the position vector R 
in keeping with the hypothesis that the endpoint of R is uniquely determined by 
its coordinates ul, u2, and u3. 

Analogously, three families of coordinate curves are produced when one 
coordinate u i  is allowed to vary while the other two, uj and uk, are held fixed. 
The equations are: 

u2 = c2 , u3 = c3 (ul variable) 

u3 = c3 , u1 = c1 (u2 variable) 

= , u 2 = c 2  (u3 variable) . 

The direction in which a variable point of the curve moves as ui is increased is 
taken to be the positive direction along that coordinate curve. The general 
coordinate system is summarized in Fig. 2.1. 

If the coordinate curves intersect at right angles, then the curvilinear system 
is called orthogonal. 

Examples of simple curvilinear coordinate systems are the familiar cylihdri- 
cal and spherical systems. These are orthogonal. 

~ 2.3.2 Tangent-Basis Vectors 

Consider the system of generalized coordinates ul, u2 and u3 as shown in Fig. 
I 

i 2.2. We define a basis at a point P, determined by the position vector R, as any 
set of vectors el, e, and e, of fixed length pointing in the positive direction of 

I the coordinate curves. In other words, the basis vectors el, e, and e, are tangent 
vectors of the coordinate curves at the point P. 

The curvilinear coordinates have been defined by the transformation 
R(ul, u2, u3). Simple differential geometry considerations show that aR/aui is a 
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( x , Y , ~ )  6 (u',u2,u3) are 
- Y 

coordinates of p. 

Fig. 21. General curvilinear coordinate system with coordinates (ul, u', u3). The coordinate curves 
and coordinate surfaces are represented with respect to a Cartesian system withcoordinates(x, y j )  

8!22,23 J. to surfaces 

zl#52,53 // to curves 

Fig. 2.2. Basis vectors eiand ej at point P. Thecontravariant basis vectors e' = Vuiare perpendicular 
to the constant coordinate surfaces; the covariant basis vectors el = aR/aul are parallel to the 
coordinate curves 
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tangent vector of the ui-coordinate curve. (A tangent vector to a one parameter 
curve R = R(u) is dR/du). It seems logical to choose these vectors as the tangent- 
basis vectors: 

The definition in (2.3.3) is consistent with the requirement that a set of basis 
vectors must be linearly independent; the triple product el. e, x e, is non-zero. 

This basis made up by the basis vectors el, e, and e, is said to be local, since, 
in general, it varies from point to point. (By "fixed length" in the definition of a 
basis, we mean that once the length of a basis vector at a point PI has been 
chosen, we always keep that length at PI; at a point P,, the basis vector might 
have a different length.) Also, in general, these basis vectors are neither orthogo- 
nal nor of unit length, nor even dimensionless, since e.g., aR/aO has units oflength. 
Only in coordinate systems with straight lines as coordinate "curves", i.e., with 
rectangular and oblique coordinate lines, do the basis vectors not vary from point 
to point. 

If the variable ui is taken to be the length along the coordinate curve, then 
the vector ei is a unit tangent uector. In the more general case where ui is just a 
parameter, one could define a unit tangent vector according to the obvious 
prescription: 

(no summation) 
hi 

The magnitude lei) = laR/dui( is conventionally represented by the symbol hi and 
is called a scale factor (or a metric coefficient).' Thus, 

Although the hi's are usually mostly used for orthogonal systems, the above 
definition is completely general and valid for any coordinate system. 

Note that the tangent-basis vector ei has a subscript (i.e., the index is under- 
neath). Although the coordinates ui have superscripts, the fact that ei has a 
subscript in (2.3.3) is suggestive because the index in 

is "underneath", i.e., below the "fraction-line". 

'Sometimes these scale factors are called "Lame factors" (especially in the Russian literature; see, 
e.g., Kovrizhnykh 1984). However, the name "Lame factor" is also used in the context of elasticity 
theory, where it appears as the proportionality constant between the elasticity tensor and the strain 
tensor (Butkov 1968). 
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2.3.3 Reciprocal-Basis Vectors 

The gradient, V@, of a function @ is defined so that the differential d@ is given 
by d@ = V@.dR. With @ = ui, this becomes 

If we consider the position vector R as a function of ui, i.e., R = R(ul, u2, u3), we 
find from the chain rule that 

Here we have used the definition of ei given in (2.3.3) and in the last two forms 
of (2.3.7) the summation convention has been applied. The summation convention 
says that if a letter used as an index appears once as a superscript and once as a 
subscript on the same side of an equation, then that side of the equation should 
be considered to be summed over all values of that index. The summation sign 
is then superfluous. A repeated (or dummy) index implies summation and may 
be replaced by another letter; e.g. ejdui = eldul + e,du2 + e,du3 = ekduk. 

Substitution of dR as given by (2.3.7) into (2.3.6) leads to 

which can only hold if and only if 

where 6; is the Kronecker delta (which is unity if the indices coincide and zero 
otherwise). 

The relationship in (2.3.9) states that the sets of vectors Vui and ej form 
reciprocal sets of vectors as defined in (2.2.1). Therefore, we define the set Vui as 
the reciprocal-basis vectors: 

ei = Vui 

in which case (2.3.9) reads: 

As was pointed out with respect to the ej, the ei are normally not of unit length 
nor are they perpendicular. While the basis vectors ej are tangent to the uj 
coordinate curves, the reciprocal basis vectors ei are perpendicular to the co- 
ordinate surfaces ui = ci (see Fig. 2.2). 

The two sets of basis vectors ej and ei have been recognized as reciprocal 
sets of vectors. Consequently they satisfy the relationships (2.2.2), which allow 
any vector of one set to be calculated if the three vectors of the other set are 
known: 
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(and similarly for V U ~  and vuk), and 

aR - vu' x vuk - ej x ek 
- - - - ei (2.3.13) 
au i -vu i . (vu jx  vuk) e i - ( e j x e k )  

(and analogously for aR/auj and aR/auk). Here i, j and k must be chosen such 
that (i, j ,  k) forms a cyclic permutation of (1,2,3). This sentence will henceforth 
be abbreviated as " i ,  j, k cyc 1, 2, 3". The word "cyclic" is equivalent to the 
requirement that only "even" permutations of 1,2,3 are acceptable: 1,2,3 or 2, 
3, 1, or 3, 1, 2. An ordering of numbers 1, 2, . . . , n is understood to be an even 
(odd) permutation of 1,2, . . . , n if it results from the standard order by an even 
(odd) number of interchanges of pairs of numbers. 

Alternatively, the reciprocal-basis vectors ei are sometimes called dual basis 
vectors (Stoker 1969; Davis and Snider 1975). The reciprocal-basis vectors ei are 
chosen to have a superscript, because Vui does, consistently with ei having a 
subscript. 

When we use the term "basis vector" with no adjective, we mean the tangent- 
basis vectors e,; when the dual-basis vectors e' are meant, we shall use the 
adjective "reciprocal". Below, we will introduce other names for ei and ei, being 
related to the position of their indices i or j. 

2.3.4 Covariant and Contravariant Components of a Vector 

According to our earlier discussions, a vector can be written as a linear combina- 
tion of the vectors from either of the (reciprocal) sets of basis vectors. From (2.2.3) 
a vector D can be written as 

which is an expansion along the set of reciprocal-basis vectors. Analogously, D 
can be written as a linear combination of the tangent-basis vectors: 
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In summary, we have 

D = Diei with Di E D .  ei (2.3.16a) 

The summation convention is implicit here. 
One can look upon this expansion of (2.3.14) as follows: R is the position 

vector pointing from the origin of a Cartesian coordinate system to the initial 
point of the vector we wish to describe, in this case the vector D. The endpoint 
of R is then the place where the two kinds of bases ei and ei are attached, and 
these allow us to find the components of D by means of the dot products (2.3.16) 
(see Figs. 2.1 and 2.2). 

The sub- or superscript notation replaces the bracket notation used in (2.2.9). 
There is more than one kind of component of a vector, depending on the choice 
of basis vectors. 

The coefficients Di appearing in (2.3.16a) are called the covariant components 
of the vector D while the D' in (2.3.16b) are called contravariant components. 
Equation (2.3.16a) shows that our notation is consistent; to find D, one must sum 
over the sub- and superscript i; the covariant component Di results from the dot 
product of D with the basis vector ei (the index is underneath on both sides of 
the equation Di = Dm ei). 

From now on we adopt the following convention to name the components 
of a vector: 

covariant = subscripts = ( )i 

contravariant = superscripts = ( ) j  . (2.3.17) 

Thus an index underneath implies a covariant object, an index above denotes 
contravariant object. The reason for the words co- and contravariant has to 
do with the transformation properties of the components of a vector. This is 
discussed in Chap. 13. A simple mnemonic aid to distinguish these terms is as 
follows. Since there is an "R" in superscript, we call Di a contravariant compo- 
nent. There is no " R  in subscript, hence the name covariant. 

The functions ui(x, y, z) can have physical dimensions (units), as can the basis 
vectors. If the ui are dimensionless, the ei and eJ have dimensions of L and L-', 
respectively. Consequently, the components of a vector do not necessarily have the 
same dimensions as the vector itself. 

For the special case of a Cartesian coordinate system it is clear from the 
definition formulae, (2.3.3), that the % j, basis vectors are the tangent-basis 
vectors. Moreover, they have a unit length since the coordinates are the "arc- 

" -  A  

lengths" along the coordinate axes. i, j, k thus form an orthonormal basis. On 
the other hand, since the relationship in (2.3.1 1) is exactly that obeyed by the 1 
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j, k basis vectors, it follows that they are reciprocal basis A "  vectors A as well. (This is 
in agreement with our earlier observation that the set i, j, k is reciprocal to itself; 
see (2.2.8).) As a consequence, there is no distinction between co- and con- 
travariant components of a vector in a Cartesian system: W . 2 ,  = W-2' = 
W-; = W(l), nor is there a need to make a distinction between sub- or super- 
scripts in the component notation. Without any ambiguity, we can now rewrite 
(2.2.9) as 

If we deal with a position vector R, where R, = x, R, = y and R, = z, we obtain 
R = xi + Y j  + zi. 

2.4 Covariant and Contravariant "Vectors" 

A lot of confusion about the terminology co- or contravariant vectors and/or 
components arises from the fact that both co- and contravariant vectors, and 
co- and contravariant components do exist, albeit in different contexts. More- 
over, the wording "co- or contravariant vector" is often used to mean "co- or 
contravariant components of a vector". Here, we shall assert that when dealing 
with only one (Euclidean) vector space such as 3-D space, there exist only vectors 
(see e.g., Borisenko and Tarapov 1968). There are no contravariant and covariant 
vectors as such in the three-dimensional space: a vector is just a vector. If one 
digresses into abstract algebra, one can define contravariant vectors in one vector 
space and covariant vectors in another vector space, which is the dual of the first. 
References to this development are given at the end of Chap. 3. 

I A vector will always be identified by its contravariant components or by its 
covariant components. It must be stressed that, in principle, both representations 

I contain all the information needed and are equally valid. 
I 

I It is often said that the vector dR (the infinitesimal vector connecting the two 

1 position vectors R and R + dR) is a contravariant vector. More specifically, the 
(misleading) statement would be that the coordinate differentials dui form a 

I 

I 
contravariant vector. This statement should be modified to say that the "natural" 

I and easiest way of writing a vector dR in components is by means of its con- 

\ travariant components. These components are obtained by a simple chain-rule 
! application, as can be seen from (2.3.7). Comparison of (2.3.7) with (2.3.16b) shows 
I that the dui do indeed represent the contravariant components of dR. Since dR 
, is the vector between two position vectors R and R + dR with coordinates 1 

1 (u1,uZ, u3) and (ul + dul, uZ + du2, u3 + du3), respectively, it is obvious why we 
used superscripts to label the coordinates ui: contravariant implies above, and the 
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dui are contravariant. 
However, with equal validity, one could have chosen to write dR using its 

covariant components according to (2.3.16a) 

Here, (dR), is given by 

where we have replaced the dot product of the basis vectors ei and ej by the 
symbol gij. (At this point, the symbol gij is a shorthand notation for ei. ej; below, 
we shall give it a real meaning and stress its importance.) Thus, dR is just a vector, 
which can be written in terms of two sorts of components. 

The confusion we alluded to above follows from the fact that some branches 
of science define a vector only by its components, without introducing a symbol 
for the vector itself. As a consequence, one (misleadingly) calls the quantity dui 
a contravariant vector. However, here we employ the more correct term of 
contravariant components. 

Similarly, it is sometimes said that the gradient of a function is a covariant 
vector. Once again this is an ambiguous statement and follows from the "normal" 
way of "decomposing" the gradient by means of chain-rule differentiation: 

Therefore, we have that, 

showing that (a@/aui) are the covariant components of the gradient vector V@. 
V@ can be written in terms of its contravariant components as: 

with 
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This time, we have replaced (ei. eJ) by the symbol gij. 

Calling a@/aui "the covariant vector" makes little sense; all one can say is 
that a@/aui are the covariant components, in this case with respect to the 
commonly chosen sets of bases aR/aui and Vui. The safest way (in the sense that 
the symbol is valid with respect to any kind of basis vectors) to denote covariant 
and contravariant components is by (V@)i and (V@)'. 

We shall, nevertheless, use the terms co- and contravariant vectors for certain 
types of vectors: the tangent and reciprocal basis vectors. It is common practice 
to call the tangent-basis vectors ei "the covariant-basis vectors" (because they are 
labeled by a subscript) (Boozer 1980, 1981, 1982, 1983; Bateman 1978; Wrede 
1963). Similarly the reciprocal basis vectors ei are called "the contravariant-basis 
vectors" (because of the superscript). One should be aware of the fact that this is 
only for convenience, since the basis vectors ei and ei themselves can actually be 
written with covariant and contravariant components as well. Indeed, applying 
(2.3.16) we obtain for ei the following: ei = (eiyej = ei.eiej = 6'e = lei and ei = 

'.I 
(ei)'ej = ei.ejej = gijej; analogously, for ei, we would obtain e' = le i  and ei = 

gi'ej. Here we have again used the symbols gij and gi' that we introduced above. 
Now, the surprising thing is that the "trivial" components (being equal to 1) for 
the ei are the contravariant components and for the ei are the covariant compo- 
nents! Nevertheless, one calls ei the covariant and ei the contravariant-basis 
vectors. This is thus even worse than for dui and dR, or a@/aui and V@ discussed 
above; we are now advocating a "reverse logic"!' Since basis vectors are a 
privileged kind of vectors, one concentrates on the position of the indices and 
provides the basis vectors themselves with the names co- and ~ontravariant .~ 
This is why we have been deliberately ambiguous below (2.3.17). We consider 
(2.3.17) as valid for everything that b labeled with subscripts and superscripts. 
Actually, there is a more profound reason for this policy. From the transforma- 
tion laws discussed in Chap. 13, one can conclude that the description of ei as 
the "covariant" basis vectors seems reasonable in the sense that they transform 
in the same way as the tangent-basis vectors, i.e., similarly to themselves. There 
it is explained that objects that transform similarly to the ei are called covariant. 

For the same reason, our proposed nomenclature is not in agreement with the abstract-algebraic 
development of vectors in dual spaces. The tangent-basis vectors ei are members of the "vector space 
of contravariant vectors" such that they are contravariant vectors viewed from that standpoint. On 
the other hand, the dual vector space(which is diflerent from the first vector space), with the covariant 
vectors as elements, does contain the dual- or reciprocal-basis vectors. Hence, a reciprocal-basis 
vector is a covariant vector. However, when only one (Euclidean) vector space is involved, the 
"abstract algebraic" distinction between co- and contravariant vectors as such disappears. Only the 
distinction between co- and contravariant components of a vector can now be made. The fact that 
the basis vectors e, and e' are then merely vectors grants us the liberty to use the words co- and 
contravariant basis vectors according to the position of their indices. 
'There appears to be a typographical error in Bateman (1978), page 126, regarding this commonly 
used nomenclature in plasma physics. 
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2.5 Vector Relationships in Curvilinear Coordinates 

2.5.1 The Metric Coefficients gg and 

We now formally introduce the important metric coefficients gij and gij, which 
form the backbone of general curvilinear coordinate systems. They determine 
the differential arc length along a curve, they allow us to switch back and forth 
between the covariant and contravariant components of a vector, and they will 
provide us with a means to calculate the dot and cross products of two vectors. 

The metric coefficients gij are defined as the dot product of the tangent-basis 
vectors: 

aR aR 
g..  = e:e .  = -.- . v I J a u a a u J  

Similarly, the reciprocal or conjugate metric coefficients gij (also called simply 
metric coefficients) result from the dot product of the reciprocal-basis vectors: 

From their definition, it follows that these coefficients are symmetric: gij = gji and 
9'' = 9". 

When we deal with an orthogonal but not necessarily orthonormal co- 
ordinate system (such as a spherical, a cylindrical or a toroidal one) we find that 
gij = 0 if i # j and similarly for gij. Thus off-diagonal metric coefficients which are 
all zero imply an orthogonal coordinate system. 

Recall that the so called scale factors hi were defined as hi = lei[. Therefore, 
(2.5.1) becomes 

leading to 

This is the reason why the hi are also often called metric coefficients. 
The differential arc length along a curve is defined as: 

The differential vector dR equals 

so that the square of the arc length is given by 
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Because of (2.5.1) this can be written as 

in terms of the gij, or as 

expressed in terms of the h,. These equations are often used to define the metric 
coefficients. Instead, we preferred to define the gij through (2.5.1), which seems 
to provide more "physical" insight. 

Once the metric coefficients gij and gij are known, it turns out to be a trivial 
exercise to change covariant vector components into contravariant components, 
and vice versa. From the definitions in (2.3.16) we obtain: 

or, utilizing the symmetry of gi, 

Similarly, 

Recall that (2.5.9) and (2.5.10) must be summed over j and i respectively. 
Analogous expressions hold for the covariant and contravariant basis vec- 

tors as well. Following (2.3.14a) but with D = ei leads to 

e.  = g..eJ . 
1 u 

By the same token, (2.3.14b) gives then, for D = ei, 

e i  = ( e i .  ej)ej 

Whenever covariant quantities are to be converted to contravariant components 
(and vice-versa), one multiplies them (allowing for the implicit summation) by 
the metric coefficients having the other index position. 
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A final interesting relationship concerns the metric coefficients gij, and 
the Kronecker delta 6;. Consider (2.5.11). 

If we dot-multiply this equation with the reciprocal-basis vector ek, we obtain 

Upon interchanging i and k, (2.5.12) leads to an equivalent expression (since gij 
and gii are symmetric, this observation is trivial): 

When we form a matrix with elements gij and denote it by [gij], and similarly 
for gjk, and recall the definition of the product of two matrices, then we can 
interpret (2.5.13) and (2.5.14) by saying that the product of the matrices [gij] and 
[gik] equals the identity matrix. (If [C] = [A] [B] then Cij = 1, Ai,Bmj.) Con- 
sequently, the coefficients gii (or gij) can be computed from the gij (or gi') by 
calculation of the inverse matrix. Thus, [gii] = [gij]-' and [gij] = [gij]-l, or 
gi' = Gii/g and gij = Gij!g-' = Gijg. Here Gij (or Gii) represents the cofactor 
of the matrix element g" (or gij) while g is the determinant of the matrix [gij]. 
Thus 

g = det[gij] and g-' = det[gij] . (2.5.15) 

The expressions in (2.5.11- 14), which imply summations, can be recalled by 
noting that the summation over an index, appearing above and below on the 
same side of the equation, can be thought of as a "saturation" of that index. As 
a consequence, that index disappears from the result. The indices in the result 
are the ones which we did not sum over, and are simply carried over to the other 
side of the equality sign, at the same position (above or below). This rule of thumb 
suggests that we can write (2.5.13) and (2.5.14) as follows: 

Indeed, as we shall discuss later in detail in Chap. 3. on tensor-related issues, the 
symbol g: has the same values, 0 or 1, as the Kronecker delta 8;: 

gi" = 6: . (2.5.17) 

In the chapter on tensors we shall point out that in principle the only 
legitimate Kronecker delta must be written as 6; and that (at least as long as we 
deal with covariant and contravariant quantities, i.e., with sub- and superscripts) 
one should be cautious in employing symbols like 4, or 6". 
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25.2 The Jacobian 

a) The Jacobiao of the Curvilinear Coordinate System 

Consider the curvilinear coordinate transformation introduced in (2.3.1) and 
(2.3.2). The Jacobian of the transformation (2.3.1) is by definition the determinant 
of the matrix produced by the nine partial derivatives ax/aui, ay/aui, az/aui; i = 1, 
2,3. Its proper name is "the Jacobian of (x, y, z) with respect to the ui". Thus we 
have 

The last equality is a consequence of equal determinants of a matrix and its 
transpose. The notation ~ ( u ' ,  u2, u3) stresses that J is a function of the ui. 

If we recall that the triple product A B x Ccan be written as a determinant 
of the matrix with elements A,, A,, A,, B,, By, etc. in a Cartesian system and 
think of the transformation in (2.3.1) as R[x(ul, u2, u3), y(ul, u2, u3), z(ul, u2, u3)], 
we can rewrite (2.5.18) in a more compact form: 

All the even permutations of 1,2,3 are equally valid. The inverse transformation 
given by (2.3.2) has a Jacobian as well: 

I 
Now aui/ax, aui/ay, aui/az are considered to be the Cartesian components of Vui, 
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and so we have equivalently: 

We recognize the vectors in (2.5.19) and (2.5.21) as the members of our bases: 
the tangent-basis vectors ei = aR/aui, and the reciprocal-basis vectors ei = vui. 
Hence, the Jacobians are identical to 

Since the ei and ei form reciprocal sets, we can prove the expected relation- 
ship between the two Jacobians f and J ,  namely, that they are the inverses of 
each other: 

Starting from f = e1.e2 x e3, and substituting the expression for the ei as 
functions of the ei, as given by (2.3.12), we obtain 

(The distinction between superscripts and powers should be clear from the 
context.) 

From now on, we shall always employ the symbol J for the Jacobian. The 
Jacobian of (2.5.21) or (2.5.22b) will be referred to as J-'. It is customary to call 
J simply the Jacobian of the curvilinear coordinate system. Having said this, we 
can rewrite the "ei - ei back-and-forth expressions of (2.3.12) and (2.3.13) more 
compactly: 

and 

aR 
e. = --; = J(Vui x Vuk) = J(ei x ek) i ,  j, kcyc 1,2, 3 

I - aul 
(2.5.25) 

where 
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b) The Relationship Between J and g 

In a previous section we defined the determinant g of the matrix of metric 
coefficients: g = det [gij]. For R = R(x, y, z), where (x, y, z) are Cartesian co- 
ordinates, the dot product ei-ej is readily computed: 

It is a theorem of matrix algebra that the determinant of the product of two 
matrices [A] and [B] equals the product of the determinants of the matrices: 
(det[A]) (det[B]) = det([A] [B]). Recall that if [C] = [A] [B], then 

If we now, for a moment, represent x by R(l), y by R(2), and z by R(3), then 
(2.5.27) can be written as 

. .. . .. 
q=1 

Thus the gij of (2.5.28) can be thought of as produced by the product of two 
matrices with elements ~ ? R ( ~ ) / a u ~  and aR(q)/auj, 

Hence we arrive at the important result that the determinant of the "metric 
matrix", g, is equal to the square of the Jacobian J :  

In an orthogonal coordinate system, (2.5.26) becomes 

since PI 8, x 83 = 1. (Recall that Zi is a unit vector.) 
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2.5.3 The Dot and Cross-Products in Curvilinear Coordinates 

Now we turn to the computation of the dot and cross-products between two 
vectors. The existence of two convenient bases along which to expand a vector 
into its components has implications for the computation of the dot and cross 
products. 

a) Dot Products 

Two vectors A and B can be written in terms of their contravariant or covariant 
components: 

The dot product between two vectors can be "shifted" to their basis-vectors, 
giving rise to four possible combinations: 

In summary, the dot product of two vectors in general curvilinear coordinates is 

We should note that the last two forms of (2.5.34) also follow from the first two 
(and vice versa) when we recall the Di er D' formulae previously derived in (2.5.9) 
and (2.5.10). In orthogonal coordinate systems gij = gij = 0 for i # j and (2.5.34) 
reduces to 

A summation over i is implied in all formulae in (2.5.35). If we restrict our 
attention further to an orthonormal coordinate system, where hi = 1 and Ai = A', 
we retrieve the trivial expression ZA( i )  B(i)  E ZAiBi.  

The magnitude of a vector equals the square root of the dot product with 
itself: 

We have essentially already applied the expressions derived above, when we 
determined the differential arc length along a curve in (2.5.8). 
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b) Cross Products 

For the vector product, there are only two convenient combinations of basis 
vectors: 

Here, as always, a summation over the indices i and j is understood (where we 
note that the terms involving i = j give zero). The "ei - ej  back-and-forth 
formulae of (2.5.24) and (2.5.25) give 

The index k must be chosen such that i ,  j ,  k form a permutation of 1,2 ,3;  an even 
permutation is given a "+" sign, an odd one is assigned a "-" sign. The 
prime on the summation sign indicates that the values i = j must be omitted from 
the summation. This means that we can rewrite (2.5.38) as follows: 

A x B = J 1 (AiBj - AiBi)ek i, j ,  kcyc 1 , 2 , 3  
k 

1 
= - J 1 I, (AiBj - AjBi)ek i ,  j, k cyc 1, 2, 3 

The change in summation index is made possible by the sentence "i, j ,  k cyc l , 2 ,  
3." This expression can be written more compactly with the help of the Levi- 
Civita symbols, cijk and E ~ ~ ~ ,  which are defined as 

+ 1 if i, j, k form an even permutation of 1,2,3 

- 1 if i , j ,  k form an odd permutation of 1,2,3 (2.5.40) 

0 otherwise , 

and similarly for 
This leads to: 

( A  x B), = = E,~,&A'B~ i, j, kcyc 4 2 ,  3 (2.5.41) 

for the first expression in (2.5.38) and 
& i j k  & i j k  

( A X B ) ~ = - A . B . = - A , B ~  i , j ,kcycl,2,3 (2.5.42) 
l J  & 

i for the second expression. Note that in these expressions on the left- and right- 
hand side of the equality, components of the other kind appear, and there is an 

1 additional factor of J = & or J-l = (&)-I. 

1 Expressions for the vector product in terms of components of the same sort 

I are given by the expressions given in (2.5.9) and (2.5.10), i.e., 

( A  x B), = gik(A x B)L and ( A  x B)' = gik(A x B), . (2.5.43) 



28 2. Vector Algebra and Analysis in Curvilinear Coordinates 

2.5.4 The Differential Elements d(i), &(i), d3R 

a) The Differential Arc Length d ( i )  

The differential arc length along a coordinate curve ui, which we denote by 
dl(i) is, according to (2.5.5) 

The general expression for the vector dR is given in (2.5.6). However, since the 
coordinate curve ui is defined by the intersection of two surfaces uj = constant 
and uk = constant, we must require that dui = duk = 0 forj, k #i. Therefore, we 
obtain 

dR . 
dR(i) = -dug = eidui no summation aui 

= hiduiZi = Jgiiduizi no summation . (2.5.45) 

Consequently, (2.5.44) leads to 

dl(i) = hidui = &dui , no summation . (2.5.46) 

This is the usual definition of hi. Note that the form hidui is also valid for 
non-orthogonal systems. 

From the definition of gij in (2.5.1) and the ei t, ei formulae in (2.5.25) we can 
derive an alternative expression for dl(i): 

b) The Differential Area Element dS(i) 

The differential element of area in the coordinate surface ui = constant (at a point 
P determined by the position vector R) is easily computed if we recall that the 
magnitude of the vector product equals the area of the parallelogram made by 
the two vectors: 

dS(inui = constant) = dS(i) = IdR(j) x dR(k)( 

aR aR 
= - x - duiduk , no summation over j or k . (2.5.48a) 1 auj a u k  1 

dS(i) = lei x ekl duiduk , no summation over j or k . (2.5.48b) 

Here again, i, j, k form a cyclic permutation of 1,2, 3. 
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With the expression for ei - Vu' as a function of ej and ek as given in (2.5.24) 
we can rewrite dS(i) as 

dS(i) = JI Vu'l dujduk . (2.5.49a) 

This expression is useful when we need the differential area vector dS(i). Since 
we know that the gradient is perpendicular to the surface, we obtain 

vui 
dS(i) = -dS I vual = f J dujduk Vui , no summation . 

The sign must be chosen according to the convention adopted for the normal to 
the surface. 

We now rearrange the expression given in (2.5.48b). Making use of the vector 
identity (A x B).(C x D) = (A.C)(B. D) - (A- D)(B.C), to obtain 

no summation over j or k . 

Subsequently we employ the definition of gij, and find 

no summation over j or k ; i, j, kcyc 1,2, 3 . (2.5.5 1) 

The formulae for orthogonal systems are quite simple since the cross-metric 
coefficients gjk are identically zero. Using (2.5.4), we have 

no summation over j or k ; i, j, kcyc 1,2,3 . (2.5.52) 

c) The Differential Volume Element d3R 

d3R represents the differential-volume element at a point P determined by the 
position vector R. It is "infinitesimal" in all three coordinates. The symbol dV is 
kept for a volume element that is infinitesimal in only one direction (e.g. in the 
spherical system d 3 ~  would be r2dr sin 8 d8 dq5, while dV is for instance 4n r2 dr). 
The volume element d3R is the volume constructed by the differential vectors 
along each of the coordinate curves: 

d3R = dR(1). dR(2) x dR(3) = du'du2du3e; (e, x e,) (2.5.53) 

This result is positive because by definition e,, e,, e3 form a right-handed system. 
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2.6 Vector Differentiation in Curvilinear Coordinates 

2.6.1 The Covariant Derivative 

a) Differentiation of Vector Components and Basis Vectors 

Vector differentiation is a straightforward operation, as long as we keep in mind 
that, in curvilinear coordinates, not only the components of the vector but also 
the basis vectors (tangent and reciprocal) are positiondependent. 

Consider a vector field W = W(R(ul, u2, u3)), i.e. the vector W is a function 
of position as indicated by the position vector R. W can be expanded as usual: 

W = wie i  (2.6.1) 

The Wi,  6 ,  ei and ei are all dependent upon (u1,u2, u3). The differential vector 
d W is given by 

The partial derivatives 8 W/auk follow from (2.6.1) or (2.6.2): 

For a single value of k, these expressions represent vectors, which can in turn be 
written with covariant or contravariant components: 

where (a W/auk)j and (a represent the contravariant and covariant com- 
ponents of the vector a W/auk, respectively. By combining (2.6.4) through (2.6.7), 
we can write the components of the partial derivative of W with respect to uk in 
four different ways: 
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for the contravariant components, and 

for the covariant components. 
Two of the four expressions above contain a Kronecker delta, and thus 

reduce to a simpler form. For this reason, only (2.6.8) and (2.6.1 1) are normally 
retained for the components of the partial derivative of W: 

and 

If we wish to employ the contravariant components of W, we use the formula 
leading to the contravariant components of aW/auk as given in (2.6.12) and 

I 
I 
I analogously for the covariant components, where we use (2.6.13) 
! An important observation is that the components of the derivative of W 
I are not equal to the derivatives of the corresponding components, since terms 

I involving the change of the basis vectors must be added. The expressions in 
(2.6.12) and (2.6.13) are called the components of the covariant derivative. d W of 
(2.6.3), with (2.6.12) and (2.6.13) substituted is called the intrinsic or absolute 
differential. 

The reason for the adjectives must be sought in abstract-vector analysis. 
There one defines a vector by its components without using a symbol for the 
vector itself; one suppresses explicit reference to a basis. With that convention, 
the derivative of the "vector" would "at first sight" be the derivative of the 
component. One then has to construct a "correction term" - the second term of 
(2.6.12) and (2.6.13) - in a formal and artificial way such that "the derivative" has 
the right transformation proper tie^.^ The adjective indicates that one is after the 
proper derivative. 

4After reading Chap. 13, the reader will see that one needs the second term in (2.6.12) and (2.6.13) 
to make sure that the LHS of these equations are the components of a second-order tensor. 
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In our notation, a component of a intrinsic or absolute differential is 
represented by 6 Wj (or 6 I$$) and is equal to 

In the "component = vector" convention one would say that 6 Wj (or 6y.) is the 
intrinsic or absolute derivative itself. It is clear that by always referring explicitly 
to a basis we do not require any patchwork. Everything follows neatly from 
straightforward use of the common rules of calculus. It is only when one wishes 
to use the convention "component = vector" that one must be careful to con- 
struct all the terms. 

The components of the covariant-derivative vector (a W/auk) - we still think 
of k as a fixed index - are granted new symbols: 

and 

The comma in front of k on the LHS indicates that the differentiation is with 
respect to uk. (In some texts, (Mathews and Walker 1970; Butkov 1968), a 
semi-colon is used instead of a comma for the components of the covariant 
derivative; the comma is then reserved for simple partial derivatives, i.e., the first 
terms in (2.6.15) and (2.6.16).) 

b) The Covariant Derivative in Terms of the Metric Coefficients 

The information about the chosen basis is largely contained in the metric coeffi- 
cients gij. It can be expected that the "correction terms" in (2.6.15) and (2.6.16) 
are expressible in terms of these metric coefficients. Consider the correction term 
in (2.6.15): Wi {(aei/auk) . ej). Keeping k still fixed, the vector &,/auk can be 
expanded in two ways, along ej or e j  as follows: 
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The expression in { ) in (2.6.17) is what we need in our correction term. Since 
ej  = gjnen, we see from equating (2.6.17) and (2.6.18) that 

Here, we have used the property 

The right-hand side of (2.6.19) can be manipulated as follows: 

Hence, we obtain 

To find a similar correction term in (2.6.16) we observe that ej.ei = 6;, so 

and 

The part of the correction term of (2.6.16) inside the brackets is almost the same 
as in (2.6.21) but with a minus sign, and the indices i and j interchanged. In 
summary, 

and 
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c) The Christoffel Symbols 

The Christoflel symbol of the second kind is defined as 

This second Christoffel symbol is the jth contravariant component of the vector 
aei/auk (for k fixed). Analogously, the Christoffel symbol of the first kind is the jth 
covariant component of the same vector aei/auk: 

Some authors use [ik,j]. The second part of (2.6.26) follows from (2.6.19a) 
recognizing that 112 [. . .] of (2.6.25), without the gjn, equals [n, ik]. The comma 
in [j, ik] does not refer to the differentiating index here as can be seen from its 
definition. A better notation would perhaps have been [jlik]. 

The positions of the indices in the Christoffel symbols are very important. 
They are a shorthand for the { ) and [ 1 in (2.6.17) and (2.6.18): delete the e's 
but maintain the index positions. As usual, an upper index refers to a con- 
travariant quantity, etc. Because of (2.6.20) we observe that the Christoffel 
symbols are symmetric in the indices appearing in aei/auk. Thus, 

and 

[ j, ik] = [ j, ki] . (2.6.28) 

The relationship between the two kinds of Christoffel symbols follows from 
(2.6.19a) 

[i, j k l =  gin { nk} 

Alternative symbols for the Christoffel symbols are I;: = { ik} and 4, jk = [i, jk]. 

These r-symbols suggest a tensor character, which they d; n i t  have (see Chap. 3 
or 13). Note that the so-called "Christoffel symbols" as defined by Stacey (1981) 
differ from those defined here and by other authors (Morse and Feshbach 1953, 
Spiegel 1959). 
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The introduction of the Christoffel symbols allows us to rewrite the compo- 
nents of the covariant derivative, given in (2.6.23) and (2.6.24) in a compact form: 

and 

In aLl the foregoing, the summation convention was used. 
The covariant derivative was obtained using the ordinary rules of differentia- 

tion. Thus the derivative of a sum is the sum of the derivatives and the derivative 
of a product is the sum of similar products where one of the factors, in turn, is 
replaced by its derivative. 

By definition, the Christoffel symbols originate from the dependence on 
position of the basis vectors, so in a rectilinear coordinate system, the Christoffel 
symbols are zero. 

I 2.6.2 The Del Operator 

a) Definition of the Del Operator 

I 
The del operator, is usually defined via the relationship d@ = V@ . dR. Expan- 

I sion of d@ via the chain rule leads to d@ = (a@/aui)dui, which can be written as 
a dot product using 6; = ei-ej: 

a @ .  a @ .  . a @  . . 
-dul = :el-ejduJ = Vu' .ejduJ 
au a~ au 

Identification of this expression with V@.dR shows that we can formally in- 
troduce the del operator as 

We now derive the formulae for the gradient of a scalar field, the divergence 
and the curl of a vector field, using the material of the previous sections. 

b) Gradient 

We operate with V on a scalar function @(ul, u2, u3) and simply juxtapose the 
two symbols with no operator sign in between them. We obtain: 



36 2. Vector Algebra and Analysis in Curvilinear Coordinates 

Equation (2.6.36) is the covariant component of the gradient vector and does not 
necessarily have the same units as Vc?, since the reciprocal-basis vectors can have 
units themselves. 

c) Divergence 

The simplest derivation of the divergence makes use of the properties V x V@ = 0 
and V. ( V x A) = 0 (S.P. Hirshman 1982). We first note that the ei o e j  transfor- 
mation formulae of (2.5.25) can be written in a curl form: 

Because ei /J is the curl of a vector, its divergence is zero: 

Therefore, we have for the divergence of a vector A: 

which upon using the definition of the Voperator, (2.6.34), becomes 

For completeness, we discuss two alternative derivations of the formula in 
(2.6.39) in Chap. 14. It concerns those that are encountered most frequently in 
the literature but quite often with unsatisfactory notations. 

d) Curl 

The curl of a vector field is obtained as the cross-product of the V-operator with 
the vector A, V x A or sometimes represented by rot A. 

First, we rewrite (2.5.25), with the constraint "i, j, k,cyc 1,2,3" absorbed into 
the formula: 
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The curl of A is then 

d A  . , 

Vx A =  v x  (Aje j )=Aj(Vxej)+  V A j x e j = 2 e ' x e 1  . (2.6.41) aul 

Here we have used v x Vuj 0 and the definition of the del operator. Upon 
using (2.6.40) we obtain 

More explicitly, 

1 
i, j, kcyc 1, 2, 3 . 

This derivation may also be performed via the covariant derivative: 

The prime on 1 again implies i # j. We used (2.5.37) and (2.5.38) for the cross 
product. This implies: 

V X A = J - ' C ( A ~ , ~ - A , , ~ ) ~ ,  ~r i , j ,kcyc1,2,3.  (2.6.45) 

After substitution of the expressions for AjSi and according to (2.6.32) and 
recognition that the Christoffel symbols cancel each other because of their 
symmetry properties, we retrieve (2.6.43). 

2.7 The Parallel and Perpendicular Components of a Vector 

.Sometimes one wants to find the parallel or perpendicular components of a 

1 vector V with respect to a certain given vector, say B (e.g., the magnetic field). 
The dot product is obtained via the orthogonal projection of the one vector 

onto the other. Consequently, it should be clear that the parallel component of 
V (denoted by 5,) with respect to (w.r.t) a vector B is simply: 
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B being the unit vector along B. 
On the other hand, the component of V perpendicular to B, can be derived 

from the definition of the vector product: 

Indeed, I B x VI is the magnitude of the perpendicular component (w.r.t. @ and 
- B x (B x V) is the vector I to B, lying in the plane formed by the vectors B 
and V, which means that it must be in the direction of f V,. 

Thus, any vector Vcan be written in terms of its parallel and perpendicular 
components with respect to another vector B as: 

V=q1b+ V L = ~ ( ~ . V ) - ~ x ( B x  V) ,  (2.7.3) 

where B = BIB. 
It is useful to know how the I1 and I labels can "shift" in dot products 

(1) and 1 are with respect to an arbitrary vector B, which can coincide with A or 
C). We obtain: 

2.8 A Summary of Vector Related Identities 

Here we summarize the most important vector identities used in plasma physics, 
of the NRL Plasma Formulary (Book 1983). More formulae involving vectors 
and tensors can be found at the end of Chap. 3. 
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V2f = v. Vf 

V ~ A  = v(v.A)- v x  v x  A 

v x  vf=o 
V.Vx A = O  

V. R = 3 , R = position vector . 

(V.8) 

(V.9) 

(V. 10) 

(V. 1 1) 

(V. 12) 

(V.13) 

(V. 14) 

(V.15) 

(V.16) 

(V. 17) 



3.2 The Concept of Tensors; A Pragmatic Approach 41 

3. Tensorial Objects 

3.1 Introduction 

A brief discussion of second-order tensorial objects such as dyads and dyadics 
is necessary in a comprehensive treatment of flux coordinates. The reason is 
twofold. Firstly, we regularly deal with dyadic objects in studying plasma equi- 
librium, even in scalar pressure cases. We frequently come across expressions 
such as A. BC or A VB, where BC and VB are dyads. An important example is 
the curvature along a magnetic-field line: &. VB. Secondly, tensor analysis in 
curvilinear coordinates is merely an extension of vector analysis; more accur- 
ately, vectors are a special case of tensors: vectors are first-order tensors. 

Tensors are of considerable importance in general plasma physics. Examples 
of tensors used are the above mentioned dyads of the form AB or VB needed 
for a description of the curvature and fluid inertial terms v .  Vv among others, 
the pressure and viscous-stress tensors, the electromagnetic stress tensor, the 
dyadics utilized in the derivation of the Fokker-Planck equation, etc. 

This is not the place to give a detailed exposition on tensors, but we can 
explain the main ideas. We shall take a pragmatic viewpoint and stress the 
similarities with and generalizations of vectors. 

3.2 The Concept of Tensors; A Pragmatic Approach 

The simplest way to introduce tensors is via a dot-product operation between 
vectors. A dyad or second-order "simple" tensor, AB, is defined by 

X and Yare two arbitrary vectors. 
The result of (3.2.1) and (3.2.2) is a vector as is clear from their RHS. The 

LHS states that this vector can be considered as being produced by the dot 
product of a vector and a dyad. The notation for a dyad is a simple juxtaposition 
of the two vectors making up the dyad, without a symbol in between. In more 

abstract mathematical treatments, the symbol €3 is used and is called the tensor 
product or the outer product (sometimes it is called the exterior product, al- 
though this name is mostly reserved for yet another product, namely, that related 
to Grassmann Algebra). Thus, AB = A @ B in that notation. Note that the 
Russian notations for dot and cross products are also juxtapositions, distin- 
guished by different brackets: (AB) = what we write as A - B and [ASJ = what 
we write as A x B. 

From the definition, (3.2.1) and (3.2.2), it follows that the dot product of a 
dyad with a vector is (in general) not commutative. The result of X .  AB = (X. A)B 
is a vector along B, whereas AB.X = A(B. X) is a vector proportional to A. 
These equations also explain why the order of the vectors making up a dyad is 
important i.e., 

AB # BA. 

The reason is self-explanatory; X. AB = (X. A)B a B, whereas X. BA = (X- B)A 
a A.  

We now expand the vectors A and B along the basis vectors ei = dR/dui and 
d = Vd; A = Airi = Ajd with Ai = A -  ei and Aj = A me,, and B = Bkek = B,el 
with Bk = B.eL and B, = B-e,. The summation convention must be used over 
repeated indices. This leads to four possible forms of the dyad: 

AB = AieiBkek = AiBkeiek (3.2.4a) 

AB = ~'e,B,e' = AiB,eiel (3.2.4b) 

AB = ~ ~ d ~ ~ e ~  = AjBkdek (3.2.4~) 

AB = ~]dB,e '  = Ajgde1. (3.2.4d) 

1 The second form of (3.2.4a-d) follows trivially from the definition, (3.2.1) and 
(5.L.L). 

Sometimes, we use a general symbol A(m) B(n) to denote the four variants 
of A's and B's when we make statements that are valid for all of them. In 
three dimensions, there are nine possible combinations A(m) B(n) in each of the 
four cases above. The coefficients A(m) B(n), i.e., AiBk, AiB,, A ~ B ~ ,  AjBl are called 
the components of the dyad for the basis vector sets ei and 8. The dyads eiek are 
called "basis-dyads" or "basis-tensors" in analogy with basis vectors. There are 
nine "basis-dyads" of each sort (in the sense of (3.2.4a-d) in a three-dimensional 
space). 

We introduce first a single symbol for the dyad AB 

Second-order tensorial quantities are represen5d - -. by a bold face, sanserif, italic 
notation. (Other notations instead of Dare D, D or _D; the two "arrow heads" or 
the two bars refer to the second-order character.) Depending on the index 
positions, we have the following definitions: 
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D" = A ' B ~  = contravariant components of AB (= D) (3.2.6a) 

Djl = AjBl = covariant components of AB (= D) (3.2.6b) 
i -  ' 

D'l = A'B1 = mixed components of AB (= D). 
~ j ' k  A ~ B ~  - 

The dots in the symbols Df, and D;' remind us that i and j are the first indices in 
each case. The dot is necessary because otherwise, D;' could be interpreted as 
either the components of D = D,'eid or as the components of D = D;'elei. But 
since, in general, eiel is different from de,, the D;' are also different, creating the 
need to indicate which basis vector must come first. 

The components D(m,n) can be ordered as a square array. They are then 
said to form a 3 x 3 matrix. In our co- and contravariant formalism, there are 
four different matrices belonging to the same dyad, at least for the choice 
e, = dR/aui and d = VuJ. When we change basis vectors, the components of the 
dyad will change as will the matrices. As is the case for vectors, tensors (or dyads) 
in Euclidean space are no longer covariant, contravariant or mixed. All we have 
are dyads or tensors which can be expressed in covariant, contravariant or mixed 
components, depending on the choice of basis vectors. 

We now examine D from another viewpoint. The second-order tensorial 
object D that we referred to as a dyad or "simple" second-order tensor has a 
particular set of components which, in a certain sense, is special. The nine 
components, say DjI, can be written as the mixed product of two groups of three 
numbers: (A,, A,, A,) and (B,, B,, B,), such that Djr = AjBr, j = 1,2,3 and 1 = 1, 
2, 3. An analogous statement can be made for the nine contravariant, and 18 
mixed components of that same second-order tensor D, as shown in (3.2.6). This 
means that D is a tensor which is produced by two vectors, AB. 

We now treat more general second-order tensors. Consider a second-order 
tensor F 

For a general second-order tensor, it is not possible to find two sets of three 
numbers in the sense explained above for D. In other words, a general second- 
order tensor cannot be written as a single dyad. It can, however, be written as a 
sum of at least three dyads (in 3-D). 

Let us show this for a tensor written with covariant components. Choose 
any three vectors A, Band C with the constraints that the 3 x 3 matrix formed 
by their components Ai, Bj, and Ck has a non-zero determinant. We then must 
find three vectors X, Y and Z such that 

F = X A +  YB+ YC. 

When Fis written in terms of its covariant components 6, and all the vectors 
appearing on the RHS of (3.2.8) are written using their covariant components as 
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well, we can equate the coefficients of the same "basis-dyads" &el on the LHS 
and RHS: 

In matrix language, the RHS is the matrix product of the matrices formed by the 
components A,, Bj, and Ck and the transpose of that formed by the components 
x1, Y,, 2,: 

CF1 = CrlTC.I, 
(3.2.10) 

Here, xl, = XI, x,, = X,, X13 = X3, xzl =. Y,, etc., and a l l  = A,, a12 = 4 ,  
a,, = A,, a,, = B,, etc. Since we required that det[a] # 0 from the outset, the 
matrix equation, (3.2.10), can be inverted, and the coefficients of [XI can be found. 

To write Fwith more than three dyads is straightforward. For instance, any 
dyad can be replaced by the sum of a symmetric and an antisymmetric dyad: 
D E (D + DT)/2 + (D - DT)/2. Here, T stands for transpose. Also, if we absorb 
the coefficients in the second form of ,into other vectors, so that e.g., 
a = Fllel, b = el, c = el, d = Fl,e2, e &e3, .. ., we can write 
Fas  a sum of nine dyads 

Because a general second-order tensor can be written as a sum of (at least 
three) dyads, it is also called a dyadic. It is clear that a dyad is a dyadic, but not 
all dyadics are dyads. The expressions in (3.2.4) and (3.2.7) are called the nonion 
form of the dyad or the dyadic to denote the "nine-component form". 

The words "second-order tensor" and "dyadic" refer to one and the same 
"geometrical object", although they might be regarded as different representa- 
tions for the same entity. If one deals with the indexed-component form, one 
could refer to a "tensor"; if, on the other hand, one considers the "geometrical 
object" as a sum of dyads, one could refer to a "dyadic". This is a matter of taste. 
Since there is no real difference between the two, we will use the words dyadic 
and second order tensor as synonyms. 

We have encountered two other interpretations of dyadics, which we think 
have no ground. First, Morse and Feshbach (1953) state that the relationship 
between the components of a dyadic and those of a second-order tensor is 
analogous to that between the physical components of a vector and its covariant 
or contravariant components. They essentially state that a dyadic is to a tensor 
what a real "vector" is to a co- or contravariant "vector". Since they subsequently 
treat dyadics as if they are common second-order tensors, and since we found 
no other evidence in the literature to back up this notion, we do not accept this 
interpretation. Another (restricted) definition is given by Drew (1961), who 
asserts that dyads and dyadics refer to tensor analysis in Cartesian coordinate 
systems. Again, we found no other reference stating the same. This interpretation 
seems too restricted and is actually contradicted by most applications in plasma 
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physics (e.g., the pressure tensor is really a dyad, and the viscous-stress tensor is 
a dyadic; however, we almost never express them in Cartesian components). 

Higher-order tensors can be defined in a "similar" way. A third-order "sim- 
ple" tensor or a triad ABC is defined as 

Y .  ABC = (Y. A)BC , 

where BC is a dyad, a by now familiar object. Triadics or general third-order 
tensors can be written as sums of triads. For fourth-order tensorial objects, we 
talk about tetrads and tetradics. For the n-th order case, we refer to polyads and 
polyadics. 

A vector can be considered as a first-order adic or first-order tensor, and a 
scalar as a zeroth-order tensor. 

3.3 Dot Product, Double Dot Product, Contraction 

The dot product of a vector and a tensor is merely an extension of the definition 
of a dyad. 

In this section, we shall stress the index notation, so by straightforward 
expansions in components: 

= Xnen - q k e j e  k - - X n ~ ' e n .  ejek = x j y k e k  = ykek = Y 

= Xnen. q l e j e l  = XnF e = X ~ F .  = I;el = Y J I  n J ,  

= Xmem. F.',eiel = XmF:',em.eie' = xiF,',el = I;el = Y (3.3.la) 

for X -  F = Y, and 

= q k e j e k - x n e n  = Fj'l'xnejek.en = q k x k e j  = Z.ej = z (3.3.lb) 

for F - X =  Z. 
Here we used the fact that e i . e j  = 6;. Note that we always performed the 

dot product between a basis vector with a subscript and one with a superscript. 
That way we were able to avoid using the gij = e i S e j .  In component form, the 
dot product amounts to a saturation over one upper index and one lower index: 

(X '  F) ,  = X'l$) = XiFfl = x 
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and 

It is clear that the index which is the furthest away from where the dot "would 
have been" is kept unchanged. The index saturation is over the indices closest to 
the "dot": the first one of Fin X ,  F, and the second one in F X. The saturation 
of the indices is formally called the contraction of a tensor: the summation over 
two identical indices, one upper and one lower. The contraction of a tensor results 
in a tensor of a rank two lower than that of the original tensor. The dot product 
of a vector with a tensor can be considered as the contraction of a third-order 
tensor. If we represent the tensors by their components, we obtain, e.g., 

and 

The dot product between two second-order tensors is likewise not commuta- 
tive. It can be considered as the contraction of a fourth-order tensor; the satura- 
tion is over the middle indices, and the result is a second-order tensor. We have 
for E = F.  V 

Considered as the contraction of a fourth-order tensor, we would have, for 
instance, 

Consider now the dot product of a tensor with two vectors, one on its left 
and one on its right: 

Here we have used the covariant components of F, and we have set F . X  = Z 
and A . F = B. For later reference, we write 
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Because of the non-commutativity of the vector-tensor dot product, the vectors 
A and X cannot be interchanged, in general. However, since the dot product of 
vectors is commutative, we have that: 

A. Fax= (A. F ) . X =  X.(A. F) (3.3.7a) 

It is convenient to write the consecutive dot product in a more compact way, 
namely, as the double dot product of two tensors. Given two second-order tensors 
P and R, we define the double dot product as: 

Here, P / R ~  stands for P,"Rji or P!iRfj .  It is important to note that the sequence 
of indices is in a certain sense symmetric ("reflected about the position where 
the double dot would have been). 

The literature is not consistent in defining the double product. Most authors 
use the definition as given in (3.3.8): Krall and Trivelpiece (1973); Bird, Stewart 
and Lightfoot (1960); Shkarofsky, Johnston and Bachynski (1966); Jancel and 
Kahan (1966); Chapman and Cowling (1973); Ferziger and Kaper (1972); Milne- 
Thomson (1968). One important deviation from this convention is used in the 
standard textbook on classical mechanics by Goldstein (1981), where the tensor 
indices are "repeated" (ijlij) instead of "reflected (ijlji). When the indices are 
"repeated, the position of the "dot" in the mixed-tensor components is different: 
p; jRf j  or P@ii;  one "dot" above, and one underneath. Van Bladel (1964) also 
uses this latter convention. On page 57 of Morse and Feshbach (1953), the double 
dot is defined as in our (3.3.8), but in (1.6.29) of M&F, the "Goldstein" convention 
is used. 

From (3.3.6), we see that we can write for (3.3.5): 

Observe that the first double-dot expression also resembles the last form in 
(3.3.7a): the vector A remains closest to the tensor F if it operates on the left. 
Similarly, the last form of (3.3.7b) looks like the last expression in (3.3.9) and 
keeps the vector X closest to Fif it is on the right. 

For a "simple" tensor or dyad of the form ST, (3.3.9) leads to: 

XA: S T  = A.ST.X = (A.S)(T.X) (3.3.10a) 

ST: XA = T.XA.S = (T.X)(A.S) . (3.3.10b) 

According to the convention used here, a first dot product is performed between 
the two vectors next to the double dot symbol; the other dot product is then 
between the two other vectors. Following the Goldstein (1981) or Van Bladel 
(1964) convention, we would have instead of (3.3.10) XA : S T  = X.ST.A = 
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(X.S)(T. A), which is clearly a different result because X and A have been 
interchanged. 

The above discussion should make clear how single and double dot products 
of tensors must be interpreted. Generalizations for three or more dot products 
are readily made on the basis of the index definition of (3.3.8). 

The dot product of a vector or a tensor with a dyad involving the vector 
operator del, or the divergence of a tensor can straightforwardly be computed 
with the rules given so far. A few important rules should be kept in mind, however: 

1) The order of the vectors in a dyad is important; A Vis different from VA. 
2) The dot product of vector and dyad or dyadic is not commutative. 
3) the del operator is most conveniently expressed along a contravariant basis: 

V = eia/aui. 
4) The basis vectors are position dependent. 

In addition, we mention the obvious facts: 

5) The del operator operates on everything on its right, except when brackets 
indicate otherwise. 

6) The product rule of differentiation is often a very handy tool. 

Regarding cross products of vectors and tensors, we again expand each in 
components along a basis and perform the operations between the basis vectors. 
To keep the order of the indices right, the Levi-Civita symbol will be helpful. 
Similar rules apply to expressions of the form V x (tensor) or A x VB, etc., as 
long as we keep in mind the rules involving the Voperator, mentioned above. 

3.4 The Relationship Between Covariant, Contravariant 
and Mixed Components 

In (3.3.6), we stated that A . F. X = A ' x ~ F , ~ .  If we now take the numbers A' equal 
to zero, except the i-th component which we set equal to 1, and similarly for the 
Xj,  where we take only the j-th component equal to 1 and the others zero, we 
have A = Aiei -r ei and X = Xjej -, ej .  This leads to 

Analogously, we have for the contravariant and mixed components, respectively, 

F" e k .  F. (3.4.2) 

Fn m - = e m .  F.  en (3.4.3) 

FSnm - e n .  F .em . (3.4.4) 

Consider now F = Fijeiej and dot multiply on the left by ek  and on the right by 
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el. Because of (3.4.2), we obtain: 

which, after using the definition of the reciprocal metriccoefficients g i j ,  becomes 

By an analogous procedure, we can write: 

and 

3.5 Special Tensors 

3.5.1 The Kronecker Delta and the Metric Tensor 

The Kronecker delta 6; is in fact a second-order tensor I. Strictly, 6; are the mixed 
components of the identity tensor /(also called the "idemfactor"). /is defined by 

An even stronger statement is: 6; are the only legitimate components of the 
identity tensor (as long as we work in the covariant-contravariant formalism). 
The symbols dij and dij, where dij = 6" = 1 for i = j and 0 for i Z j, which could 
be thought of as covariant and contravariant components in fact do not qualify 
as such. This can easily be checked by means of the transformation rules of Chap. 
13. We can use the symbols and 6'j to indicate that something is 1 when the 
two indices coincide and zero when they are different. However, these symbols 
can only be used in one particular coordinate system. The 1 ,0  character of the 
symbols dij and 6'' considered as potential components of a tensor is spoiled 
when we go to another coordinate system. 

A second important second-order tensor is the metric tensor g with covariant 
components the metric coefficients g, ; r , e j  and with contravariant compo- 
nents the reciprocal metric coefficients g = ei . ej. The transformation properties 
show that both sorts of components are legitimate. 

We now encounter a very important and interesting observation. Since we 
work in one single Euclidean space, the metric tensor is identical with the identity 
tensor. This particular tensor will be called the fundamental tensor (FV.  It has 
the following properties: 
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The equivalence can be understood from (3.4.7), where we set Fij on the RHS 
equal to gij. We have then 

g; = g j n g i j  . (3.5.3a) 

On the other hand, we have that ei = gije'. Dot multiplying this expression on 
both sides by en leads to 

6: = gijgjn . (3.5.3b) 

Therefore, we have from comparing (3.5.3a) and (3.5.3b): 

which says that the mixed components of the metric (or fundamental) tensor are 
identical to the Kronecker delta. Because I is equivalent to g, there should be 
a similar relationship to (3.5.1) involving g. We, therefore, propose a formal 
relationship: 

given that the A in the dot product is written in terms of the "other" components 
than the A in the middle. Indeed, we have 

Amem. gijeiej = Amgijem . eiej = Amgij6Aej 
. . 

= A'gijeJ = AjeJ = A 

and 

Anen.gijeiej = Angije"-eiej = 

whereas, for comparison, we can write for (3.5.1): 

The most convenient form of the fundamental tensor is the "sum-of-dyad" 
form: 

(FT) g = I = e,el + e,e2 + e3e3 = eiei (3.5.7a) 

=- ele, + ete, + e3e3 -- eiei . (3.5.7b) 
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From this form, we obtain its coefficients via (3.4.1) through (3.4.4): 

The symbols between brackets on the extreme RHS of these expressions may be 
used if they are interpreted properly, i.e., the co- or contravariant deltas are not 
generally one or zero, and the g: are either one or zero. The same results are 
obtained if we use (FT) = eiei instead of eiei. 

3.5.2 Levi-Civita and Christoffel Symbols1 

a) Levi-Civita Symbols 

It is important to draw attention to the fact that the Levi-Civita symbols used 
before are not the components of a third-order tensor. These symbols were 
defined as 

and 

They are + 1 for i, j, k equal to an even permutation of 1, 2, 3; - 1 for an odd 
permutation and zero otherwise. If these symbols were the c_omponents of a 

i=t tensor, then we would have that the tensor E could be written as P = clmne'eme" = 
~'~"e ,e ,e~.  We now show that this statement is incorrect. 

In analogy with_(3.4.2), we can write for the contravariant components of a 
third-order tensor F: 

Between the brackets we need the two outer indices of Fijk, here i and k in that 
order. Since the quantity between the brackets is a vector, commutativity applies, 
and the position of e~ can be either of those indicated. Similarly, we have that 

Pfccording to (3.5.10), we would have for the contravariant components of 
++ 
E = ~'""e,e,e~: 

Can be skipped without loss of continuity. 
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which is what we expect, being equal to 1, - 1, or zero. _However, if we try to 
compute the contravariant components from the form F = ~,,,e'e"e", we get 
instead 

which is different from (3.5.12a). Here, g = det(gij) and det(gij) = g-'. We used 
the fact that Clmngilgjmgkn~,mn, with E,,, the Levi-Civita symbol, is equal to the 
determinant g for i, j, k an even permutation of 1, 2, 3; - for i, j, k an odd 2 
permutation, and zero if any two indices are equal. Hence, E cannot be a tensor 
with components cijk or cijk. Similar results are obtained for covariant compo- 
nents (e), Note that one should not convert eI,gi1gjmgkn into cijk in analogy to 
(3.4.6). This would lead to the wrong result because the clmn is a symbol equal to 
+ 1, - 1 or 0 and is not a covariant component of 2. In Chap. 13, an alternative 
proof for the non-tensor character of cijk and gijk is given via transformation 
equations. 

One could define a tensor called the permutation tensor, which is closely 
related to the Levi-Civita symbol: 

As in (3.5.12a) and (3.5.12b), we have 

ijk 

and 
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So we have agreement:  and E,,,& are respectively the contravariant 
and covariant components of In comparison with (3.5.9), we have for the 

a 
components of E :  

E . .  = e : e .  x e - 
J 1 J (3.5.15a) 

and 

+ I/& 
~ i j k  = e i .  ,j ,k = -I/& - 

1 0  

(3.5.15b) 

The transformation properties of Eijk and E i j k  are given in Chap. 13. 

b) Christoffel Symbols 

The Christoffel symbols discussed in Chap. 2 are not the components of a third- 
order tensor as the alternative r-notation might suggest. Recall that the T- 
notation identified 4: with { j i k }  and &,jk  with [i,jk]. Therefore, the rnotation 
should be avoided. The easiest way to prove that f j  i k }  and [i, jk] are not tensor 
components is via the transformation properties. This is discussed in Chap. 13. 

3.6 Tensor and Dyadic Identities 

In this section we give a summary of the most important identities involving 
vectors and second-order tensors. Most of these formulae can be found in the 
more pragmatic texts mentioned in the next section. However, this collection is 
mainly based on Shkarofsky, Johnston and Bachynski (1966); Bird, Stewart and 
Lightfoot (1960) and Wimmel(1982). The last is especially recommended for its 
tensor formulae. 

AB: CD = (B.C)(A.D)  = D - A B - C  (T.4) 
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I : A B = A . B  (T.6) 

I :  V B =  V - B  (T.7) 

I :  F= F,' = t r F  (T.8) 

V .  (a / )  = Va (T.9) 

V .AB = A .  VB + (V .A)B  (T. 10) 

I x A = A x l  (T. 1 1 )  

( A x B ) x l = I x ( A x B ) = B A - A B  (T. 12) 

(A x B ) x C = C x ( B x  A ) = B ( C . A ) - A ( C . B ) = C . ( A B - B A )  (T.13) 

A x (BC)  = ( A  x B)C (T. 14) 

V . ( l x C ) =  V x C  (T. 1 5) 

V x (A x B) = V.(BA - AB) (T. 16) 

A x ( V X  B ) = ( V B ) . A - A . V B  (T. 17) 

V(A.B)= A x ( V X  B)+ B x  ( V X  A ) +  A . V B +  B .VA 

= (VA) .B  + (VB).A (T. 18) 

V(A x B) = VA x B - VB x A (T. 19) 

V X  (AB) = ( V X  A ) B -  A x VB (T.20) 

A x V B - ( A  x V q T = [ ( V . B ) A -  VB.A] x I (T.21) 

V B x  A - ( V B x  A ) T = [ ( V . B ) A - A . V S j  x I (T.22) 

(V.B)A - VB.A = -(A x V) x B (T.23) 

( V . B ) A - A . V B = A  x ( V x  B ) - ( A  x V ) X  B (T.24) 

( A  x V) .B= A . ( V x  B) (T.25) 

A x  V B + ( V B X A ) ~ = [ A . ( V X B ) ] / - ( V X B ) A  (T.26) 

V B x  A + ( A  x V B ) T = [ A . ( V x B ) ] l - A ( V x  B) (T.27) 

A x VB+ V B x  A = I x  [ (V .B)A-  VB.A] 

+ [ A . ( V x  @ ] I -  A ( V X  B) 

= I x [ (V-B)A - A .  VB] 

+ [ A . ( V X  @ ] I -  ( V X  B)A 



54 3. Tensorial Objects 

(A x C ) .  F=  A.(C x F )  = -C.(A x F )  

F . ( A x C ) = ( F x A ) . C =  - ( F x C ) . A  

A . F x  C = ( A . F )  x C =  A . ( F x  C ) =  - C x ( A . F )  

A X  F . C = A x ( F - C ) = ( A x  F ) . C = - ( F . C ) r A  

A . V B x C + C x  V B . A = C x  [ A x ( V x B ) ]  

A. VB x C -  C .  VB x A = [(V.B)I- VBl.(A x C )  

A x VB.C- C x VB.A =(A x C).[(V.B)I- VBl 

A .VB.C-  C.VB.A =(A x C ) . ( V x  B) 

VR = I , R = position vector . 

3.7 Suggestions for Further Reading 

This chapter was a minimal discussion of tensors. For more on this powerful 
"technique", we must refer to the vast literature in mathematics and mathemati- 
cal physics. It is difficult to suggest one single reference because none of those 
known to us treats tensors correctly and generally enough and appropriately for 
plasma physics. 

A substantial number of physics textbooks devote a chapter or an appendix 
to tensors or polyadics. These books cover fields like plasma physics, mechanics, 
electromagnetics, transport, elasticity theory and fluid dynamics. In particular, 
we would like to mention Symon (1971); Goldstein (1981); Bird, Stewart and 
Lightfoot (1960); Milne-Thomson (1968); Stratton (1941); Van Blade1 (1964); 
Krall and Trivelpiece (1973); Seshadri (1973); Shkarofsky, Johnston and 
Bachynski (1966); Chapman and Cowling (1973); Ferziger and Kaper (1972); 
Jancel and Kahan (1966); Woodson and Melcher (1968). 

In the more practical mathematics and mathematical-physics books, tensors 
are often defined by means of their transformation laws; in some of them, dyads 
and dyadics are discussed (or parenthetically referred to). Dual spaces are not 
mentioned. In this category, we recommend Wrede (1963); Borisenko and 
Tarapov (1968); Morse and Feshbach (1953); Mathews and Walker (1970); Mar- - 
genau and Murphy (1976); Butkov (1968); Spiegel (1959); Menzel (1961); Hoff- 
mann (1977). 

On the subject of tensor calculus in the context of differential geometry and 
its relationship with differential forms and Grassmann algebra, see Stoker (1969); 
Guggenheimer (1977); Spivak (1970); Choquet-Bruhat (1982); Behnke (1974); 
Flanders (1963); Arnold (1978); Abraham and Marsden (1978); Deschamps (1970); 
Schutz (1980), Misner, Thorne and Wheeler (1973); Burke (1985). 

4. Magnetic-Field-Structure-Related Concepts 

4.1 The Equation of a Magnetic-Field Line 

A magneticfield line (or "line of force") is by definition a curve whose tangent at 
any point is parallel to the magnetic field-vector B. This property can be trans- 
lated into mathematical terms as follows: 

B a d R  or B = c d R ,  (4.1.1) 

where c is a proportionality constant and dR is a differential vector tangent to 
the field line (R is the position vector from a chosen origin to the point in question 
on the curve). Equivalently, 

Using the contravariant components of both B(B1, B2, B') and d ~ ( d u ' , d u ~ ,  du3), 
either of the above equations leads to: 

B' BZ B3 - - 
du' du2- du" = c .  

If we recall that Bi = B. Vui, we can also write: 

B. Vu' B .  vu2 B.  VU' - - (4.1.4) 
du' du2 du3 ' 

If we parameterize the field-line curve by the arc length I, the tangent vector 
dR/dl is a unit vector, commonly denoted by i or B = BIB: 

From (4.1.1), then, the constant c equals Bldl, so that the equation of a magnetic- 
field line is, in component form: 

B B' B2 B3 - - - 
dl du' du2- 
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The form of (4.1.1) implies that a choice for contravariant components of 
dR, dui r dR. Vu', requires the use of the contravariant components of B, the 
Bi. 

4.2 The Frozen-Flux Theorem 

The frozen-flux theorem states that the magnetic flux threading an open surface 
in a perfectly conducting (MHD) plasma is constant. Even when the surface 
moves with the plasma, the flux remains the same. This is equivalent to saying 
that the flux is frozen within the plasma or that the field lines move with the 
plasma. This theorem is proven in most plasma-physics textbooks. We will follow 
closely the concise but clear discussion given by Schmidt (1979). 

The starting point to prove the theorem is a combination of Ampkre's law, 
Faraday's law and Ohm's law: 

Here, V represents the plasma-fluid velocity, a is the electrical conductivity, and 
the other symbols have the usual meanings. For consistency with MHD, we 
neglected the displacement current in Ampkre's law, (4.2.1). This statement is 
equivalent to V. J = 0. This is a particular version of charge conservation. The 
equations are written in MKS units. 

After substituting (4.2.1) for J into Ohm's law, (4.2.3), and solving for the 
electric field E, which in turn is substituted into (4.2.2), we obtain an equation 
for a ~ l a t :  

With the help of the vector identity V x ( V x A) = V( V- A) - V A, this becomes 

since V. B = 0. Equation (4.2.5) is a diffusion equation for the magnetic field in 
a moving plasma (see, e.g., Schmidt, 1979, or Golant, Zhilinsky and Sakharov, 
1980). 
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We are interested in the perfectly conducting limit, where a oo: 

a B 
-= V X ( V X  B ) .  (4.2.6) 
at 

We now integrate this equation over an arbitrary open but fixed surface S inside 
the plasma. With Stokes' law, we obtain 

dl represents a differential length element along the boundary curve r of S (see 
Fig. 4.1). The last form of (4.2.7) can be rewritten using the triple-product identity 
a .  b x c = -c.(b x a), while the slat operator can be moved outside the first 
integral. The surface S is stationary, and slat is taken at constant R. With the 
magnetic flux Y through S defined as usual, Y = JJ B-dS, we can write 

To interpret this integral relation, we consider Fig. 4.1. The open surface S 
is fixed in space, regardless of the plasma velocity. Since the velocity V represents 
the plasma velocity, it is clear that the open surface S' is the equivalent of surface 
S, but now "carried" with the plasma. Between the open surfaces S (at time t = O), 
and S' (at time t = At), there is a "side"-surface created by the moving boundary 
r'. A differential area element of this side-surface is I V x dllAt (cross-hatched 
in the figure). The first term of (4.2.8) is the time rate of change of the magnetic 
flux through the fixed open surface S. The second term represents the increment 
of flux through the side-surface swept out by the moving boundary T'. Because 
B is a solenoidal field, we know that the total flux through the closed surface 
S + SSide + S' must be zero. Since (4.2.8) states that the change in flux through 
S + S,,, is zero, we must have that the change of flux through the moving surface 
S' is zero as well. This implies that the total time derivative of the flux through 
a (moving) surface (such as S') must be zero (see, e.g., Jackson, 1975, Chap. 6): 

The surface S (or S') in the above proof was arbitrary. It follows that 
magnetic-field lines are tied to the plasma, which makes the abstract concept of 
a field line more concrete in an ideal MHD plasma. This allows us to speak about 
the motion of field lines (see Schmidt 1979). The motion of magnetic-field lines 
has been studied by Newcomb (1958). 

The notion of moving field lines is used throughout fusion-plasma physics, 
even when the fluid is not perfectly conducting, and the plasma and the field lines 
are no longer tied together. However, we must be careful with the motion of field 
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S' (at  time t = A t )  

S 
( a t  time 0)- 

,,T 'boundary r 

Fig. 4.1. The motion ofa  boundary curve T, which is tied to the plasma. See text 

lines when a parallel electric field is present (Newcomb, 1958; Kerst, private 
communication). Perpendicular E fields lead to perpendicular E x B fluid mo- 
tion and do not give rise to problems. 

4.3 The Magnetic Field-Line Curvature 

Consider a magnetic-field line parameterized by its arc length I .  The vector dR/dl, 
where R is the position vector of a point on the curve, is a unit tangent vector. 
It is denoted by ior  io r  B = BIB. (We assume for convenience that the arc length 
which parameterizes the field line increases in the direction in which B points. 
Otherwise, we would have that B = -i.) The dot product of i with itself is unity, 
i. i = 1, so that i. di/dl= 0. Thus the vector dildl is perpendicular to the tangent 
vector i. We now define: 

Here, ri is the principal normal to the field line. The parameter K is called the 
curvature, and the vector K the curvature vector. The quantity R, = 1 / ~  is the 
local radius of curvature. That (4.3.1) is in agreement with intuition can be shown 
geometrically from the definition: 

A i 
K = lim [i(l + Al) - i ( l ) ] /~ l  = lim - 

A l + O  A1+0 A1 

Sometimes one also uses the radius-of-curvature vector R,, pointing in the nega- 
tive ri direction. It is defined by 
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The derivative d/dllalong i is the directional derivative and is equal to the dot 
product of B with F? 

From (4.3.1) and (4.3.3), we can write the curvature in the form most commonly 
used in plasma physics: 

The second form reminds us that it is basically the dot product of a vector B with 
a dyad VB. Note that the dot-product rule from Chap. 3, on dyads, is apparently 
"violated". The result of A . (CD) = (A . C)D is normally a vector proportional to 
the vector not affected by the dot, here D. Because of the special character of the 
operator (B. V)B is not along the vector B, but orthogonal to B according to 
(4.3.1). 

An alternative expression for K can be found by applying the bac-cab rule 
to B x (V x B), which yields B x (V x B) = v(B.B)/~ - (B. V)B = -(B. V)B. 
Hence, we obtain 

There is yet another commonly used expression for the curvature vector, 
where it is related to the gradient of I B1. However, this expression is only valid 
for low f i  plasmas. With J set equal to V x B/pO, and with the help of the vector 
identity A x (V x B) = (VB). A - A VB, we obtain from the equilibrium equa- 
tion Vp = J x B: 

The "2" in (B)2 represents a square, not a superscript. When the first term on the 
right-hand side is written as B = BB, it becomes equal to 

Recall that the order of the dyad in this second term must be kept, first Vand 
then B. Then 

I We define the parallel and perpendicular (to 8 Voperators as 

y I = 6 ( 6 . v ) a n d  V l =  V- q =  V-B(B-v)=  - B X  ( B X  V) , 

respectively. Since B- Vp = 0, we see that Vp = Vlp, so that (4.3.8) can be written 
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In low-pressure plasmas, when /3 = p/(B2/2po) << 1, we can neglect the plasma 
pressure p in comparison with the magnetic pressure B2/2po, and obtain 

Alternatively, 

v, B 
K E -  = Vl ln B, for /3 << 1 . 

B 
(4.3.11) 

This expression shows that the curvature (in low /3 plasmas) is effectively the 
reciprocal of the scale length for (perpendicular) variation of I BI. 

So far, we have been dealing with the curvature of a curve (e.g., a magnetic- 
field line) in isolation. When the curve under consideration lies within a surface, 
it is customary to define curvature components with respect to the surface. The 
component of  normal to the surface is called the normal curvature, whereas the 
component of K tangent to the surface is referred to as the geodesic curvature 
(Goetz 1970; Guggenheimer 1977). 

As we will discuss below, in magnetic fusion the magnetic-field lines are often 
chosen to be coordinate curves. As indicated on Fig. 4.2, we identify the 

Fig. 4.2. The basis vectors el, 2, and e, in relation to the principal normal to the u3-curve. The vectors 
A, Vul = el and Vu2 = Z are perpendicular to Band lie in the same plane 
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third coordinate curve, the u3-curve with a magnetic-field line. This lies at the 
intersection of the coordinate surfaces u1 = constant and u2 = constant. By 
construction, the tangent-basis vector e, (which is proportional to @ is perpen- 
dicular to the reciprocal-basis vectors e1 = Vul and e2 = Vu2. TO make the 
discussion somewhat less abstract, one could take u3 as the length 1 along the 
field line. 

"Natural" surfaces to which magnetic-field lines belong are magnetic-flux 
surfaces (which will be defined rigorously below). We could think of the surfaces 
u' = constant as flux surfaces. For some applications in fusion-plasma physics, 
it is desirable to know the components of the curvature K perpendicular and 
tangent to the flux surface u1 = constant. The curvature lies along the principal 
normal, ii, to the field line. The vectors, ii, Vu' and Vu2 are perpendicular to B 
and lie in the same plane as each other. 

We want to decompose ri into a component along Vul (i.e., a component 
perpendicular to the (flux) surface u' = constant), and a component tangent to 
the u' = constant surface. Vu2 is (in general) not tangential to the u1 = constant 
surface (see Fig. 4.2). Also, the tangent-basis vector, e2 = aR/au2, which is tangen- 
tial to the u' = constant surface, is not acceptable for our purposes, since it has 
a component along B (in general, tangent-basis vectors are not orthogonal to 
each other, ei. ej # 0). This is equivalent to saying that e2 does not lie in the plane 
to which K and Vul belong. As mentioned above, Vu2 does lie in the plane 
perpendicular to B, and all we must do is find the component of Vu2 parallel to 
the Vul direction and subtract it from Vu2. Then we have a vector both tangent 
to the flux surface and perpendicular to B. The parallel and perpendicular 
components of the vector Vu2 with respect to a vector normal to the u1 = cons- 
tant surface, N = Vul/( Vul 1 are given by 

When the curvature vector K is expanded in its covariant components as usual, 
we have 

since K, - ~ . e ~  = 0, recalling that e3 cc B. After setting Vu2 in (4.3.13) equal to 
(Vu2),, + (VU')~ of (4.3.12), we obtain: 

The first term is the normal-curvature vector (along the normal N to the 
surface u1 = constant). The second term is the geodesic-curvature vector. In 
summary, we have 

KN = K1 I vul 1 + u2( vu21 cos 3: (Vul, vu2) , normal curvature (4.3.15a) 

uG = u2( Vu21 sin 3: ( Vul, Vu2) , geodesic curvature . (4.3.15b) 
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These are the correct definitions of normal and geodesic curvature. Sometimes, 
however, this terminology is used loosely, and K, in (4.3.13) is called the normal 
curvature, while K, is designated as the geodesic curvature. In magnetic geome- 
tries with a high degree of symmetry, these distinctions become irrelevant. 

Below we will identify u' with a radial variable and represent it by symbols 
such as p, Y ,  or a. uZ will be considered as an angle-like variable and will be 
labeled p 'or  v. Choosing u1 = a, and uZ = b, (4.3.15a, b) are then in a more 
familiar form: 

KN = K,I Val + K S ~  Vblcos 3: (Va, VP) (4.3.16a) 

KG = K ~ I  Vblsin 3: (Va, Vb) . (4.3.16b) 

In some cases it may be convenient to use the tangent vector i and the 
principal normal ri to a curve as basis vectors of a coordinate system. The third 
basis vector is the binormal 6 and is defined by 

Often the curve on which this frame is attached is the magnetic axis (to be defined 
rigorously below). See, for instance, Shafranov (1968), Solov'ev and Shafranov 
(1970) and Solov'ev (1975). This type of system has gained renewed interest in 
fusion-plasma physics, since the development of the helical-axis stellarators and 

. heliacs. 
The coordinate frame i, 6, 6 changes from point to point along its "basev- 

curve and is known as the moving Frenet-Serret frame. (Other names are F-S 
trihedron, F-S trihedral or F-S triad. Note, however, that we used the word 
"triad with a different meaning as a third-order "simple" tensor.) It is necessary 
to introduce a second scalar function r, known as the torsion, in order to relate the 
change in i, ri and 6 via the F-S formulae: 

dri 
-=  - x i +  r6 
dl 

The first expression, (4.3.18a) is our definition of the curvature K encountered 
earlier in (4.3.1). The last equation defines the torsion .r. To show (4.3.18c), we 
first take the derivative of (4.3.17) and apply (4.3.18a). Hence, d6/dl= i x drildl, 
implying that d&dl I i. Furthermore, from 6. 6 = 1, we have that 6-d6/dl= 0 or 
d6ldl-L;. Therefore, d6/dl is perpendicular to both i and 6, meaning that it is 
directed along -ri, since i, ri, 6 are mutually orthogonal and form a right-handed 
system. r is the proportionality constant. The middle F-S equation is easily 
proved by taking the derivative of ri = 6 x i and subsequently substituting 
(4.3.18a) and (4.3.18~). Then, from 6 = i x ri and i = ri x 6, (4.3.18b) follows. 
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4.4 Magnetic Pressure and Magnetic Tension 

It is instructive to investigate how one can assign certain forces to magnetic-field 
lines embedded in a current-carrying medium. This allows us to elucidate com- 
monly used concepts such as magnetic pressure and magnetic tension (Schmidt 
1979; Cross 1989). 

The Lorentz force density f (force per unit volume) in a current-carrying 
magnetized medium is given by 

d F  
f = - = J x B .  

dV 
(4.4.1) 

However, since the current density is curl B, we can rewrite this in terms of B 
only: 

The RHS is identical to (4.3.6). Following Schmidt (1979), we decompose f into 
its components along the Frenet-Serret trihedron tied to a field-line curve. The 
manipulations needed have already been performed in (4.3.7) and (4.3.8). With 
the RHS of (4.3.8) and (4.3.3), we have 

where we have replaced B by i (we still assume that B = + i )  for notational 
aesthetics. Recall that K represents the curvature K = l/R,, where R, is the local 
radius of curvature, ri is the principal normal and K = (B. V)B = ~ r i .  

Expansion of V along the Frenet-Serret trihedron by means of the partial 
derivatives 8/81, a/an, and a/ab gives 

Here, 6 is the binormal and not the unit vector along B, as is sometimes used 
in the literature. This implies that the component along B (or 3 in the expression 
for f vanishes: 

We can interpret this result in the following way. In the plane perpendicular 
to the field line (i.e., the normal plane which contains the vectors ri and 61, 
the force density can be thought of as a superposition of a pressure, as if the 
magnetic field were a fluid with the "magnetic pressure" B2/(2~,), and a tension 
as if the field lines were elastic cords each under a tension B/po, pressing against 
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A Fig. 4.3. computation of the ten- 
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sion on a field line. See text 
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the fluid (Schmidt 1979, page 89). The part of the force density representing 
pressure is the negative gradient of the magnetic pressure: 

The tension needs more explanation. In this context, "tension" must be inter- 
preted as a force pulling tangentially on a single field line. (In elasticity, by 
contrast, "tension" stands for pulling-force-per-unit area (Symon 1971).) The force 
density representing this "tension" is B ~ I C / ~ ,  = B~/(~,R,) .  Conventionally, the 
number of field lines per unit area is taken to be equal to the local value of I BI = B 
so that the area associated with a single field line is 1/B. Therefore, the force per 
unit length (of one field line) in the ri direction equals (B2/(po R,))(~/B) = B/(p,R,). 
How this force per unit length is related to a tension of B/p, is made plausible 
in Fig. 4.3. The force in the P direction due to an elemental length dl equals 
2Bd6/po (for sindo - do). With dl = Rc2d6, this is then B/(p,R,)dl, leading to 
the above force per unit length (due to one field line) B/(p,R,). 

4.5 Magnetic Surfaces 

Any surface that is traced out by a series of magnetic-field lines is called a 
magnetic surface. In practice, however, the name is reserved for "closed surfaces 
of a cylindrical or toroidal type. In that context, a magnetic surface is also called 
a flux sur$ace. 
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a) Toroidal Systems 

In a toroidal system, a magnetic surface (or flux surface) is a surface which is 
ergodically covered by non-closing magnetic-field lines. The structure of magne- 
tic fields and surfaces in various devices has been discussed instructively by 
Morozov and Solov'ev (1966). The existence of magnetic surfaces has been inves- 
tigated in the above review paper and by many others. We shall say a few words 
on the existence question in Chap. 9, where a literature survey is included. 

The equation of a field line can be cast in a Hamiltonian form. Hamiltonian 
theory guarantees the existence of magnetic surfaces in devices with a symmetry 
direction: an ideal, axisymmetric tokamak; a helically symmetric straight stellar- 
ator; etc. In non-symmetric devices, on the other hand, magnetic surfaces do not 
exist rigorously everywhere because ergodic regions of finite volume exist (see 
Chap. 9). In practice, we can get away with considering approximate magnetic 
surfaces provided the perturbations away from symmetry are not too large. In 
principle, one should either measure the surfaces experimentally or follow field 
lines on a computer to demonstrate the existence of suitable surfaces. Note that 
in a tokamak, a toroidal (or parallel) plasma current is necessary for the existence 
of magnetic surfaces; in a stellarator, no such current is required, and it is 
meaningful to consider vacuum magnetic surfaces. 

Between the magnetic surfaces traced out by non-closing field lines, we can 
define surfaces that contain field lines that close upon themselves after one or 
several transits around the machine (we have to "construct" or define these 
surfaces, since they are not traced out by a single field line). Such surfaces are 
called rational surfaces, because the ratio of the number of poloidal transits (the 
short way around the torus) to the number of toroidal transits (the long way 
around) of afield line is a rational number. The other surfaces are called irrational 
surfaces. Since the set of real numbers is dense, every irrational number can be 
approximated infinitesimally closely by a rational number and vice versa. The 
same holds for magnetic surfaces. However, the rational numbers are denumer- 
able whereas the irrationals are not; there are infinitely more irrationals than 
rationals. Nevertheless, the important point is that every rational surface can be 
approximated very accurately by a nearby irrational surface, and the other way 
around. 

Suitable magnetic surfaces are usually taken to be a requirement for ade- 
quate plasma equilibrium as described by the MHD equilibrium equation 
J x B = Vp. These magnetic surfaces are constant pressure surfaces, since 
Be Vp = 0, and the current-density lines lie on these surfaces because J .  Vp = 0. 
A consequence of the simple force balance, J x B = Vp, and the current- 
continuity equation, V.  J = 0, is the "current-closure condition" on rational 
surfaces: the closed loop integral f dl/B must be constant on rational surfaces, 
no matter on which field line we start (we shall discuss this condition below). 
Violation of this condition leads to the formation of an island-chain configura- 
tion and possibly to ergodic behavior of field lines in a volume in the vicinity of 
the rational surfaces. 
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In axisymmetric devices, the loop integral is constant and no problems arise. 
In non-axisymmetric devices, however, (p dl/B is not constant on rational surfaces, 
and according to ideal MHD the rational surfaces are unstable and break up, 
leading to the formation of fiber-like structures with many magnetic axes (i.e., 
the creation of magnetic islands) (Solov'ev and Shafranov 1970). 

It is questionable, however, whether the simple MHD equilibrium model 
based on J x B = Vp is not too crude an approximation. The model neglects 
potentially important effects such as resistivity, non-scalar pressure (including 
viscosity), finite flow velocities (inertial forces) and finite Larmor radius effects. 
In reality, one must solve a time evolution problem; the system is likely to evolve 
to a self-consistent stationary state that probably has some magnetic surfaces, 
but not those predicted by ideal MHD. It can be expected that some of the 
requirements of the idealized model will be washed out by dissipative and other 
effects. 

From a pragmatic point of view, we assume that (even in non-axisymmetric 
systems) a suitable set of nested toroidal magnetic surfaces is present, whose 
cross-section in a poloidal plane forms a set of smooth closed curves. This "imagi- 
nary" structure is actually the zero-th order approximation to the real structure. 
The magnetic surfaces in ideal tokamaks are symmetric about the major axis; 
the toroidal direction is ignorable. In stellarators, the surfaces have no symmetry 
direction and can take many forms. As an example, consider a surface of an 1 = 2 
stellarator (Fig. 4.4). The toroidal magnetic surface is produced approximately 
by making an elliptic curve rotate in the poloidal direction, while moving 
toroidally along the minor axis. 

The degenerate magnetic surface with the limiting value of zero volume is 
called the magnetic axis. It is formed by a field line that we assume closes upon 
itself after one toroidal transit. It is a line around which the magnetic surfaces 
are nested. A magnetic axis does not necessarily have to be circular, but can have, 
for example, a helical form ( I  = 1 stellarator, helical-axis stellarator). (The scope 
of our treatment is limited to situations with only one magnetic axis; thus, we 
disregard magnetic islands.) 

Fig. 44. Threedimensional picture of a flux surface of an I = 2 stellarator. The elliptical cross section 
rotates poloidally when traversing toroidally. (Provided by H. Wobig and J. Kisslinger, Max-Planck- 
Institut fur Plasmaphysik, Garching bei Miinchen, Fed. Rep. Germany.) 
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b) Open-Ended Systems 

Magnetic-mirror devices do not possess magnetic surfaces that are traced out by 
one single field line. This leads, in principle, to a considerable degree of arbitrari- 
ness. One must define the shape of the surfaces, and a natural choice seems to be 
that of a circular cross-section in the center of the device, i.e., at z = 0 if the device 
is bounded axially by z = +_ L. For a simple baseball mirror, this circle fans out 
into an ellipse at one end, at z = + L, and into another ellipse rotated by 
90-degrees at z = - L. In tandem mirrors with thermal barriers, the magnetic- 
surface structure is essentially a connection of a regular cylinder and baseball- 
coil generated surfaces. 

4.6 Curvilinear Coordinate Systems in Confinement Systems 
with "Simple" Magnetic Surfaces 

In this section we undertake a qualitative exploration of the kind of curvilinear 
coordinate systems suitable for the description of magnetically confined plasmas. 
We start the section with a brief reminder of the terminology in general curvi- 
linear systems. Then we attack successively coordinates suitable for toroidal 
confinement systems on the one hand and for open-ended devices on the other. 
In this first category, we begin with a discussion of the cylindrical-toroidal hybrid 
coordinate system commonly used in elementary considerations, which we shall 
call the "elementary" toroidal system. It is based on "ideal" or "perfect" tori, by 
which are meant tori characterized by circles upon intersection with vertical and 
horizontal planes. Then we describe a generalization of that hybrid coordinate 
system. The main coordinate surfaces will now be the toroidal magnetic surfaces, 
"toroids" (which are topologically equivalent to regular tori). The usual concept 
of angle is generalized as well in order to find a coordinate system in which the 
magnetic-field lines appear as straight lines. To clarify the issue, we present a 
simple example next. To end the exposition on toroidal systems, we treat the 
( p ,  /3,1) system, which has the arc length along a magnetic-field line as its third 
coordinate. This system is later identified as a particular type of Clebsch system. 
The disadvantages of its use in toroidal devices are stressed. The section is 
concluded with a note that Clebsch-type systems are most appropriate for 
open-ended systems. 

A coordinate system is a tool to locate a point uniquely. In three-dimensional 
space, it consists of three suitable families of surfaces such that a point is defined 
by the intersection of three surfaces, one for each family. The coordinate curves 
are the intersection lines of two coordinate surfaces. We label the three co- 
ordinates by u', u2 and u3; the coordinate surfaces are labeled by ui = constant 
while we designate a coordinate curve by its running variable uj  (where it is 
understood that this curve lies on the intersection of ui = constant and uk = 
constant, where i # k, i # j). A point ~ ( c ' ,  c2, c3) is completely determined by the 
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Fig. 4.5. Position location on a 
u2 = c2 = constant surface 

u3 = c3 = consfont 

intersection of the three coordinate surfaces, u1 = c', u2 = c2, u3 = c3 or equi- 
valently by the intersection of two coordinate curves lying in the appropriate 
coordinate surface. For example, Fig. 4.5 shows that P is at the crossing point 
of the u' curve (u2 = c2 and u3 = c3) and the u3 curve (ul = c1 and u2 = c2), 
where evidently both curves lie in the u2 = cZ surface. 

We shall use only right-handed coordinate systems. This implies that the 
triple product of the basis vectors ei-ej x e, or e i .e i  x ek is positive as long as 
i, j and k are cyclic permutations of 1,2, 3. It is clear that the order in which we 
take coordinates as well as their orientation is important: there is a first, a second 
and a third coordinate. (Of course, the order can be changed at will, but often 
then the orientation of a coordinate must be changed.) 

4.6.1 Toroidal Systems 

In toroidal plasma confinement the coordinate systems are based on toroidal 
topology. "Proper" toroidal coordinates, being the three-dimensional version of 
bipolar coordinates, have been used only occasionally in fusion-plasma equi- 
librium calculations; see, e.g., Shafranov (1960) and Fielding and Hitchon (1980). 
These coordinates are discussed briefly in Chap. 10. 

a) The "Cylindrical-Toroidal" or "Elementary" Toroidal System 

The best known coordinate system is the "pseudo-toroidal" or "hybrid cylindri- 
cal-toroidal" or the "elementary" toroidal coordinate system. This coordinate 
system is essentially a "toroidalized" cylindrical system with coordinates 

(R,  cc, 4, 
as shown in Fig. 4.6. The cylindrical angle is measured from the x-axis towards 
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Fig.4.6. Coordinate curves and surfaces ofthe"cy1indrical-toroidal" 
or "elementary" system 
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the y-axis. The "toroidalization" is done by "replacing" R and z by r and 8. 
Because conventionally, 8 and 1; are taken as the second and third coordinates, 
respectively, whereas 1;, is the second in the cylindrical system, the angle C 
is measured in the positive sense from the y-axis towards the Ax-axis (i.e., 
1; = n/2 - C,). Only then has the trihedron of the unit vectors f ,  8, % a right- 
handed orientation. Thus the coordinates are u' = r, u2 = 8, u3 = c. 

The coordinate surfaces r = constant are nested perfect tori with major radius 
R,. The circle with radius R, is called the minor axis, while the axis in the center 
of the doughnut hole is the major axis (in Fig. 4.6, this is the z-axis). r is called 
the minor radius and measures the distance from the minor axis. The coordinate 
surfaces 8 = constant touch the minor axis and are partial cones. The third family 
of coordinate surfaces, 1; = constant, are planes touching the major axis. An 
r-coordinate curve is formed by the intersection of a 8 = constant "cone" and a 
1; = constant plane. It is a straight line, with origin on the minor axis. The 
8-coordinate curve is a circle obtained from the intersection of a torus r = con- 
stant and a plane 1; = constant. The third coordinate curve c, is a circle traced out 
by the intersection of the torus r = constant and the "cone" 8 = constant. When 
moving around the minor axis (the short way around), we move in the poloidal 
direction. The 8-coordinate curve encircles the minor axis, hence the designation 
that 8 is the poloidal angle. The plane in which the poloidal-angle coordinate 
curve lies is called the poloidal plane (1; = constant is a poloidal plane). Analo- 
gously, going around the major axis corresponds to moving in the toroidal 
direction. c is the toroidal angle. The relationship between x, y, z and r, 8, 1; is as 
follows: 

x = (R, + r cos 8) sin 1; 

y = (R, + rcos 8)cos1; 
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Fig. 4.7. Position location on a 
toroidal surface via a 13 and grid 

The usual procedure for specifying the position of a point in space is to first 
choose a coordinate surface, r = constant, and then to lay out a grid of 8 and r 
curves on this torus. The intersection of two curves, one from each grid, fixes the 
position of the point in question (Fig. 4.7). Note that the curves of the grid satisfy 
the properties that any two members of the same family never intersect each 
other, and that every curve of one family intersects every curve of the other family 
at precisely one point. This observation here, of course, is plausible, since the two 
sorts of coordinate curves are circles intersecting each other at right angles. The 
angles 8 and r are multiple-valued functions with regard to the position on the 
torus. 8 and C increase by 2n after encircling the minor axis and the major axis, 
respectively. Every point on the toroidal surface is thus labeled by 8 + 2nm and 
C + 2nn for all integers m and n. Below, we shall denote the poloidal and toroidal 
angles in the "elementary" toroidal system by 8, and re. 

b) Generalized Cylindrical-Toroidal Coordinates; Flux Coordinates 

In theoretical fusion-plasma physics, it is customary to choose as the first family 
of coordinate surfaces the magnetic surfaces, regardless of their shape. We label 
these magnetic surfaces by Q = constant, thus u1 r Q. Below, we shall identify 
this general label Q with more specific measures such as the magnetic flux enclosed 
by the surface, its volume or the pressure. 

The coordinate surfaces for the angles 8 and C are generalized as well. The 
u2 = constant surfaces are now based on the magnetic axis and, in general, are 
partial-cone like surfaces. (Note that the magnetic axis does not normally coin- 
cide with the geometrical minor axis and can be non-circular or even non- 
planar.) These surfaces can be thought of as being produced by bending, stretch- 
ing or squeezing the partial cones of the "elementary" toroidal coordinate system 
(of Fig. 4.6), provided that each surface crosses the toroidal magnetic surface only 
once. Figure 4.8 shows an example of the cross-section in the yz Cartesian 
plane of a simple tokamak with non-concentric circular toroidal magnetic sur- 
faces, where the u2 = constant surfaces are chosen such that they intersect the 
tori at right angles. Because the coordinate surfaces u2 = constant have topolo- 
gically the same structure as the 8, = constant cones in the "elementary" toroidal 
system, it is convenient to denote u2 by the symbol 8. It is clear that 8 is a poloidal 
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Fig. 4.8. u2 = constant surfaces which are perpendicular to the Shafranov-shifted flux-surfaces in a 
simple tokamak 

angle-like variable or a generalized poloidal angle. In short, we shall call 8 the 
"poloidal" angle, although it is understood that it is a generalization of the usual 
concept of "angle". Likewise, the u3 = constant coordinate surfaces are, in gen- 
eral, a deformed version of the re = constant planes. The u3 = constant surfaces 
touch the major axis and fan out to cut through the magnetic surface. Because 
of the analogy with the variable C,, we denote u3 by [ and call this angle-like 
variable the "toroidal" angle. We also say that a surface r = constant makes a 
"poloidal" cross-section of the torus. From now on, the words, "toroidal" and 
"poloidal" are related to the curvilinear coordinates 8 and t;, which do not 
necessarily coincide with the "elementary" angles 8, and C,. The context should 
make it clear what is meant. 

Coordinate curves for 8 and [ are constructed as usual, via intersections 
of coordinate surfaces. With the coordinate surfaces constructed as explained 

I 

above, we obtain closed curves for the coordinate curves as shown in Fig. 4.9. 
I We require that the functions 8(x, y, z) and [(x, y, z), which are transformations 

from x, y, z to 8 and C, have continuous first derivatives, implying that the 
I tangents to the curves and the gradients to the surfaces are continuous vector 

! fields. B(x, y, z) and C(x, y, z) are multiple-valued functions since they change 
by 2n after each complete circuit. Each point P(x, y, z) can have 8 coordinates 
that can differ by multiples of 2n and similarly for [. 8 and r must be single valued, 
however, on any other path on the surface which does not encircle the major or 
minor axes. On every magnetic surface, the 8 and [ coordinate curves lay out a 
grid as shown in Fig. 4.10. It should be noted that it is sufficient for place 
positioning to isolate a Q = constant surface and lay out a grid of 8 and C curves. 
However, this is not enough for a proper description of vectors. With the grid of 
contours, the covariant-(tangent-) basis vectors are determined at every point, 
but the contravariant-(reciprocal-) basis vectors Vui can only be found if the 
uZ = constant and u3 = constant surfaces are known. 
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Fig. 4.9. Coordinate curves for the generalized 
poloidal and toroidal "angles" 

Fig. 4.10. Position location on a toroidal surface based on a grid constructed for generalized "angles" 
B and [ 

We can always construct a suitable set of "new" angle functions (or vari- 
ables) 8 I B(R) and [ I [(R) by adding functions which are periodic with a period 
of 2n to the original 8 and (: 

6 = 8 + f (Q, e,() (4.6.2a) 

[ = t ' + 9 ( ~ , 8 , ~ )  . (4.6.2b) 

The periodicity off and g in both 8 and [ is equivalent to stating thatfand g are 
single-valued functions of 8 and (. Because of this single valuedness, the (8, () 
coordinate curves are deformed in a such a way that the new coordinates (8, [) 
have proper curves as well, making them acceptable coordinates. 

The reason for working in these coordinate systems is straightforward. To 
perform analytic calculations, it is convenient to choose a "natural" coordinate 
system, such that in that coordinate system the geometry of the problem under 
consideration becomes simple. Then the complex geometrical features that exist 
in a "neutral" (e.g., Cartesian) coordinate frame are taken care of in the transfor- 
mation equations between the coordinate systems. In theoretical plasma-physics 
computations, it is very helpful to choose the B(x, y, z) and ((x, y, z) functions so 
that the magnetic-field lines (which oscillate in the "elementary" toroidal co- 
ordinate system) appear as straight lines. This means that, along a k l d  line, 
dB/d( is a constant (more precisely, is a flux function), for that choice of 8 and ( 
functions. A particular choice for the 8,( coordinates makes both the B-field lines 
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and the J current-density lines straight. It is customary to call coordinates in 
which the magnetic field is straight magnetic coordinates or flux coordinates. 
When we deal with angles, these coordinates will be labeled with an indexf, 8, 
and lf. (The flux-surface label Q is exempted from this index, since we want to 
make field lines that lie in u1 = Q = constant surfaces straight in the remaining 
u2 and u3 coordinates.) 

To summarize, given that the magnetic field B is known everywhere, and 
consequently, so is J, we try to find suitable poloidal and toroidal coordinates 
that make B and/or J straight in (Of, c,). One can start with any acceptable grid 
of 8 and ( curves as a function of which the magnetic field is known (for example, 
the "elementary" angles, 8, and re), and deform the coordinate system until it 
possesses the desired properties. 

c) An Illustrative Example 

In Fig. 4.1 la, we show the constant flux-surface contours of a circular tokamak, 
where the surfaces are non-concentrically nested. Also shown are the cross- 
sections of constant 8, surfaces. The coordinate system used here is very similar 
to the "elementary" toroidal system, except that it is based on the magnetic axis, 
rather than the minor axis of the torus. Because of this close relationship we 
designate the angle by 8,. 

Consider one of the larger surfaces (shown dashed in Fig. 4.11 a) and its (8,, (,) 
grid (shown in Fig. 4.1 lb). The magnetic field is assumed to traverse this surface 
with constant pitch everywhere. Let us assume that the rotational transform t 
equals 3 on this particular surface ( t  will be defined rigorously below). This means 
that the magnetic field makes 3 poloidal transits for every toroidal transit. If we 
mark the points where the B line crosses the 8, = constant curves in Fig. 4.1 1b 
and transfer them to a (8,,c,) coordinate system, we observe an oscillatory 
behavior of the field line as seen in Fig. 4.1 1c. To make the B lines straight in a 
new (Of,(,) coordinate system, it is obvious that the arc lengths on the constant 
flux-surface contours cut off by the 8, = constant contours must be equal. This 
can be accomplished by constructing poloidal angle surfaces as shown in Fig. 
4.1 1d. (This procedure is equivalent to isolating the surface under consideration 
and constructing angles as "usual" based on the center of the circle, not the 
magnetic axis. Still another method is to isolate the surface and disregard the 
structure of the coordinate surfaces, but simply construct an equidistant (Of, cf) 
grid on the surface. This secondary procedure does not allow the determination 
of the gradient VOf, however.) The net result of all this is that the B lines are 
straight in (Of, (,), but that our new 8, has an oscillatory behavior as a function 
of the old 8, (Fig. 4.1 le). 

d) (a /?, I) Coordinates in Toroidal Systems 

An alternative (but complicated) set of flux coordinates in toroidal devices is the 
so-called (Q, j3,l) coordinate system. Again, Q is a magnetic-surface label, /I labels 
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Grid as  

8, 

/ I 
8, = 2400 6 = 270" 

M = minor axis 
G = geometric axis 

Fh. 4.11. (a) The usual poloidal angle surfaces (planes) Oe = constant, fanning out from the magnetic 
axis of a Shafranov-shifted tokamak plasma. (b) The (0.. i) grid as seen on a folded-open tomdal 
surface. The magnetic-field line is s e n  as a strsl&t line. (c) A magnetic-field line "wigglm" in a (i, 0.) 
coordinate system. (d) The constant coordinate surfaces of the flux-coordinate angle 0, cut each 
toroidal surface equidistantly. (e) The flux-coordinate angle 4, in which the B-lines appear la s t r m  
lines, wiggles with respect to the old (usual) coordinate 8, 

seen 
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I the field lines in a surface, and 1 is the length along a field line. A p = constant \ 

I surface is a "ribbon" starting at the magnetic axis and passing through the 
trajectory of a field line on a given surface, that twists around with the same pitch 
as the field line on that surface (see Fig. 4.12). The issue of 1 = constant surfaces 
is not straightforward. First, one could choose an arbitrary origin, 1 = 0 for all I 

I field lines (this could be a common poloidal-plane cut), and then constant 
! I surfaces must be constructed. The length I and thus these 1 surfaces are 

influenced by the pitch of the field lines. If the field lines twist around more on 

I the outer surfaces, the 1 surfaces will look like paraboloids. These will not be 
regular paraboloids, in general, however, since the rate of twisting of a field 

1 line is, in general, not constant on a surface. An important consequence of such 
1 = constant surface structure is that in most cases, Vl is  not tangential (i.e., not 
parallel) to B. 

On the other hand, an irrational surface can be thought of as being con- 
structed from a single field line. Thus, on that flux surface, there would be only 
one point which we could assign a value 1 = 0. So what then are the 1 = constant 
surfaces? 

Similarly, what are the b = constant surfaces given this last point of view? 
Since the magnetic lines lie on j = constant ribbons, and one single field line 
covers the whole magnetic surface, it might appear that f i  is zero everywhere on 
the surface. Although in principle the entire surface can be parameterized by 
1-values, with p = 0, this is not very useful in practice. Rational surfaces also 
present problems. If a field line closes after, say, n toroidal transits, there are n 
(probably overlapping) j ranges ( B  = 0 -, = bri,,.,) with jumps between them. 

A possible way to make sense out of this coordinate system would be to 
introduce cuts in the torus and limit 1 to one toroidal transit (which is effectively 
what we did when we constructed the 1 = constant "paraboloids"). A complica- 
tion arises, however, because of the multiple valuedness of both p and 1 in that 

constant 

Fig. 4.12 A fl = 

dinate surface 
constant coor- 
in a toroidal 

device. The intersection or fl = 
constant and p =constant is 
identified with the l-coordinate 
curve 
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Fig. 4.13. Field-line labeling by means of the Clebsch coordinate. The figure on the right is the 
topologically equivalent folded-open surface of the toroidal surface on the left. See text 

picture. One considers every field line in this cut as an independent entity 
(independent of the fact that all irrational lines are generated by one single field 
line); /? still labels the field lines. In Fig. 4.13, we show the cuts and the topologi- 
cally equivalent folded-open surface. The opposite sides of the rectangle are 
topologically identical. If we pick a field line at the crossing of the cuts and label 
it by /? = 0, it will arrive at a point where /? = /?,. However, /.? is still 0 because /? 
is constant along the field line. For single-valuedness, we must thus require that 
B(1= L, Q) = /?(1 = 0, Q). But if we start with a field line labeled by /? = PI, we will 
arrive at p = p,, which must be identified with /?,, which, in turn, was equal to 
0. This means that every point on the flux surface can be labeled by every value 
of /?, ranging from 0 to 2n, if we take /? = 271 the last label at the other end of 
the cut. These problems arise because the I coordinate curve does not close 
upon itself after one toroidal or poloidal transit, in contrast to the poloidal and 
toroidal angles 8 and [, whose coordinate curves do close after their respective 
transits. 

The (Q, /?, 1) coordinates, therefore, may be useful for formal reasoning, but 
lead to severe problems in practice. The B .  Voperator reduces to B(a/al) in this 
coordinate system, which may be useful in calculations involving local properties 
of the surface. 

4.6.2 Open-Ended Systems 

Unlike toroidal topology, the (Q, /?, I) system is very well suited to open-ended 
systems. It is precisely the connection of one end of the device onto the other, 
which caused problems for the single valuedness of /? and 1 in toroidal systems, 
that is avoided here. Q labels the chosen "cylindrical" flux surfaces, /? is a suitable 
angle-like variable, and 1 measures the length of a field line as before. A 
(e,/?,l) system is known as a Clebsch system. It will be discussed in detail 
below. 
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4.7 Magnetic-Surface Labeling 

Before we can develop flux-coordinate systems in detail, we must find adequate 
measures that represent magnetic surfaces. This section provides these quantities. 
We shall again differentiate between toroidal and open-ended systems. For tor- 
oidal systems, we first consider the magnetic fluxes enclosed by and outside of the 
magnetic surfaces. We distinguish between toroidal magnetic flux, poloidal rib- 
bon flux and poloidal disk flux. Then other magnetic-surface labels such as 
volume and pressure are mentioned. Finally, the magnetic axis is defined. For 
open-ended systems, axial and azimuthal magnetic fluxes and scalar pressure are 
considered. 

4.7.1 Toroidal Systems 

A convenient way to label the magnetic surfaces is by means of the magnetic flux. 
Because the magnetic-field lines are by definition everywhere tangent to a magne- 
tic surface, the flux inside or outside a magnetic surface is conserved. For this 
reason, we can also call magnetic surfaces constant flux surfaces or, in short,flux 
surfaces. 

There are several magnetic fluxes which label a flux surface in a toroidal 
device uniquely. Assume that an arbitrary (B(x, y, z),((x, y, z)) coordinate system 
has been established. First, there is the toroidalflux (Fig. 4.14a): 

ng.4.14a-d. Cross sections through which the magnetic fluxes characterizing a magnetic-flux surface 
are ddned.(a) The W lines intersating determine the toroidal flux within a flux surface (b) S j  
is a ribbon bounded by the magnetic axis and the flux surface. It "contains" the poloidal (ribbon) 
flux which resides inside the flux surface, YL,. (c) S&, is a disk touching the magnetic surface. It picks 
up the poloidal (disk) flux outside the flux surface, Y&. (d) A special case of a disk is shown. l t  
touches the magnetic surface where 0 = n, i,e., it lies in the equatorial plane 
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Fig. 4.15. The flux-surface volume between 
two infinitesimally close flux surfaces. + 
sign for Yb0,, - sign for Y&, 

- -  - - @ f d ~ m  = constant 

Ypol= constant 

Stor is the surface produced by cutting the flux surface with a poloidal surface 
( = constant. Next, the poloidalfluxes inside and outside a flux surface may be 
used. The poloidal flux inside the flux surface is taken, e.g., through a ribbon at 
constant 8 between themagnetic axis and the surface, and is given by (Fig. 4.14b): 

!Pio, e J J  B . ~ S  . (4.7.2) Sbl 

The superscript r refers to the ribbon. SL, is the part of a 0 = constant surface 
that lies within the flux surface under consideration. The flux outside the flux 
surface is obtained by integrating B over a disk-like surface that is tangent to the 
flux surface everywhere (Fig. 4.14c), and is bounded by a ( coordinate curve on 
the flux surface: 

The poloidal-disk flux includes the tokamak transformer flux, and no reference 
to the magnetic axis is required. The flux obtained from (4.7.3) is fixed as long as 
the disk is tangent to the flux surface. 

To compare the two poloidal fluxes, it is convenient to choose a disk that is 
part of the approximately circular surface bounded by the magnetic axis (see Fig. 
4.14d). Comparing Figs. 4.14b, d, it is clear that the fluxes are complementary 
with respect to the total flux in the system. The flux from the magnetic axis out 
to infinity has the same value as the flux through S;,, + S;,,. This remains true 
even if there is an additional vertical field component to keep the magnetic axis 
(the point where the net vertical field component is zero) from expanding. In 
every steady-state device which has fixed magnetic surfaces, such as a stellarator, 
the spatial changes in poloidal flux satisfy the relationship (see Figs. 4.14 and' 
4.15): 

dYpo, is the differential flux between the two flux surfaces YP, = constant and 
Ypo, + dYw, = constant. Because 

for every arbitrary differential vector dR, (4.7.4) is equivalent to: 

VY;,,, = - VYio,  . (4.7.6) 

Of course, both sides of(4.7.5) and (4.7.6) must be evaluated at the same position. 
In tokamaks, the situation is more complicated because the equilibrium is 

dynamic. Suppose we want to label the flux surfaces by means of the poloidal-disk 
flux, Y,",, = constant. In Chap. 11, we show that the increasing transformer flux 
forces the flux surfaces, labeled by Y ~ o ,  = constant, to shrink with a velocity o 
such that u . VY$, = - aY&,/at. This velocity turns out to be equal to the inward 
pinch E x B velocity observed in a fully-ionized ideal-MHD plasma ( a  a); 
since the infinite conductivity requires E ,, to be zero, the (induced) electric field 
has only a perpendicular (to B) component E L .  Because both the plasma and 
the flux surfaces Y;,, = constant move with the same speed, this is in effect a 
statement of the frozen-flux theorem in "ideal" plasmas. From the standpoint of 
the poloidal ribbon flux, the same conclusion can be drawn: because of the frozen 
flux theorem, the surfaces labeled by To, = constant move at the same speed as 
the plasma. The conclusion is that it does not matter which label we use for the 

Since we are primarily concerned with spatial variations of the flux functions, 
we can ignore the time evolution because it does not change the magnetic 
topology relative to the plasma. This is similar to taking a photograph and 
assuming that it reflects the time independent equilibrium state. Once this time 
evolution is disregarded, we can claim that (4.7.4) and (4.7.6) are still valid. (We 
stress that it is the spatial part of dYpo, in (4.7.4) that is of concern. We should 
say 6 Y,",, = - 6 !Pio1, where 6 YP, = BYp,  dR, since, when the time t is retained 
as a variable, dYpo,  = aYw, /a td t  + VYpo , .dR .  However, with the time depen- 
dence suppressed, we have that dYpol = 6 Ypo,.) 

In a non-ideal plasma, the story is somewhat different. The finite resistivity 
allows magnetic-field diffusion to take place, while it also gives rise to transport 
processes such as classical and neoclassical particle diffusion fluxes across the , 

I 

1 flux surfaces. This leads to a self-consistent evolution of the magnetic structure 

\ and the plasma. We shall not deal with the time evolution of flux surfaces in this 
monograph, but refer the reader to the literature. (Plasma-equilibrium evolution 
on the resistive time scale in the context of the closure of moment equations in 
transport theory is discussed by Hinton and Hazeltine (1976), Chap. VII, and by 
Hirshman and Sigmar (1981), Chap. IX. For more detailed information, the 

21 
(tokamak) theory has been developed in Grad and Hogan (1970), Grad (1974), 

$ Grad, et al. (1975), Pao (1978), Pereversev, et al. (1978), Hirshman and Jardin 
b.9 
6 (1979), Blum and Le Foll(1984) and Blum (1989) among others.) 

To develop the flux-coordinate formalism, we need more specific expressions 
for the toroidal and poloidal fluxes. In particular, we wish to derive a form- 
invariant expression with respect to the choice of 8 and ( functions (see, e.g., 

I 

I Kruskal and Kulsrud 1958). Consider the integral 



80 4. Magnetic-Field-Structure-Related Concepts 

'top view of torus' Fig. 4.16. Top view of a toroidal surface, cut by a 

/ /major axis-) \ \/ 

=constant 
surface 

Here, d3R is an elementary volume element and Vis the volume enclosed by the 
flux surface. The second form follows from V. B = 0. In Fig. 4.16 we show a top 
view of the flux surface together with a c = constant (poloidal) surface. In 
particular, we choose the c = 0 + 2nk surface. This surface cuts the torus open, 
allowing us to consider it as a volume enclosed by the surfaces S,,,,,, SCzo and 
SS-,,,. If we now apply Gauss' theorem to the integral of (4.7.7) over the region 
of the cut-open torus, we obtain 

# ( B e d s =  f J  L;B.dS+ f f  cB.dS+ f f  (B.dS . (4.7.8) 
S stor". S<=1. Sc=o 

The first integral on the RHS vanishes by definition: B is tangent everywhere to 
the magnetic surface, d S I  B. c is constant on the surfaces SS-=,, and SCEO, 
meaning that c can be replaced by 2n and 0 in the second and third terms, 
respectively. Then (4.7.7) and (4.7.8) give 

SS-=,, (or S5=0) is what we previously called S,,,. A combination of (4.7.1) and 
(4.7.9) leads to the form-invariant expression for Yto,: 

Analogously, the poloidal ribbon flux Yk, can be written as 

4.7 Magnetic-Surface Labeling 81 

There exists a variety of flux-surface labels, other than the fluxes. Any 
function or variable that is uniform over a magnetic surface is referred to as a 
flux function or aflux-surface quantity. Such functions are independent of 0 and 
c and depend only on the flux-surface label; hence, we can use these functions as 
surface labels. Any flux function can be used to label the flux surfaces. An obvious 
surface quantity is the volume enclosed by the magnetic surface: 

V =  f f f  d3R = J f f  dxdydz = &dedOdi . (4.7.12) 
Volume 

Here, g is the determinant of the metric tensor, and & is the Jacobian, & = 

[Ve.  (V0 x Vc)]-'. 
Another surface quantity (used in the plasma literature) is the scalar pressure 

p. From Vp = J x B which implies that B. Vp = 0, it follows that B lines lie in 
constant pressure surfaces. Since B also lies in flux surfaces, it follows that 
p = p(Y) only, although this may break down at points where dp/dY = 0. 

Two of the flux labels that we have referred to have the disadvantage of 
decreasing as we go radially outward; the pressure and the poloidal disk flux. To 
keep a right-handed system (and a positive Jacobian), we would have to change 
the orientation of, say, the toroidal angle c. Furthermore, this implies that 
positive integration along coordinate curves would give rise to a flux-surface 
volume and inner fluxes that are zero at the plasma boundary and maximum (in 
absolute value) at the magnetic axis, in contrast to common conventions. Al- 
though it is possible to keep track'of these adaptations, it is quite confusing and 
may overload expressions with absolute value bars and/or ( f ) choices, to obtain 
the proper results for a general flux label Q.  Therefore, we use only radially 
increasingflux labels. Then no angles need be changed and the formulae remain 
simple. It requires, however, that we use the negative of the flux functions that 
decrease radially. Thus, we can have Q = Yl0,, e = Viol, e = I! e = -p, e = 
- q 0 1 -  

The label Ypo, is used most frequently in the tokamak literature, while Y,,, 
is more popular for stellarators. This is in part because the tokamak literature 
uses the safety factor q, whereas for stellarators the rotational transform, t = l/q, 
is used as a measure of the rate of twisting of a field line. The volume was chosen 
by Hamada (1962) when he developed his coordinate system in which both 
B and J lines are straight. 

i The defining equation of a flux surface with flux-surface label e, is: 

It simply states that B lies in the surface e = constant everywhere. Its form is 
more familiar when e E Y. I 

B . V Y - 0 .  (4.7.14) 

The degenerate magnetic surface, namely the magnetic axis, is properly defined 
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This equation states that there is no singularity in the gradient of the flux (label) 
for Vapproaching 0. Its physical meaning is easily understood. In the limit of 
V+ 0, we have that Ylor cc r2, where r is an average minor radius. Then VYtor = 
(dYl0,/dr)i allows us to conclude that VYt0,, evaluated at r = 0 is zero. (When 
taking Ytor,,,, the dependence of the area on r2 must be invoked to prove (4.7.15); 
when one wishes to prove (4.7.15) for Ypo,, one must make use of the fact that 
B, = 0 at the magnetic axis.) For every other surface label e(Y), we must make 
use of the property that: 

with the condition that de/dY is non-singular at the axis. 

4.7.2 Open-Ended Systems 

In mirrors, similar flux labels as in toroidal systems are employed. The flux 
volume does not require further comment. Concerning magnetic fluxes, we are 
now limited to fluxes contained within the flux surface. By analogy to Ytor and 
!Piol in a torus, we have the axial flux Pax and the azimuthal flux YaZ, respectively. 
A scalar pressure p seems to be less convenient because the pressure is often 
anisotropic and not constant along a magnetic-field line. Depending on the 
choice of flux label, 1 of the (e, B, I) coordinate system points in the B direction 
or its reverse: i = f B. 

4.8 The Rotational Transform in Toroidal Systems 

The total poloidal angle A8 traversed by a field line after one toroidal transit 
( A [  = 2n), is called the rotational transformation angle I (Greek small letter iota). 
The average rotational transformation angle is defined as (Morozov and Solov'ev 
1966): 

Here I, represents the rotation angle resulting from the k-th toroidal transit. n is 
the product of the number of toroidal transits traced out by a single field line 
times the number of independent field lines on that flux surface (for an irrational 
surface, the latter is obviously one). The angle I of (4.8.1) is an average over the 
flux-surface and is by definition a flux-surface quantity. 

4.8 The Rotational Transform in Toroidal Systems 83 

It is more customary to work with the quantity called the rotational transform 
t : 

t (iota-bar) equals the average number of poloidal transits for one toroidal 
transit. (In the paper by Solov'ev and Shafranov (1970), the symbol p is used 
instead of t. Their Eqs. (1.7) and (1.8) should read m/n instead of n/m). A 
rational surface has t equal to a rational number; on an irrational surface, t is 
irrational. 

As mentioned above, in the tokamak literature, one prefers to work with the 
"toroidal winding number," which is the reciprocal of t: 

Because of its importance in stability calculations, q is called the safety factor. 
There is an equivalent and more useful expression for the (average) rotational 

transform t :  

The sign of t  is chosen such that it is positive if the toroidal field and the poloidal 
field are in the positive [ and 8 directions, respectively (then B .  Vl > 0, and 
B .  V8 > 0). The dot represents the derivative with respect to the chosen flux- 
surface label e: 

We should note that for time dependent problems, t is defined by 

If we consider a functional relationship, Y;,, = Y~l(Ytor(R, t), t), where R is an 
arbitrary position vector, the chain rule of calculus leads to 
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Then t ,  as defined in (4.8.6) becomes t = aY;,/aYlOrl, (Hinton and Hazeltine 
(1976), Chap. 7). 

The validity of (4.8.4) cannot easily be proved yet, so we shall give an outline 
which will be justified below. (For simple examples which show the equivalence 
of our definitions fort, see Bateman (1978), p. 6 and Morozov and Solov'ev (1966), 
p. 18.) The crucial point is that the expressions for Ylor and q,,, given in (4.7.10) 
and (4.7.1 I), respectively, are valid for any toroidal and poloidal angle ( and 8, 
and in particular for a (8, ()coordinate system in which the field lines are straight. 
When B is straight in (8,(), it follows from the definition o f t  (A0 = I for A( = 271) 
that 

As indicated, t and q are flux functions (because of its straightness, B always 
makes the same angles with the coordinate curves for 8 and (). The equation of 
a field line, (4.1.7), requires that we always have 

In an upcoming section we shall show that, in a straight-B (8,() coordinate 
system: 

A combination of (4.8.8), (4.8.9) and (4.8.10) gives the required result (4.8.4). 
A final comment on the rotational transform. The "well-known" expression 

for the safety factor q 

is actually a lowest order approximation. Equation (4.8.11) is only rigorously 
correct in an axisymmetric tokamak with circular cross-section flux surfaces 
where r is measured from the center of the circular flux surface. R is the distance 
from the major axis to a point on the surface, B, = (B.i,), and Bp = (B. d,), 
where 8, and (, are the "elementary" angles based on the center of the surface. 

In almost all toroidal devices, the rotational transform changes from flux 
surface to flux surface. To measure the amount of change, one uses the concept 
of shear defined simply as 

4.9 The Flux-Surface Average 

The flux surface average of a function @(R) is defined by the volume average over 
an infinitesimally small shell with volume dl/, where A V  lies between two neigh- 
boring flux surfaces with volumes Vand V +  dl/. It is denoted by (@(R)), and 
is equal to: 

There are several ways to write (@) in a more practical form. The elemental 
volume element d3R appearing under the integral sign in (4.9.1) is by definition 
equal to 

The flux surface is assumed to be labeled by e = constant; dR(e) is the in- 
finitesimal change in the position vector along the e-coordinate curve, while 
dS(e) is the elemental area vector of a e = constant surface. If we orient dS 
so that with dR(e) in the positive e-direction, the dot product of (4.9.2) leads 
to a positive volume element, we can omit the absolute value bars. dS(e) is 
perpendicular to the surface, and then we have 

Thus (4.9.2) reads: 

or with de = Ve. dR(e): 

Substitution of this expression for d3R in the integral of (4.9.1) leads to a surface 
integral as follows: 
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dV stands for an elemental volume that is infinitesimal in only one direction, here 
the @-direction. It is the differential volume between two shells after integration 
over 8 and <. In contrast, d3R is infinitesimal in all three coordinates as the 
notation suggests. (In fact, we should have used the symbol d2R instead of dS 
to be consistent. However, since we deal with only one kind of area element, we 
kept the symbol as simple as possible, hence dS.) 

This form of the flux-surface average, particularly with the pressure as 
flux-surface label has been used often in the earlier fusion literature. When the 
flux-surface label is chosen to be [ de/d V = 1, and 

4.9.1 Toroidal Systems 

In arbitrary toroidal coordinates (Q, 8, <) with Jacobian & = (VQ. V8 x V<)-', 
the surface integral leads to an even more transparent expression. The elemental 
surface element dS equals & I V@l d8d< according to Chap. 2. Equation (4.9.7) 
then yields 

This equation provides an expression for dvd@ in terms of an integral over d8 
and dl  if we set @ = 1 

-= J J d"". dr, 

Of course, this also follows from 

dV 
- - 

A V  
- lim- and A V = A Q ~ ~ ~ O ~ < & .  

d@ AQ-OAQ 

The flux-surface average of a quantity @, expressed as an integral over the 
poloidal and toroidal angles, becomes: 

This clearly also follows from (4.9.9). 
In an axisymmetric device, @ and & are independent of the toroidal angle 

[; the integration over < provides a factor of 27t in the numerator and the 
denominator of (4.9.1 1). For such devices, (4.9.11) simplifies to: 

Thus in an axisymmetric device, 8 integration is sufficient to sample conditions 
on the whole surface. 

In axisymmetric machines, the flux-surface average is sometimes referred to 
as a $dl/B average, where the integral is supposed to be performed along closed 
field lines. In particular, we have 

To show that (4.9.14) is equivalent to (4.9.13), we must anticipate an impor- 
tant "property" of the magnetic field which will be justified below. The above 
equations are all valid for arbitrary angles 8 and <, including those in which the 
magnetic field lines are straight, whose existence will be shown below. In such a 
system, we recall from (4.8.8) the simple relationship d</d8 = q(@). After inte- 
gration, this leads to: 

where c(@), is only a function of Q. 80 is the value of the poloidal angle when < = 0 
(Fig. 4.17). 

On a particular flux surface, Q = constant, (4.9.15) represents the equation 
of a straight line in (8,<). However, if we let Q vary, in general q(@) varies as 
well, and (4.9.15) becomes the equation of a "ruled" surface' traced out by the 
"straight" B lines (such as the hatched surface in Fig. 4.17). Thus, we have the 
situation where the field lines lie in the q8 - < = qB0 surfaces. As a consequence, 
Bis perpendicular to V(q8 - <). From (4.7.13), we recall that Bis also perpendicu- 
lar to VQ. A vector perpendicular to these two gradients is their vector product. 
Hence, we can conclude that B must lie along the cross product of VQ and 

This reduces to a very simple expression if the flux-surface label is the flux-surface 
volume, @ = V: 

' A  ruled surface is one that is swept out by non-parallel straight lines. The quotation marks on 
"ruled" are there to indicate that in our case, the surface is not made up of straight lines in the literal 

I sense, but by (field) lines, whose equation is that of a straight line. 
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Fig. 4.17. Three-dimensional picture of an angular section of a toroidal surface between [ = 0 and 
[ = [. The surfaces [ = constant, 0 = constant and [ - q0 = constant are shown 

The proportionality constant will be shown below to be a function of e only. The 
dot product of V9 with the B expression of (4.9.16) leads to 

a {[VQ x ((49Ve + qV9)l. V9 + Ve. V9 x Vl) . (4.9.17) 
A 

The first term vanishes because Ve x (99) Ve = 0, and q(Ve x V9). V9 = 0. The 
surviving term can be identified with the reciprocal of the Jacobian: 

1 

B . v 9 a 3 .  
(4.9.18) 

We now go back to the $ dl/B expression in (4.9.14). The equation of a field 
line given in (4.1.7) provides us with the equality dl/B = d9/B. V9. If the loop in 
(4.9.14) closes after N poloidal transits, the expression for (@) can be written as 

The proportionality constant of (4.9.18) cancels in this last expression, since it 
appears in both numerator and denominator and does not depend on 9. 

So, in an axisymmetric device, a closed-loop integral $dl/B is a true flux- 
surface average. Since it is equivalent to an integration over 9, according to 
(4.9.13), it is not even necessary to close the loop; covering one period in 9 suffices. 
Therefore, a J @ dl/B - jp d9 &@ flux-surface average can be evaluated on any 
flux surface. If one insists on performing a closed-loop integral, however, it is 
clear that it can only be done on rational surfaces. In that case, one can invoke 
the fact that every irrational surface can be approximated arbitrarily closely by 
a rational one, so that closed loop flux-surface averaging can still be used for 
"essentially" any flux surface. 

The situation is different in non-axisymmetric systems, however. A closed- 
loop integral performed on a particular rational surface leads to different results 
depending on the field line we start from. Hence it cannot be a flux-surface 
average. If we insist on using a dl/B integration to find the flux-surface average, 
we have two options. Either we take an average of several closed-loop integrals, 
each "belonging to" different closed field lines; or, we perform a J(dl/B)@ inte- 
gration on an irrational surface and follow the non-closed field line long enough 
until, for all practical purposes, we have adequately covered the whole surface. 
Because rational and irrational surfaces can approximate each other infinitesi- 
mally closely, the methods are equivalent. 

4.9.2 Open-Ended Systems 

In mirror devices, a Jdl/B average is insuficient because a field line does not 
cover the whole flux surface; it merely runs from L, to L, (1 for left, and r for right). 
In addition to the I integration, it is necessary to integrate over the angular 
coordinate as well. The latter is commonly denoted by P and is usually a Clebsch 
coordinate (see below). In a (e, p, I) system, we have dS = ,/& 1 Veld1 dB, where 
,/& = ( Ve- Vp x V1)-' = ( Vl. Ve x V/?)-' = 1/B. The C subscript on g stands 
for Clebsch, and the 1/B result will be shown below in the section on Clebsch 
coordinates. Starting from (4.9.7), we have that for mirror devices: 

S(Q) 0 Ll 
with 

2n L, 

We then find that in mirror devices: 

In general, L, and L, are dependent on both e and p. 
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4.9.3 Properties of the Flux-Surface Average 

The flux surface average of the divergence of a vector A can be computed by 
applying Gauss' law to an infinitesimally thin shell of flux volume. In toroidal 
devices, this is done after making a cut at a certain [-constant surface (similarly 
to Fig. 4.16) 

1 1 
( 8 - A )  = lim - f f f ( v - ~ ) d ' ~  = lim -fl A.dS . 

AV-o A V 
AV 

AV-o A V 

The closed surface integral consists of three pieces. Firstly, there is the surface 
SAv made up of the two toroidal flux surfaces enclosing the volume A K  SAv = 

S(V) + S(V+ AV). Secondly, there are two surfaces in the poloidal "plane" 
[ = constant. The contribution of the last two vanishes because their normals are 
opposite in direction such that the flux of A that "flows out" of one surface "flows 
in" through the other. 

When we computed expressions for the flux in (4.7.8), the contributions 
were reversed. There was no contribution through the toroidal surface in (4.7.8) 
because the vector in question was B and there the contribution of the cuts 
survived because the integrand was multiple valued, containing a [. Here, in 
(4.9.23), on the other hand, the vector A must be single valued, since it represents 
a physical quantity. Thus, the integrand in (4.9.23) has the same value at [ = [, 
and [ = [, + 2n, as a consequence of which the "cutn-contributions vanish. 

If we also replace dS  in (4.9.23), using (4.9.3), but with Q = V, we obtain 

The integral over SAv in this expression stands for the sum of two integrals, one 
over S(V) and one over S(V+ AV). For the outer surface, we must choose the 
+ sign, since VV points outward; for the inner surface, we must take the 
- sign (dS in Gauss' theorem is outward with respect to the closed surface to 
which it applies, i.e., dSis outward for S(V+ A V) but inward for S(V)). It actually 
gives a difference rather than a sum in this case. The limit of this small difference 
represents the derivative of an integral over S(V) with respect to V 

Comparing this expression with (4.9.8), we find 

d 
( V .  A)  =-(A. VV) . 

dV 

In terms of an arbitrary flux label e, this becomes 

where we made use of the fact that 

dV 
and VV = - Ve 

de 

We also made use of the obvious fact that a flux-surface quantity can be taken 
out of the ( ) bracket. 

The proof for open-ended systems proceeds analogously, with an important 
distinction. In contrast to toroidal systems, the "end contributions" to the surface 
integral in (4.9.23) do not vanish, as least in the general case. 

The surface integrals at the end of the infinitesimal shell volume are most 
easily computed in the (p, f l ,  I)  coordinate system. If we bound the shell volume 
by 1 = constant surfaces, then (2.5.49) is the suitable expression for dS, in which 
(g,)1'2 = 1/B. This gives for (4.9.23): 

Q + ~ Q  2n 
1 

- lim - 
A A V de J 

0 

Written somewhat more compactly, we have 

Here V= dV/de. Upon using the definition of the flux-surface average in open- 
ended devices, (4.9.22), we obtain 

a somewhat more general form than that given by Catto and Myra (1986) (P.J. 
Catto, private communication). 

In general, Vl is different from B. However, if the geometry is such that the 
1 = constant surfaces (at the ends of the device) can be constructed to be perpen- 
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dicular to the field lines, then VI = B and one gets: 

The equality of Vl and B, in order for (4.9.31) to hold, is perhaps not necessary. 
Since the second term in (4.9.30) and (4.9.31) concerns averaging over the "angle" 
8, it might be that the averages are identical in certain specific cases, even though 
B differs from Vl on the surfaces on which the integrals are performed. 

Furthermore, for a particular vector A and/or geometry, this second term 
might be shown to vanish. If the flux of the vector field A over the infinitesimal 
annular surface at 1 = L, exactly cancels that at 1 = L,, the end contributions 
disappear and (4.9.27) applies. (For more on the relationship between strict 
quadrupole symmetry and end losses in tandem mirrors, the reader should 
consult the papers by Myra and Catto (1982a) and by Myra, Catto and Hazeltine 
(1982b). 

By far the most important property of the flux-surface average is that it 
annihilates the (B. V) operator: 

This property may be used to define the ( ) operation. Here, we prove it with 
the help of the expression derived above for (div), (4.9.27). It follows from 
V . B = 0 and (4.9.27) that 

which vanishes identically because B. VQ = 0 is the equation of a flux surface. 
More intuitively, in a toroidal device, 

For an axisymmetric device, J dl stands for $dl on the nearest rational surface so 
the null result is obvious. For a non-axisymmetric device, we assume that @ is 
continuous over the surface, we pick an irrational surface and go around as many 
times as required to sample the surface well enough for practical purposes and 
we reach a point that is sufficiently close to the starting point. The result can be 
made as small as desired, with zero being the limit. 

For mirrors, ( B  V@) vanishes only if the end contributions cancel. We have: 

Equality implies that the average of @ over B must be the same at 1 = L, and 
1 = L,. 

Note that although (B. V@) - 0 (in toroidal devices), we have, in gen- 
eral that (B. V@) # 0, where B = BIB is the unit vector along B. Thus 
((B. V@)/B) # 0. Also, in general, the following expression is non zero: 

y(R) is a scalar field analogous to @(R). However, (4.9.36) reduces identically to 
zero if y = @-' 

where SZ = In @. 

A final expression concerning the flux-surface average is the identity (for 
toroidal devices) 

( V Q ' V X  W ) - 0 ,  (4.9.38) 

in which Q is a flux-surface label. This equation is a consequence of the 
identity V.(W x VQ) = VQ- Vx W - W. V x VQ = VQ. V x W, and the (div) 
result of (4.9.27) 

4.10 The Magnetic Differential Equation 

An equation of the form 

is the prototype magnetic differential equation (Kruskal and Kulsrud 1958; 
Newcomb 1959; see also, Hazeltine and Meiss 1985, and Solov'ev and Shafranov 
1970). S is a source term, and f is the unknown single-valued function that we 
must solve for. Both f and S are scalar fields: f - f(R) and S = S(R). 

We limit our discussion to toroidal devices because this type of equation 
poses fewer problems in linear devices. 

A first condition on S in order that f be single valued follows from an 
integration over I: 

which implies 
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Here, fo is the value off at 1 = 0, an arbitrary origin. If we happen to perform the 
integral in (4.10.3) on a rational surface, we get a closed integral, and the single 
valuedness off requires that 

on rational surfaces. Equation (4.10.4) must be satisfied for every closed field line 
on the rational surface. 

A second solvability condition follows from taking the flux-surface average 
of both sides of the magnetic differential equation and applying the identity 
(4.9.32) 

(B.Vf)= (S) = O  . (4.10.5) 

A careful examination shows that these two conditions are not independent 
(if one assumes, which we do throughout this monograph, that the rational 
surfaces are also a dense set in non-axisymmetric devices, as they are for the 
"imaginary" lowest-order field structure with "good" surfaces, that we assume 
throughout this monograph). Equation (4.10.5) follows from (4.10.4). If the 
requirement given in (4.10.4) is satisfied for every field line on the surface, then it 
must be concluded that the flux-surface average of S is automatically zero on 
that surface. This is obvious if we write the flux-surface average on the rational 
surface as 

where the summation runs ad infinitum over all possible field lines in the surface. 
Since we then have that (S) is zero on every rational surface, continuity and the 
fact that the real numbers are everywhere dense mean that (S) vanishes every- 
where. The reverse statement is not valid. The fact that the average of S vanishes 
does not, in general, guarantee that all the pieces that make up that average 
vanish. In other words, the fact that x$Sdl/B vanishes does not imply that 
every $ S dl/B vanishes. This would be true only for an axisymmetric device such 
as a tokamak which has (S) = f Sdl/~/$dl/B. Thus, (4.10.5) cannot be a suffi- 
cient condition to guarantee a solution of the differential equation. 

The definition of the flux-surface average allows us to write an alternate 
expression for (4.10.5), 

1 
lim - N S d 3 ~  = 0 . 

AV-0 A v 
AV 

It was in this form that the condition was written by Kruskal and Kulsrud (1958), 
and that it was discussed by Newcomb (1959). Although (4.10.5) and (4.10.7) 
follow from (4.10.4), it is a convenient condition to impose in order to eliminate 
certain features of S, after which the application of (4.10.4) is made easier. 

It was Newcomb (1959) who showed that (4.10.4) is a sufficient condition for 
solving the magnetic differential equation. We shall demonstrate this by finding 
a solution for f after imposing the condition. 

As usual in the theory of differential equations, the general solution of (4.10.1) 
consists of two parts, a homogeneous solution and a particular solution 

where f, satisfies the homogeneous equation without a source term 

This is equivalent to 

which means that fh must be a flux function. (This conclusion can only be drawn 
in toroidal machines; in mirrors, all we can say is that f, is independent of I.) 
Hence, the total solution of (4.10.1) equals 

Any flux-surface quantity satisfies (4.10.10) and is thus eligible as a homogeneous 
solution for the magnetic differential equation. 

To find a particular solution, the differential equation may be rewritten in 
terms of partial derivatives a/aO and a/a[. It is most convenient to do so in flux 
coordinates (Of, [,) in which the magnetic field is straight. At this moment, we do 
not yet have the tools to actually solve the equation. However, the process is 
straightforward, and we can give an outline. Details can be found in the review 
by Solov'ev and Shafranov (1970). 

The Be Vf term becomes Biaf/aui, where ui stands for 8, or [,, since BQ = 
B VQ = 0. The Bi in flux coordinates have a & in the denominator (see below) 
which upon bringing it to the right-hand side, leads to a source term AS. Next, 
the functions f and &s, which are both single valued, are expanded in a double 
Fourier series in 0, and [,. The two integrands in the two solvability conditions 
(4.10.4) and (4.10.5) contain the factor &S as well. (In the integral f (dl/B)S, we 
use the equation of a field line dl/B = d[,/B(f a &, and in the volume integral, 
d3R = & d~ d[, do,.) Then we use the equation for a field line on a flux surface 
in flux coordinates Of, = 8, - t r ,  (see (4.9.15)) to eliminate the 6, variable and 
impose the two integral constraints. 

These conditions have consequences for the expansion coefficients of &s, 
which are denoted by a,,(g). The volume-integral condition requires that 
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aoo(e) be zero on any flux surface. The $Sdl/B = 0 condition states that zmn amn(e)/ (mt - n) = 0, so that the amn(eraIion,,) must vanish on their respective 
rational surfaces where m t  - n = 0. When these conditions are satisfied, the 
amn(~ra,ionsl) are factored as (m+ - n)iimn(~r,Iionar), and the solution is found by 
equating the respective harmonics of the Fourier expansion. Thus, fmn = ( )Cmn, 
where ( ) represents a constant factor independent of m or n. This completes the 
proof because f can be reconstructed from its harmonics. 

From this Fourier-expansion procedure, it is also evident that the (S) = 
0 condition follows from the $ Sdl/B = 0 requirement. The latter restriction, 
xmnamn(~)/(mt - n) = 0, not only forces amn(~ra,ionsl) = 0, but also sets aoo(e) = 0 
i f m = n = O .  

In a tokamak, f and S are independent of c, so that their Fourier expansion 
is only with respect to 8. Therefore, xm amo(~)/mt = 0, requires only that ao0(e) = 0 
(independent of the value oft), leading to the observation that both conditions 
reduce to one and the same thing. 

Part I1 

Flux Coordinates 

For the numerical solution of the magnetic differential equation, the reader 
is referred to the paper by Reiman and Greenside (1988). 
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From a purely mathematical standpoint, Part 11, on flux coordinates, can be 
considered merely as an extensive example of non-orthogonal curvilinear co- 
ordinate systems with certain particular properties. To recall, magnetic-flux 
coordinates are curvilinear coordinates, so chosen that the equation of a magnetic- 
field line is that of a straight line. Somebody familiar with the topics covered in 
Part I should have no difficulties in this part, at least from a computational 
standpoint. Conversely, it is likely to be very difficult to obtain an adequate 
understanding of this part if the previous material has not been mastered. 

Providing a discussion of the computational tools for magnetic flux coor- 
dinate descriptions is the primary reason for the writing of this monograph. How- 
ever, for plasma and fusion scientists, the physical interpretation of the subject 
matter is equally important i.e., "In what physical situation do we use which 
coordinate system?" Therefore, besides explaining most mathematical steps, 
we have tried to emphasize the relationships between the various coordinate 
systems. Thus, it is even instructive to discuss links with a few non-flux coor- 
dinate systems that are frequently used or have their own intrinsic value. 

The emphasis in this flux-coordinate treatment is on toroidal devices. From 
a conceptual standpoint, understanding the relationships between the different 
types of flux coordinates in toroidal devices is quite intricate; in contrast, in 
open-ended systems there is only one fairly simple system that is used, namely 
the Clebsch system. 

We nevertheless discuss mirrors whenever we feel this is helpful. The very 
general Clebsch system is one of the topics we will discuss in considerable detail. 
Since it is based on the properties of the magnetic field B, independent of a 
particular device, it is useful not only in mirrors and toroids in a fusion context, 
but also for the description of extraterrestrial magnetic fields in space physics, 
astronomy, and astrophysics. 

As far as toroidal devices are concerned, the discussions are kept completely 
general with regard to the type of device. To make the treatment less abstract, 
however, we interpret the general results by means of two prototypes. For 
machines with a symmetry direction, we consider the axisymmetric tokamak. 
For general three-dimensional devices, we relate the results to the stellarator 
family of devices. 

In Chap. 5, we discuss Clebsch-related coordinates. There we define stream 
functions, treat the Clebsch coordinate system itself, point out its relation to the 
contra- and covariant component formalism, and discuss a closely-related system 
that we give the name "Boozer-Grad". Toroidal flux coordinates are considered 
in Chap. 6. Here the stage is set for straight-B-line coordinates, non-flux co- 
ordinates in tokamaks, straight-J-line coordinates, covariant-B components and 
the relationship to the Boozer-Grad form, Boozer's toroidal flux coordinates, 
the ideal-MHD equilibrium conditions for toroidally confined plasmas, and 
Hamada coordinates. In Chap. 7, the focus is on the conversion of Clebsch-type 
coordinates to toroidal flux coordinates. We do this for the Clebsch and Boozer- 
Grad systems. The following Chap. 8 is on the establishment of the flux- 

coordinate transformation. It summarizes how flux coordinates are found and 
allows us to say a few words about equilibrium calculations, including useful 
references. Finally, in Chap. 9, we treat a more general but related topic, 
namely, canonical coordinates. These coordinates superficially resemble the 
flux-coordinate representation and are intimately related to the existence of flux 
surfaces. Flux coordinates are reconsidered in a slightly different form to make 
their evaluation readily comparable with that of the canonical coordinates. The 
canonical coordinates and the magnetic field-line Hamiltonian are presented, 
after which the practical evaluation of the Hamiltonian and the canonical co- 
ordinates is explained. 
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5. The Clebsch-Type Coordinate Systems 

5.1 Stream Functions 

The idea of a stream function (or flow function) is borrowed from hydrodynamic 
theory (see, e.g., Milne-Thomson (1968)). A stream function is any function that 
is constant along a stream line. In plasma physics, we are interested in stream 
functions for the magnetic field. Hence, in our context, a stream function is any 
function that is constant along afield line. In three-dimensional space, the equation 
@(ul, u2, u3) = @(R) = constant represents a surface. A magnetic-field line can 
thus be identified with a curve lying at the intersection of two surfaces belonging 
to two different stream functions. 

An interesting property of stream functions a(R) and B(R) to be defined 
below in (5.2.1), is that the differential magnetic flux through a surface (other than 
the a = constant and /3 = constant surfaces) is proportional dad/3, or 

We will show below that this property is consistent with the definition of stream 
functions. 

5.2 Generic Clebsch Coordinates 

The Clebsch coordinates also have their origin in fluid mechanics, (e.g., Milne- 
Thomson 1968; Bedeaux 1980). They are related to what is known in hydro- 
dynamics as the Clebsch transformations (Lamb 1945). They were introduced to 
magnetic-fusion theory by Kruskal and Kulsrud (1958) and by Grad and Rubin 
(1958). These Clebsch coordinates, commonly denoted by a and /3 are stream 
functions of the magnetic field and allow us to write B as the cross product of 
their gradients 

An intuitive way of obtaining (5.2.1) follows from writing B in terms of a 
vector potential A 

Equation (5.2.2) is a consequence of V. B = 0. If we now pick two functions a 
and /3 such that 

A = a V / 3 ,  (5.2.3) 

we obtain for (5.2.2) 

B = V x (aV/3) = (Va x V/3) + a(V x V/3) . (5.2.4) 

Since the last term vanishes identically because of a vector identity, we recover 
(5.2.1). 

A constructive proof of (5.2.1) shows how to find functions a and /3 (Grad 
and Rubin 1958; see also, Bateman 1978; Kulsrud 1983; Bernstein 1971). Con- 
sider a (transverse) surface S that is intersected by B-field lines (Fig. 5.la) - thus 
S is nowhere tangent to B. In this surface S, we choose a family of lines that we 
label by a' = constant. Any of these lines, take for instance o? = $ (Fig. 5.lb), 
can be viewed as the intersection of the surface S with a surface traced out 

Fig. 5.184. Construction of an (a, p) Clebsch coordinate system. (a) 8, B grid laid out on a surface S 
intersecting a field line B. (b) B _= Eo_surface, being constructed from the magnetic-field lines intersect- 
ing the curve 6 = & on S. (c) p = p, surface, constructed from the field lines intersecting the curve 
B = fib on S. (d) Representation of the B = i0 and = Po surfaces based on a magnetic-Geld line. The 
gradients V6 and VB to the respective surfaces are also shown 
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by all the magnetic-field lines passing through a' = do. The latter surface is labeled 
by carrying the value i = io off S on the field lines. Hence, the equation of the 
surface is d = do. Analogously, we construct another family of lines B = constant 
in S (Fig. 5.la) such that the i and B lines are nowhere tangent. In other words, 
the d and lines must form a proper grid in S. Again, as shown in Fig. 5.lc, a 
particular line B = & is carried off on the field lines, resulting in a surface B = B0. 
When we repeat this same procedure for all the field lines, we can thus construct 
functions d = d(R) and = B(R), such that the geometric loci of points of 
2 = constant and B = constant are precisely the types of surfaces discussed 
above. By construction, the B lines lie in i = constant and B = constant surfaces. 
In that respect, these surfaces can be called "magnetic surfaces". However, in 
fusion plasma physics, it is customary to reserve this name for toroidal or 
cylindrical flux surfaces. 

A particular magnetic-field line is defined by the intersection of d = constant 
and B = constant surfaces (as is shown in Fig. 5.ld). We can thus interpret the 
pair of values i0 and Bo as the coordinates of the particular field line. A point in 
space can then be determined by specifying i ,  B and a third variable which is 
related to the length along a field line. 

By construction, 

B I  Vo? or B - V i = O  (5.2.5a) 

This states that d and B are magnetic stream functions. Another vector that is 
everywhere orthogonal to both V i  and VB is their vector product. We must thus 
have that B is parallel to V i  x VB or 

where C is a proportionality factor. In general, C can vary from point to point. 
It could thus be a function of 5, 6 and the third variable which we take for 
simplicity equal to the length 1 along a field line. However, from V .  B = 0, it 
follows that 

where the last term vanishes because it involves expressions of the form V x Vf 
which vanish identically. Thus, we have that 

With the help of the expression for B in (5.2.6), we obtain 

This states that C is constant along the field lines, and thus is independent of 1. 
Hence, C = C(i, B) alone. 

We now redefine i a n d  B such that the factor Cis absorbed in the new a and p: 

If follows from these definitions that 

and 

With the replacement (5.2.10b) for afl/afi, we can thus write for the B expression 
of (5.2.6): 

B = C V i x  vB= v i x c v B = V i x  

(5.2.12) 

Note that our discussion does not require a(R) and p(R) to be single valued 
functions. However, B, which is a physical quantity, must be single valued. In 
magnetic-confinement systems, a is usually identified with the flux-surface label 
Q, while fl is a magnetic field-line label. p = constant surfaces are shown in Figs. 
4.12, 17 for toroidal devices. In mirrors, they are quite similar. The problems 
encountered with the multiple valuedness of fi in tori have been discussed above. 
In mirrors, p represents an angle-like variable and its use is straightforward. 

The functions a and fl are not unique for any given magnetic field. For 
example, we can add to a any arbitrary function of j?, or the other way around 
(but not both at the same time): 

V a x V ( p + g ( a ) ) = ( V a x V p ) +  Vax-Va = V a x V j ? .  (5.2.13) ( ;:) 

5.3 Relationship to the Contra- and Covariant Formalism 

When we work with Clebsch coordinates a and fl and a variable along a field 
line, we imply that space has been parameterized by these three variables. In 
many cases, this last variable is the length I of the field line (from some particular 
origin). The coordinate surfaces for the coordinates (a, p,l) are thus a(R) = cons- 
tant, p(R) = constant and 1(R) = constant. The coordinate lines are intersections 



104 5. The Clebsch-Typ Coordinate Systems 

of coordinate surfaces as usual. The special feature of the Clebsch representation 
is that the particular vector we want to describe, namely, B, is tangent to one of 
the coordinate curves: the I curve (since it is by definition the intersection of 
a = constant and fl = constant surfaces). 

We shall assume that jis in the direction of B, although, in fact, B = BB = 

BE 
The covariant-basis vectors in the (a, fl, I) coordinate system are denoted by 

e,, ep, and el, the contravariant-basis vectors by ea, eeb, el. The latter are defined 
by the gradients of the coordinate surfaces 

The covariant-basis vectors are tangent to the coordinate curves. Thus, el is 
tangent to the field lines. Moreover, since I measures the length along that 
coordinate curve, its magnitude is unity: 

(Often, our B is written as $; however, we avoid $ here because we used it to 
denote the binormal of the Frenet-Serret trihedron.) We shall use the symbols of 
(5.3.2) interchangeably. The other covariant-basis vectors do not have such a 
simple form but can be written in terms of the contravariant-basis vectors by 
means of the Jacobian J: 

We get 

e a = J e b x e l = J V f l x  Vl, 

eeb = Je' x ea = JVl x Va . 
Nothing prohibits us from writing the unit vector along Bin a similar form: 

The magnetic field can be written in terms of covariant- or contravariant- 
basis vectors: 

B = P e a  + BBeb + B'e, , with Bi = B.ei , (5.3.5a) 

B = BaeQ + ~~e~ + B,e' , with Bi = B.ei . (5.3.5b) 

Equation (5.3.5a), the contravariant form of B (since it is written with con- 
travariant components), simplifies to a plausible result. By construction B" = 
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B. Va 0, and BP B. Vfl = 0, such that the equation in question becomes 
with the help of (5.3.2): 

From this we conclude that B' = B and thus that 

B = B B  

is the contravariant representation of B (in a, fl, 1 coordinates). 
Consider the expression for B given in (5.3.4c), but with the Jacobian written 

explicitly 

If we take the dot product of either side with Vl, we obtain: 

Equation (5.3.9) also follows trivially from the observation that B. V I a/al. It 
should be noted that (5.3.9) is (in general) the best we can do for a relationship 
between Band Vl. In general, and unlike el, el = Vl is not equal to B; they point 
in different directions (contrary to what has been assumed frequently in the 
literature, as e.g., by Lee et al. 1986). 

With this expression and the Clebsch representation, B = Fa x Vfl, we find 
the value for the Jacobian of (5.3.3) 

This result was also obvious from (5.3.44, and allows us to identify the con- 
travariant form of (5.3.7) with the Clebsch form: 

Thus, the "complete" contrauariant representation of B is 

B = B B =  va x Vfl. (5.3.12) 

The covariant representation does not provide a simple form because VZ is 
in general not parallel to B. From (5.3.4) and (5.3.10), we can rewrite the covariant 
form of (5.3.5b) as follows: 
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In the special case where Vl happens to be equal to B, this reduces simply to 
B = BB. In that case, the co- and contravariant representations coincide. 

We shall now determine the proportionality constant in (5.1.1). Consider 
a surface 1 = constant. An infinitesimal-area element on this surface is equal to 

where we have set the Jacobian J = 1/B. The magnetic flux through an element 
dS(1) equals 

This is shown in Fig. 5.2. Every surface S that is intersected by B has a similar 
(a, /3) grid. B-lines can never cross a or /3 surfaces, so they cannot leave a certain 
volume tube bounded by the surfaces a = constant, a + da = constant, p = 
constant and B + dB = constant. Hence, our conclusion is that the magnetic flux 
in that tube must remain the same. Thus, the flux through any surface S intersect- 
ing B = Va x V/3 equals 

In the case where we dealt with the stream functions di and $, B was written 
as C Vdi x vfi. If we parameterize a field line by 5, fi, and I, the Jacobian in these 
coordinates is 

a = constant 

Fig. 5.2. (a, p)  grid laid out on an 1 = cons- 
K = c o n s t a n t s u r f a s e  tantsufiace 

5.4 Boozer-Grad Coordinates 107 

Fig. 5.3. Topological plot of the (p, X )  Boozer-Grad coordinate 
system showing that magnetic-field lines appear as straight lines, 
parallel to the x axis 

4 

8 

topological plot of ,, 
coordinate system 

X 

Consequently, the combination of dY = Beds(/), with dS(I) now equal to 
C Vi ddi d b / ~  leads to 

This explains what the proportionality sign in (5.1.1) means. Thus, a, fl, 5 and /? 
are all stream functions. 

One of the properties of the Clebsch coordinate system is that the field lines 
are straight lines in the coordinates other than a (the one labeling the flux surface), 
i.e., the field-line label fl and the third coordinate which is used to indicate the 
"distance" along a field line (which may be but does not have to be the length I). 
We call this third variable x. The differential equation for a field line in (p, X) 
coordinates is 

where B@ = B. Vp, BX = B-  Vx. With B = Va x Vfl, this equation becomes 

- dfl - - 0 or 8 = constant. (5.3.19) 
dx 

This means that the field line represents a straight line parallel to the x axis (see 
Fig. 5.3 - note that this is a "topological" plot, since, in reality, the /3 and x axes 
do not intersect at right angles). 

5.4 Boozer-Grad Coordinates 

Boozer-Grad coordinates are characterized by a particular choice of the third 
coordinate in the Clebsch representation. Recently, this coordinate system has 
been employed frequently by Boozer (1980, 1981) (after discovering it inde- 
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pendently) but it was previously used by Grad (1971) (see also, Catto and 
Hazeltine 1981; White et al. 1983; and Betancourt and Garabedian 1985). We 
shall discuss the system for toroidal devices that possess flux surfaces, each of 
which is traced out by one single field line (at least for the irrational flux surfaces). 
A discussion for mirrors would be similar, except for a few minor points. (One of 
which is that a@/al = 0 does not imply that @is a flux-surface function in mirrors, 
but only that @ is independent of 1.) 

In this coordinate system, we require that the contravariant representation 
for B is the usual Clebsch form 

We have made a change of notation: a = Q and B = v. Although a and B are 
normally used as the flux-surface label and field-line label, respectively, several 
authors have used other notations. Boozer (1980) uses I) as a flux-surface label 
and a as a field-line label. He uses /? for the Clebsch coordinate of the current - 
see below. Betancourt and Garabedian (1985) use s as a flux label and I) as a 
field-line label. We opted for a different set of variables Q and v, since Q normally 
represents a radial variable, and we used it before as a flux-surface label. v 
has been used with the same meaning as here by Solov'ev and Shafranov (1970). 

In general, VQ . Vv # 0 and e, e, # 0. The former implies that the Vv direc- 
tion is not tangent to a flux surface (as is often erroneously claimed), although it is 
perpendicular to B. The covariant-basis vector e, is by definition tangent to a 
flux surface but is not necessarily orthogonal to B (see, e.g., Figs. 4.2 and 5.4). 

The idea of the Boozer-Grad coordinate system is to find a covariant 
representation which reduces to the gradient of a scalar function (the magnetic 
scalar potential) in a current free region. Rather than taking the arc length 1 along 
B as the third coordinate, a function f is used such that the third term in the 
covariant expression, similar to (5.3.13), reads Vf instead of B Vi. A second reason 
for working with frather than with 1 is that there is a simple relationship between 
f and the angle variables 8 and [, whereas, no such simple relationship exists 
between 1 and (8, C). This issue will be discussed in detail later. 

Fig. 5.4. Q = constant and v = constant coordinate sur- 
faces. The contravariant basis vector Vv is perpendicu- 
lar to the v = wnstant surface, whereas the covariant 
basis vector e, is parallel to the Q = constant surface. Vv 
is in general not tangent to the flux surface Q = constant 
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As in the previous section, we assume that 1 = + B for simplicity of notation. 
Writing Vf as the third term in the covariant form does not imply that B Vl 

equals V'. The main reason is that our new choice implies a new Jacobian, as 
well as new covariant-basis vectors. The covariant components B, and B, of the 
(e, v, 1) system of (5.3.13), have now changed into 4 and B;, respectively, and 
consequently, so has the vector (Be VQ + B, Vv), which now becomes (q VQ + 
B: Vv) - which has in general, a different direction. Since both 

B Q V ~ + B v V v + B V 1  and B ~ V Q + B : V V + V ~  

must add up to the same vector B, it is clear that in general Vf cannot be parallel 
to Vl. (A rigorous proof of this will be given presently.) 

For the covariant representation, we make the Ansatz in the third term 

We have used the abbreviations 

and 

The new Jacobian is easily found by taking the dot product of the contravariant 
and covariant forms of B, (5.4.1) and (5.4.2): 

This result is also clear from our requirement, in (5.4.2a), that the third term is 
Vj = [B.(VQ x Vv).?] Vj. 

This Jacobian allows us to obtain some more insight concerning the function 
j. If we take B. Vj, (5.4.3) gives 

or thus 

This is an important result. The differential distance along a field line equals df/B: 
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The tangent 2-basis vector e, is by definition equal to 

From (5.4.7), it also follows that 

To show that B Vl # V i  for general magnetic-field structures, we apply the 
chain rule to V j  in p, v, 1 coordinates 

Because of (5.49, this gives: 

If BVl were equal to Vj, then we would conclude that either Vp = -[(ai/av)/ 
(ai/ap)] Vv, or that ai/ap and aj/av are zero. The former is impossible by the 
definition of the functions p and v. The latter is not true by the argument which 
will now be developed. The fact that a j /a l=  B, (5.43, implies that 

io is the value of j at 1 = 0. In general, B = I BI depends on all three coordinates, 
(Q, v, I). Then the following statement must exhibit a contradiction: 

Indeed, a i o / a ~  is independent of I, while the integral is dependent on 1 unless the 
partial derivative aB/ap vanishes for all I, which is not the case for general B. An 
analogous argument can be developed for ai/av. 

Next, we want to redefine R 1, and f such that (5.4.2b) simplifies to a form 
like 

In other words, we want the term involving f to vanish. However, this forces us 
to change j to X, and 1 to I as well. In order to do so, we make use of the ideal 
MHD force balance 
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(J here is the current and not the Jacobian.) From Be Vp = 0, we conclude that 
since, in a toroidal system, B traces out flux surfaces p = constant, p is a func- 
tion of p only, p - p(p). Furthermore, the condition J -  Vp = 0 is equivalent to 
J .  Vp dpldp = 0 or 

(except possibly at points where dp /d~  = 0). This says that the current-density 
lines lie in constant p surfaces. 

Ampere's law permits us to find an expression for J. From J = (l/po) V x B, 
we obtain with the help of (5.4.2b) 

1 1 
J = - V X [ ~ V ~ + P V V +  + I ] = - [ ( v ~ x  v p ) + ( ~ f x  Vv)]. (5.4.16) 

Po Po 

The condition J. Vp = 0 implies that 

In a toroidal device with flux surfaces traced out by single field lines, this states 
that f is a flux-surface quantity 

P = f(e) . (5.4.19) 

If we look back at our original covariant form for B, B = 1 Vp + f Vv + Vf, 
we observe that the term f(p) Vv pushes the field line in the Vv direction (which 
would potentially cause a secular behavior) (see Fig. 5.4). A field line does not 
move in the Vv direction, however. Because B -  Vv = 0, field lines lie in constant 
v surfaces. From (5.4.10) and the discussion below (5.4.12), we see that V i  does 
have components in the Vp and Vv directions. The terms V i  and VQ will cancel 
the "secular" fvv term. By looking for a new X, we shall try to absorb the 
component of V j  which lies in the Vv direction into the new Vx. (Equation 
(5.4.2b) does not imply that B has a component along Vp either. Since Be Vp = 0, 
the two other terms f Vv and Vf must have components in the Vp direction to 
make the net component of B along Vp vanish.) 

Because is a flux function, its gradient is along the Vp direction: V{ = t Vp, 
where the dot represents the derivative with respect to p, i I dtldp. The expres- 
sion for the current density in (5.4.16) can be written successively as follows: 
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Introducing a new function 1, such that the current has a simple Clebsch 
representation, gives 

p o J =  V1 x VQ 

with 

Thus, 1 is a Clebsch (stream) function for the current density J. 
We now substitute the 1 from (5.4.22) in the covariant B for (5.4.2b), 

B = 1 VQ + f Vv + Vz, and obtain 

When we define the new function x as 

the magnetic field becomes in covariant form: 

Since, in general, Vv . VQ # 0 # Vv 7v. Vx, both VQ and Vx have components along 
Vv. However, they offset each other so that no secular term remains. 

In summary, to arrive at the simple covariant form given in (5.4.25), we have 
made two substitutions: 

Neither r" nor v varies with I .  Consequently, 
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Because of this result, the relationships expressed in (5.4.3), (5.43, and (5.4.7) are 
still valid for x as well as f :  

J-' = Vx ( VQ x Vv) = (B)' (5.4.27) 

Having established the identity of the new function x, we can rewrite the 
"complete" contravariant form of B. Multiplying the Clebsch representation in 
(5.4.1) by J in the numerator and the denominator, and using (5.4.27), we obtain 

These are the two equivalent contravariant representations of B. 
It is not easy to visualize the x = constant surfaces. In Chap. 6, we shall show 

that the v = constant surfaces are ruled surfaces in the toroidal coordinates 
(Of, Cf) in which the magnetic field is "straight", with an equation of the form 
v = A ( Q ) ~ ~  - D(e)Cf, (6.6.14b) (see also the discussion related to Fig. 4.17, below 
(4.9.15)). The v surfaces are traced out by "straight" field lines. Similarly, we shall 
show there that the x = constant surfaces are ruled surfaces traced out by a 
"straight" line, obeying an equation of the form x = a(e)O, + d(e)Cf, (6.6.14~) 
(which intersects a field line). 

The (Q, v , ~ )  Boozer-Grad coordinate system suffers from the same short- 
comings when it comes to single valuedness in toroidal devices, as those en- 
countered with the (a, /I, 1) coordinates. Again, this system is useful for formal 
derivations, but practical calculations are better done after conversion to an 
angle system. This transformation will be discussed in an upcoming section. 

Finally, we show that the 1 Clebsch coordinate of the current density 
can be related to the pressure gradient and the Pfirsch-Schliiter current. Follow- 
ing Boozer (1980), we obtain from (5.4.21) with V1 = (8,418~) VQ + (a1lav) Vv + 
(anlax) vx 

Since B. VQ x Vx = B. VQ x (B - AVQ) = 0, the parallel component of (5.4.30) 
leads to 
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To find an interesting relationship for A from the perpendicular component, 
we substitute J i n  Vp = J x B. Recalling that p r p(e), we get from (5.4.30) 

which, with the bac-cab rule, becomes 

Equating the coefficients of both sides, we obtain an expression for aA/ax: 

The function A is determined via the differential equations, (5.4.32) and 
(5.4.34), and is thus determined up to an additive constant (constant in v and x). 
To take away some of the arbitrariness of A (and x), we impose the initial 
condition at x = v = 0, 

This condition implies that A = 0 when J = 0, as we shall show momentarily. 
Indeed, J = 0 makes J ,, and f i  vanish so that we obtain from (5.4.32) and (5.4.34), 

A =  A(Q) when J = O  . (5.4.36) 

This can also be seen from (5.4.21). The "initial" condition (5.4.36) then sets 

1 = 0  when J = O  . (5.4.37) 

In vacuum, the covariant form of B becomes 

When J = 0, the function x is the magnetic scalar potential. 
However, this still does not remove all the arbitrariness of the (e,v,x) 

coordinate system. As with any Clebsch coordinate, v is determined only to 
within an additive flux function (cf. (5.2.13)). If v* = v + g(e), B is unchanged: 
B = Ve x Vv = Ve x Vv*. Since v does not appear in the covariant form, this 
change in v does not force any other quantities to change. The magnetic field and 
the properties of x are also left the same if we construct a new x by adding a flux 

function. That the properties of a new x* = + f (Q) do not change has already 
been made clear when we substituted x for 2, using (5.4.24). We saw that x retains 
its properties as long as the additive term is independent of I .  This is certainly true 
for a flux function. However, changing x to x* forces A to change to a new A* 
as follows: 
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Thus B equals: 

6.1 Straight Field-Line Coordinates 

Toroidal flux coordinates are a set of poloidal and toroidal "angles" 8, and c, 
chosen such that the equation of a field line is that of a straight line in those 
coordinates. It is common to say that the magnetic-field lines appear as straight 
lines, or that the magnetic field is straight in (Of, c,). 

To construct functions 8,(R) and c,(R) it is necessary that the magnetic field 
B is known completely. In this section, we assume the vector B to be known 
everywhere as a function of arbitrary angle coordinates 8 and c. (These angles 
could, for example, be the "elementary" angles 8, and re.) In a later section, we 
shall see how to transform from Cartesian components of B to the desired flux 
coordinates (Of, c,). 

The first coordinate of the system will be the flux-surface label e. Surfaces of 
constant e are the flux surfaces. e stands for any flux-surface function and can 
be "replaced" anywhere by a quantity such as the poloidal or toroidal flux 
enclosed by (or outside of) the flux surface Yto,, Ypo,, the volume of a flux surface 
I/, the pressure on that flux surface p, the rotational transform or its inverse, t, 
q, . . . (as long as dp/de # 0, dt/de # 0, etc. at places other than the magnetic axis). 
Recall that we only accept radially increasing e's. Thus, e r -p; e = - Yk,; 
e = t and e = - q  in most stellarators; e = q and e = -t in tokamaks. 

The angles 8 and [ on the surface are defined by multiple-valued functions 
8(R) and c(R), in the sense that a point on the flux surface has (8, c) coordinates 
equal to 8 + 27cm and [ + 2nn, where m and n are arbitrary integers. Their 
gradients must be single valued, however (i.e., periodic functions of 8 and c). 

The magnetic field Bcan be written in terms of its contravariant components 
in the (Q, 8, [) coordinate system as usual: 

where B' = B. Vui. From the definition of a flux surface, 

we conclude immediately that 

Here we used ei = ( Vuj x vuk)&, where & = [ Ve . ( V8 x Vc)]-' is the 
Jacobian. Recall that g = (J)2, with g the determinant of the metric coefficient 
matrix. Instead of using J for the Jacobian, we shall henceforth use the symbol 
&. (In the flux-coordinate context, the symbol J is often used for a current- 
density flux, which is a "current", not a current-density. However, we shall not 
use the symbol J at all to avoid confusion with the Jacobian or the magnitude 
of the current-density.) Note that g, in general, is a function of (e,8,c): g = 
g(e, 8, c); the Jacobian is a known single valued (i.e., periodic) function in (8, c). 

The two components Be and & are not independent of each other as can 
be seen from V. B = 0, 

This relationship suggests that B' and & are derived from a single function 
v = v(e, 8, [) as follows: 

These Be and & satisfy (6.1.5), as can be checked by substitution. We can now 
rewrite (6.1.4): 

B =  Vex 

Adding a term (avlae) Ve between the brackets leaves B unchanged, since 
Ve x Ve = 0. Then we can use VV = (av/ae) Ve + (avlae) V8 + (av/d[) V[, allow- 
ing us to write the simple Clebsch form for B: 

This equation states that the B lines lie on constant v surfaces. The same 
conclusion can be drawn from the equation of a field line on a Q = constant 
surface. If we substitute (6.1.6) in d8/Be = dl/&, we have that dv = 0, since 
v = v(e, 8, c) and de = 0 on a flux surface. Hence, the equation of a field line lying 
in a flux surface e = eo is 

v(eo, 8, c) = constant . (6.1.9) 

From the expression in (6.1.7), we can infer what form the function v(e, 8, c) 
must have. B is a physical quantity and is thus single valued, i.e., its components 
must be periodic in (8, c). We need not require the gradient of v to be single valued 
(periodic), but Ve x Vv must be. Because of the cross product with Ve, the e 
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dependence of v is immaterial as far as VQ x Vv is concerned. If v is a periodic 
function in 8 and I;, then Vv is periodic and so evidently is VQ x Vv. Hence with 
regard to the requirement that VQ x Vv be single valued, a function V(Q, 8,I;), 
with an arbitrary Q dependence but which is periodic in (8,I;) is permitted. 
Any non-periodic function which is not a simple polynomial in 8 or I; must be 
rejected, since VQ x Vv would then have non-periodic terms containing 8 or I;, 
implying multiple valuedness (the reader may wish to try functions like exp(8), 
ln(I;), 1/(1 + I;'), . . .). A function v having the form of a polynomial in, say 8, 

is acceptable provided we keep only the first two terms 

Otherwise, Vv would contain terms like (a(c02)/a8) V8 = 2c8V8, which is not 
acceptable because of the multiple valuedness in 8 which remains after the cross 
product with VQ. Note that with (6.1.1 l), we would have that Vv = ((aa/ae) VQ + 
(ab/a~)8 VQ + b V8, which contains a secular term involving 8 as well. However, 
this is permissible, since it contains a VQ, and VQ x ( ) eliminates that term. 

Similar arguments hold for polynomials in I;. Our conclusion is that the most 
general form of V(Q, 8, I;), consistent with the periodicity of VQ x Vv is 

Here, 3 represents a periodic function in 8 and I;. A(Q) can be absorbed into 3 so 
that we write: 

One could have come to the same conclusion by requiring that the compo- 
nents BB and & in (6.1.6) are periodic. The form of (6.1.13) can rigorously be 
obtained if one expands both &BB and && in Fourier series in 8 and I;. Then 
one could separate the terms n = 0 and m = 0; n = 0 and m # 0; n # 0 and m = 0; 
and m and n different from zero and manipulate these forms according to the 
prescriptions expressed by the differential equations, (6.1.6). To actually solve for 
v, one could integrate (6.1.6a) with respect to I; such that the result contains an 
integration constant which is only a function of 8. Then that form of v is 
differentiated with respect to 8 and is set equal to && according to (6.1.6b). 
This would provide an equation for the unknown function of 8, which could be 
solved for, after integration with respect to 8 (up to an additive constant). 

Be, & and & are known functions of Q; so the Q dependence of v is fixed. 
The Q-dependent functions B(Q) and C(Q) are found from (6.1.6) as follows. Recall 
the form-invariant expression for Ytor (4.7.10) 

The volume element d3R stands for & ded8dI;. The derivative of For with 
respect to Q, is equal to: 

Zx Zx 
a dFor - 1 y 
tor - do 271 

In the literature, this quantity, eOr is sometimes referred to as a magnetic flux 
density (see, e.g., Hirshman and Sigmar 1981). We do not use this name here, 
since a flux density in physics is commonly identified with the magnetic induction 
(field) B. We can substitute &B. VI; = && from (6.1.6b) in order to obtain 

Zn Zx 
1 av 

F o r  = - J d~dI; ,  . 
2n 0 0 

From the general form of v in (6.1.13), we find that: 

The integral over 8 of the function 83/80 vanishes because 3 is periodic in 8. The 
other integration is trivial: 

Analogous manipulations for the flux !Piol lead to a similar result: 

As a result of (6.1.18) and (6.1.19), the function v becomes: 

If in (6.1.20) happens to be zero or a flux-surface function, the 8 and I; 
coordinates we started from are already flux coordinates. Indeed, because the 
field lines lie on constant v surfaces (6.1.9) and (6.1.20) would give for the equation 
of a field line 

YtOr8 - Yio,I; = constant . (6.1.21) 

This is the equation of a straight line in (8, C) coordinates. Thus, I;, = I; and 8, = 8. 
If 3 is a function of 8 and I;, we perform a change of variables in order to 

eliminate 3: 
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V 
8 , = 8  and [ , = [ - 2 n T .  (6.1.22b) 

Yiol 

Note that these transformations are consistent with (4.6.2). The function v in 
terms of 8, and [, becomes: 

Again, v = constant is the equation of a straight line 

)jtoref - eel[, = constant . (6.1.24) 

The contravariant components of B are still defined by (6.1.6) but with 8 
replaced by 8, and [ by [,: 

From these equations for Be' and &r, we observe that 

-- - Be, !!iol - flux function , 
fi y t o r  

thus proving a result that we anticipated before, in (4.8.10), during the "deriva- 
tion" of the expression for the rotational transform. The fact that Bef/Bcr is a flux 
function is crucial for the straightness of B. From the equation for a field line, 

we see that the slope of the line is indeed constant on the flux surface, and equal to 
the rotational transform t. 

In summary, a transformation of one of the coordinates is sufficient to make 
the field lines straight. In tokamaks, it is customary to retain the symmetry angle 
(which measures rotation about the major axis) ( = [,. Consequently, 8 then must 
be changed. 

We should remark that the angles 8, and [, are not the only ones in which 
the magnetic field appears straight. Indeed, for example, if we further transform 

the 8, and [, coordinates into new coordinates 8, and (,, as follows: 

where G is an arbitrary periodic function, we see that upon substitution of these 
equations into (6.1.23) for v, we obtain 

showing that 8, and [, are flux coordinates as well. One can use this degree of 
freedom to deform the coordinates further to make other quantities look simpler. 
In Hamada coordinates, the system is deformed until the current-density lines 
become straight in addition to the magnetic-field lines. Boozer uses this freedom 
to free the magnetic scalar potential (that would exist in vacuum) from a periodic 
part. In axisymmetric devices, it is customary to choose 8, such that V 4  1 V(,, 
where 5, is the ignorable coordinate. These three choices have been discussed 
qualitatively above, but will be considered in detail below. 

Using the flux coordinates 8, and [,, the magnetic field in Clebsch form is 
equal to: 

In terms of the poloidal flux through a disk, !Piol, the expression for B is 

Here we have used the fact that d qO1 = - d Y,"Ol (see (4.7.4)). 
If the flux surface volume V is chosen as a flux-surface label, (6.1.30) becomes 

In tokamaks, it is customary to use the poloidal flux as a flux label, and to 
use the safety factor q. If one takes Q = YioI/2n = Y, one obtains from (6.1.30) 

For the poloidal disk flux as a flux label, the expression is exactly the same as in 
(6.1.33), but with Q = Y - - YkI/2n. 

In stellarators, the choice of flux label Q is commonly Ytor, such that with 
Q = $ - YtOr/2n, we obtain 
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The general Clebsch form of (6.1.30) can be written as a sum of two terms 

Bp is called the poloidal field, and BT the toroidal field. Note that Bp does not lie 
along V8, but along eel. Analogously, BT is not directed along V(, but along ecf. 
Only in axisymmetric devices is V(, a ecf a [,, so, BT a [, if (, is chosen as 
symmetry angle. 

The covariant components of B, Bi = Bee, can readily be found from the 
contravariant components B' via the use of the metric coefficients: 

The metric coefficients are those of the flux-coordinate s stem (Of, (,). 
With the form of B given in (6.1.301, the symbol could be replaced in 

all of the above as follows: 

or, for example, in the tokamak case (6.1.33): 

The straight B coordinate systems are discussed in many references. They 
basically all follow the treatment discussed in Appendix I of the classic paper 
by Greene and Johnson (1962). The possibility of writing B as Ve x Vv was 
suggested by Kruskal and Kulsrud (1958), and the transformation to angles in 
which B lines are straight, was, according to Greene and Johnson, first used by 
Kadomtsev (1960) and Mercier (1961) - Refs. 3 and 8 in the Greene and Johnson 
paper. Discussions similar to those in Greene and Johnson (1962) can be found 
in Bateman (1978), p. 125 (note a disturbing misprint on page 126: the designa- 
tions contravariant and covariant basis vectors must be reversed); Solov'ev and 
Shafranov (1970); Miyamoto (1980); Hazeltine and Meiss (1985); Kieras (1982). 
Important also are the contributions by Shafranov (1968), and Solov'ev (1975). 
For an alternative approach to straight B toroidal-flux cooordinates, see the 
sequence of Boozer's papers (1980-1983). 

6.2 Symmetry Flux Coordinates in a Tokamak 

In an ideal axisymmetric tokamak, common sense suggests that we take the 
symmetry angle (, as the toroidal angle. The (,-coordinate surfaces are vertical 
planes so that V(, points in the symmetry direction. In axisymmetric devices the 
flux surfaces are such that 

To have a/a(,lef,, = 0 for every physical quantity, the 8, = constant surfaces 
must be chosen so that 

v ~ , .  ve, = o . (6.2.2) 

We use a subscript "0" for angles (flux coordinates or not) that satisfy (6.2.1) and 
(6.2.2) to indicate their symmetry aspects. (Thus we drop the subscript "f" in favor 
of "om.) These statements are equivalent to requiring that the (,-coordinate curves 
are circles, whose tangents point in the symmetry direction: 

In general, we cannot take VQ. V8, = 0. If we insist on doing so, we have a 
completely orthogonal system, and this spoils the straightness of B lines; because 
of the Shafranov shift amongst other effects, the 8 = constant and e = constant 
surfaces are not orthogonal. Because of (6.2.1) and (6.2.2), we can say that we 
work in a partially orthogonal system. 

The fact that (, is an ignorable coordinate allows us to write B in an 
alternative form. The B-field representation in Clebsch form is still valid in (O,, (,) 
flux coordinates 

We have chosen the poloidal flux as a flux label for simplicity (see (6.1.33)). We 
represent the distance from the major (symmetry) axis to a particular point on 
the surface by R; it represents the radial coordinate in a cylindrical coordinate 
system (R, (, = 4 2  - (,, z). It is then clear that 

From orthogonality, VY. V(, = 0 = V8,. V(,, it follows that VY x V8, is paral- 
lel to V(,: 

k is the proportionality factor. The Jacobian 6 is defined as usual by 
(V(; VY x V0,)-', so that from (6.2.6) 

This can be solved for k, as go is known, 
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The toroidal field BT = q VY x V8, can thus be written upon combining (6.2.6) 
and (6.2.8) 

It is customary to introduce a separate symbol for the factor in front of the 
K O  

This I can also be written as 

fi -fi I =&(vY x V O O ) . B = " B T . B - ~ B T - B T  . (6.2.12) 
4 4 

The magnetic field in a tokamak then becomes 

B=IVC0+(V[, x VY) , (6.2.13) 

which is the form used most often in the tokamak literature. 

An important feature of the "function" I is that it is a flux-surface function: 
I = I(Y) for an isotropic pressure plasma equilibrium. This can be shown by 
considering Amp6re's law: 

For the radial (Y) component, this becomes 

Because, on the one hand, axisymmetry implies that a/a[, = 0, and on the other 
hand J .  VY = 0 requires that J ' = 0, we have 

The third covariant component of B, B, = B-e, turns out to be just equal 
to I :  

B = ~ . e ~ ~  = B ~ V Y  x veo)& = I . (6.2.18) 

Fig. 6.1. A [,-coordinate 
curve intersecting a constant 
Y and 0, surface in an axi- 
symmetric tokamak 

Here we used (6.2.12). Thus, 

and because of axisymmetry, 

hence, 

(When viscosity is included in the force balance, I is a function of 8 as well.) The 
standard form for B is thus 

B = I(Y) V[, + (VC0 x VY) . (6.2.21) 

To clarify the physical meaning of the function I = I(Y), we consider the 
integral form of Ampkre's law: 

$ B. dl = po x (enclosed current) . (6.2.22) 

We apply this loop integral along a [,-coordinate curve for 8, values on the inside 
of a toroidal surface as shown in Fig. 6.1. In Chap. 2, we found that the differential 
arc length along a coordinate curve ui equals dl(i) = leil dui (without summation 
over i, because along the ui curve, dui = duk = 0 forj # i # k). We then have that 
dlc. = ec.d[,. From (6.2.3), it is easily established that e80.ec, = 0. Then with 
B = I VC, + V[, x VY and V[, x VY a ego, we have from the LHS of (6.2.22) 
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The "enclosed current" is the total poloidal current outside the flux surface which 
flows through the disk in Fig. 6.1. We represent this enclosed current by I:,, in 
analogy with our notations for magnetic fluxes. In conclusion, we have 

Thus the function I - I(Y) effectively measures the total poloidal current out- 
side the flux surface Y = constant. I:,, contains both plasma currents and the 
toroidal-field-coil currents. 

6.3 Interlude: Non-Flux Coordinates in Tokamaks 

In the previous section we saw that given a proper choice of the flux coordinates 
8, and C, in tokamaks (denoted here by 8, and C, because they satisfy (6.2.1) and 
(6.2.2)), the Clebsch form of (6.1.33) can be written in the alternative form of 
(6.2.21): 

B = VY x V(q8, - C,) + B = I(Y) VC, + (VC, x VY) . (6.3.1) 

In this section we shall show that axisymmetry, which permits us to choose 
angles 8, and lo satisfying (6.2.1) and (6.2.2), always allows us to write Bin a form 
like (6.2.21), even when 8, and lo are not flux coordinates. Only when 8, and C, 
are flux coordinates in addition to satisfying (6.2.1) and (6.2.2), can the arrow 
in (6.3.1) be reversed. Below we shall discuss the requirement which must be 
imposed on 8, in order for it to become a flux-coordinate angle. Furthermore, 
we shall show how to construct a flux-coordinate angle 8,,, B, given the 
non-flux coordinate 8,. 

To see that a form like (6.2.21) is possible even in a non-flux coordinate 
system, we argue as follows. Consider the poloidal flux through a disk, 

The contour ralong which the loop integral must be taken is the boundary curve 
of the disk (where the disk touches the axisymmetric toroidal magnetic surface). 
Because of axisymmetry, r is a circle with circumference 2nR, and A must 
be constant along that loop: the magnetic vector potential A is a physical 
quantity, not merely a mathematical construct. Hence, we obtain the simple 
result: 

Here A, = AL VC, = Ice[ so 4. = AL/R. (Jco is the physical toroidal component, 
as opposed to the contravariant or covariant components.) We define the func- 
tion Y as 
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The minus sign is to make Y increase radially. Then, - 
Y =  -A,= -RAco. (6.3.5) 

We can now define the poloidal magnetic field Bp. It is the field that is 
responsible for the flux through the disk; it is thus everything except the toroidal 
field 4, which is along VC,. We have 

Bp = V x A, = V x (A,V[,) 

= A,( V x VCO) + (VAL x KO) (6.3.6) 

The first term vanishes and Ac0 = - Y, so 

BP = - VY x VCo . (6.3.7) 

Y is thus a stream function for the poloidal field Bp. 
To find the field B = Bp + B,, we write BT (the field along VC,) as 

If we now use the symbol I to denote Bco = ~g~~ we obtain 

B = IVC, - (VY x VC,) . (6.3.9) 

Bco = I is a flux function, the proof of which (see (6.2.14-20)) applies also to the 
present situation. In conclusion, we find 

which is the required expression. The flux function I = I(Y) is 

Because of (6.2.1), expressing orthogonality between VC, and VY, it follows from 
(6.3.10) that 

So far we have not mentioned the angle 8,. Let us find out which 8, we must 
choose to convert (6.3.9) into a Clebsch form. The conditions in (6.2.1) and (6.2.2) 
permit us to write VCo in (6.3.9) as a cross product, VC, = c(VY x V8,). To find 
c, we dot multiply this last expression by VCo and find: 

Here g = g(Y, 8,, lo). Equation (6.3.9) for B is now 
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If &/R2 is a flux-surface function (and only then), we can move the V operator 
in front of the square brackets, leading to a Clebsch form (the VY x ( ) will 
eliminate the secular 8,[d(l&l/R2)/d~] VY term). If 8, were a flux coordinate, 
the Jacobian would have been such that (6.2.1 1) was satisfied: 1&l/R2 = q(Y). 
Thus, we conclude that it is possible to go from a form like (6.3.9) to a Clebsch 
form provided 8, is chosen such that (6.2.1 1) is satisfied and thus 

in order to make 1&/R2 a flux surface quantity. 
Note that even in the "elementary" toroidal system (8,, re) (but based on the 

magnetic axis), we can write Bas in (6.3.9) regardless of the shape of the tokamak's 
flux surfaces. However, it is not possible to write B in a Clebsch form in terms 
of 8,. 

Because B = 1 Vc, + Vc, x W in an axisymmetric device, we can easily 
write an explicit expression for a newly constructed flux-coordinate angle, do,  = 
@,, in terms of the old poloidal angle 8,. 

The stream function v of (6.1.20) expressed in the non-flux coordinates 
(Q = Y, 8 = O0, c = c,) is 

Because of axisymmetry, C is independent of c,; q is the safety factor defined in 
(4.8.3) and (4.8.4): q = d !P,,,/d Ypl = - d !P,,,/d Y,",,. For this v(Y, 8,, c,), we can 
compute the fio component from (6.1.6b): 

Integration with respect to 8, gives: 

From Bin (6.3.10) we have that B. Vc, = I/R2, leading to 

To find a flux-coordinate angle 8,,, = @,, we apply the transformation in 
(6.1.22a) for Q E Y = - Y,"o,/2n in order to find 8,,, = 8, + ?/q, or 

This expression shows explicitly that 8, is already a flux coordinate, equal to @,, 
if (6.2.11) is satisfied. 
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6.4 Straight Current-Density-Line Coordinates 

The current density J satisfies two important relationships: 

Similar equations are obeyed by the magnetic field B. This means that we can 
use the same procedure for the current density J as we did for B for we looked 
for coordinates in which Bis straight. Our goal this time is to start from arbitrary 
angle coordinates 8 and c and to find coordinates in which the current-density 
lines are straight (regardless of what the B lines look like). We will call these 
coordinates current coordinates, and represent them by 8, and c,. The treatment 
is analogous to that for B in Sect. 6.1., so we omit details. 

The current density J is presumed to be known. From (6.4.2), we have: 

implying that we can write Je  and J' as derivatives of a Clebsch (stream) function 
tl(Q9 09 0: 

This means that J is expressible in a Clebsch form: 

such that the current-density lines on a flux surface (Q = constant) are defined by 
the equation 

?(Q, 8, c) = constant . (6.4.6) 

q is of the form 

Here, iiOl(Q) = dl;,/d~, where I ~ , ( Q )  represents the poloidal current flowing 
within the flux surface. I;,, is the poloidal current-density flux (just as Ypl is the 
poloidal magnetic-density flux): 

One could have used the poloidal current outside a flux surface instead, by 
analogy with the disk flux Y;,. In that case, the current would include the coil 
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current. The flux function llor(~) represents the total toroidal current flowing 
within the volume enclosed by the flux surface. 

ij is a periodic function in 8 and 4'. To make J-lines straight, we must get rid 
of ij or make it a flux function. A transformation similar to (6.1.22a, b) will sufice: 

2nij 
8,=0+-- and (,=( (6.4.10a) 

Itor 

The equation of a current-density line in (OJ, C,) coordinates is 

Itor ~ L I  - 8, - - cJ = constant , 
2n 271 

and the Clebsch form for J reads 

The contravariant components of J are 

Usually, straight J-lines are not used if the magnetic field is not straight. It 
would be interesting, however, if we could start with flux coordinates 8, and (, 
in which B is straight, and deform these so that in addition to B, Jalso becomes 
straight. If we replaced the 8 and ( by 8, and (, in the development of this section, 
everything would remain correct until (6.4.9). However, the transformation equa- 
tions, (6.4. lo), would indeed make Jstraight, but they would spoil the straightness 
of B. Consequently, we have to invent new transformation relations that make 
Jstraight but keep B straight. A transformation of the form given in (6.1.28) is 
adequate (i.e., make tj vanish or make it a flux function, while keeping the C of B 
equal to zero or a flux function). We must deform both 8, and Cf. The coordinates 

created in this way are known as Hamada coordinates. They are characterized 
by a very simple Jacobian. This system will be discussed in Sect. 6.8. 

6.5 Covariant B Components and Their Relationship 
to the Boozer-Grad Form 

In this section, we further investigate a flux coordinate system in which B is 
straight regardless of the form of the J lines. This means that we set 0 = 8, and 
4' = (, in the previous section. We also keep tj non-zero in (6.4.7). 

6.5.1 The Vector Potential 

The contravariant components of B, expressed in flux coordinates, are according 
to (6.1.25): 

These components were derived from a function V(Q, Of, [,) in (6.1.23) 

via (6.1.6) 

We now want to give physical meaning to the function v. It is clear that it 
acts as a "potential" function for B. The expressions for the B components in 
(6.5.3) suggest that there might be a "curl" operation involved. The formula for 
the curl relates covariant and contravariant components as follows: 

. 1 dA, 
( V x  A)' = -- --- - - , i, j, kcyc 1,2,3 (au .  :?) 
If we identify A in the above formula with a "vector potential", which we 

will denote A*, so that B = V x A*, we observe that (6.5.4) is a relationship 
between the contravariant components of B, Bi, and the covariant components 
of A*, A;. The meaning of the asterisk will be explained below. For now, it can 
be disregarded. This suggests that according to (6.5.3), B is derivable from a 
"vector potential" A* in which v is the first and only non-vanishing component: 
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Thus v(e, Of, C,) is a "potential" function in the sense that it is the only component 
of a "vector potential" A*. 

The quotation marks and the asterisk in A* indicate that although the v and 
A* produce the correct magnetic field B, they are not acceptable as physical 
quantities themselves because of their non-periodicity, i.e., non-single valuedness 
in 0, and C,. This problem is not insurmountable, since it follows from vector 
identities that as far as Bis concerned, a magnetic vector potential is only defined 
up to an additive term which is the gradient of any "arbitrary" function. Since 
B =  VxA,wehavethatVx(A+Vf)= V x A +  V x  Vf= VxA=B.Both  
A and A + Vf are legitimate mathematical vector potentials for B; f is completely 
arbitrary. 

Although it was thought for a long time that a magnetic vector potential is 
merely a mathematical tool, it has been established that a magnetic vector 
potential does have a physical meaning (see, e.g., Feynman, Leighton and Sands 
1963). In order for A to be a physical quantity, we must require that it be single 
valued, i.e., periodic in 8, and C,. Thus f (e, $,rr) is arbitrary with the only 
limitation that A + Vf must be periodic. 

Our strategy is straightforward; we choose a particular form off such that 
A* of(6.5.5) will be transformed into an acceptable vector potential A = A* + Vf. 
To convert A* into a periodic vector potential, we must split up f into a periodic 
partf and a secular part ). The secular part must be chosen such that V' cancels 
the linear terms in 8, and C, of A* in (6.5.5). The components of A* appearing in 
(6.5.5) are covariant components, so that A* itself equals 

I 

The most general form off for our purpose is 

where a and b are constants, independent of Q. With this form of i, and with 
f = f +f: Vfbecomes 

The first two terms of Vf in (6.5.8), which are secular terms, cancel the secular 
first covariant component of A* in (6.5.5). The new and acceptable vector 
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potential A can thus be written as 

where i and ui  stand for Q, Of, C,. f is a completely arbitrary periodic function. 
The first component of A is zero, whereas in A* the first component was the only 
nonzero component. The crucial point here is that any physically acceptable 
vector potential must have non-vanishing second and third components in 
addition to those involving f The vector potential given by Solov'ev (1975) is 
equivalent to (6.5.10) but with the constants a = b = 0 and f = 0. 

We could have written down the "bracketed" components of A in (6.5.10) 
right away from a term by term identification of (6.5.4) with (6.5.3) after replacing 
the dot by dlde or 

6.5.2 Covariant B Components 

It is now appropriate to discuss some aspects of Ampkre's law 

This represents an inhomogeneous vector differential equation for the magnetic 
field with a source term equal to p0 J. (In component form, it represents a system 
of three coupled inhomogeneous partial differential equations.) According to 
the theory of differential equations, if J is given, the equation-is linear and the 
solution consists of two parts, Bo, the solution of the homogeneous equation 
(also called the "complementary solution"), and B,, a particular solution of the 
inhomogeneous equation, i.e., the driven equation with source term pol: 

Bo satisfies 

V x B o = O ,  

while BJ obeys 

Vx BJ = poJ . 

Equation (6.5.13) represents the equation for a magnetic field in vacuum. It 
implies that Bo can be derived from a magnetic scalar potential @ via the 
gradient 
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Then the total B can be written as 

This problem is somewhat different from those encountered in the theory of 
simple differential equations because V x Vh = Ofor every arbitrary h. If we want 
to give @ and Bj their usual meanings, we must make sure that Bj is not merely 
a particular solution of (6.5.14), but that it is the correct physical solution with 
all the integration constants included, whereas in simple differential equation 
theory, we need not worry about integration constants for a particular solution. 
An easy way to find the proper solution for Bj  is to find the simplest solution of 
(6.5.14) by observation or manipulation. We then check whether that solution is 
in agreement with physical common sense by means of taking "Ampkre loop 
integrals." Then, to obtain the proper Bj we add the gradient of an appropriate 
scalar function. 

Once Bj  is established correctly, we can say that the @ solution of (6.5.13) 
and (6.5.15) is the magnetic scalar potential in vacuum. This potential @ is 
determined by currents exterior to the region of interest; in our applications, it 
is related to the coil currents. However, @ is not always single valued. Since 
Bo = V@ is a single-valued function, @ can have at most linear terms in its 
secular part. This means tha,t a closed loop integral can give a non-zero result if 
@ has such a secular part @. For example, for @ = a(&?: 

$ B . d l = $  V @ . d l = $ d @ = ~ i ( ~ ) 2 ~ = ~ @ .  (6.5.17) 
closed 0 coor- 
dinate curve 

For a single-valued (i.e., periodic) @, this integral would have vanished. A closed 
integration loop not encircling the Q = 0 axis-in the above example-also 
vanishes. 

The loop integral $ B.dl around a current-carrying conductor is constant 
and equal to the current enclosed. We can thus say that the magnetic field B 
produced by such a conductor can be derived from a secular (non-periodic) 
potential. If there exist poloidal or toroidal integration loops that do not encircle 
current conductors and stay entirely inside the torus, the magnetic field potential 
due to these conductors is single valued inside the torus. (A poloidal (toroidal) 
loop is any closed curve that encircles the magnetic (major) axis of the toroid.) 

As a simple example, consider Figs. 6.2, 3. In Fig. 6.2, a circular loop of 
wire and a straight wire are shown. Both carry steady currents as indicated. 
In a (r, 8, [) coordinate system, with R = Ro + r cos 8, the magnetic scalar PO- 

tential is @ = (p0/27r){I,[ + 1,8); B is computed via B = V@ = (l/r)(a@/aO)O + 
(l/~)(a@/a[)[. In Fig. 6.3, we show a torus and several sets of coils. There is no 
plasma present. Every closed contour that remains inside the torus will never 
enclose the helical windings or the equilibrium coils. Hence, these coils "give rise 
to" a periodic potential. The coil in the middle (on the minor axis) can easily be 
encircled and consequently, it will "generate" a potential that is secular along the 
path of the loop. 
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Fig. 6.2. "Toroidal" and "poloidal" magnetic-field 
behavior for a straight wire in the center of a 
circular loop. The current I, generates B, and B, 
is due to I, 

Fig. 6.3. A closed integration curve 
which encircles a central current 
carrying loop picks up a secular term 
in the scalar magnetic potential. 
None of the helical windings is en- 
circled by an integration curve lying 
entirely inside the torus, and hence, 
these windings can only generate a 
single-valued (or periodic) magnetic 
potential, inside the torus 

Scalar magnetic "potentials" with a secular part as discussed above are only 
mathematical potentials because they are not single valued. In the latter part 
of this section, we will consider only physical or single valued (i.e., periodic) 
potentials. 

Now we find the covariant components of Bj in terms of the contravariant 
current components. Ampere's law for BJ given in (6.5.14) reads in component 
form: 

1 . 1 1 dBk J ' = - ( V X  w = - -  --L ::;), i , j ,kcyc1,2 ,3 .  (6.5.18) 
Po 

We have omitted the index J on the B-components for clarity. Here we are deal- 
ing with B due to currents unless stated otherwise. The contravariant current- 
density components were given in (6.4.4), with q given by (6.4.7); however, here 
we are interested in 8 = 8, and [ = [,. With these components on the left side, 
(6.5.18) leads to three coupled equations: 
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Here we have set i(e) s dI/de = aI/ae, because I = I(e). A glance at the second 
and third equations suggests the identification 

The solutions are consistent with the first equation (6.5.19a) as can be checked 
by substitution. 

To check whether the components in (6.5.20) make sense physically, we 
consider the loop integrals along the Of and cf coordinate curves, respectively. 

The geometry for the Of loop integral is depicted in Fig. 6.4. As at the end of 
Sect. 6.2., we borrow from Chap. 2 the result that a differential arc length vector 
along the ui coordinate curve equals dl(i) = eidui. There is no summation over i 
here, since along the ui curve duj = 0 = duk, where j # i # k. With B = x j q e j ,  
we have then the Of-loop integral: 

= $ Bi dui (no summation over i) 

From Ampiire's law: 

$ B .  dl = p0 x (enclosed current) 

This relationship is in agreement with the Ber component suggested in (6.5.20). 
(Boozer (1981) uses an alternative form of dl(i) to arrive at the same conclusion. 
As shown in Chap. 2, dl(i) = &(Vd x Vuk) dui, with i, j, k cyc 1,2, 3. To find 
(6.5.22), the definition of (&)-I = Vui.(Vu' x Vuk) must be used.) 

For the toroidal component Bcr, we consider a contour integral along the cf 
curve (Fig. 6.5). Performing this integral, we see that we pick up the contribution 
from the poloidal current I:,' which represents the plasma current outside the 
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\ 
p =constant 

\ flux surface 

Fig. 6.4. Geometry for integration along a poloidal coordinate curve T,,, lying at the intersection of 
a e = constant flux surface and a [ = constant cut 

constant 
flux surface 

Fig. 65. Geometry for integration along a 
closed toroidal coordinate curve qf, inter- 
secting the flux surface Q = constant and a 

Br =constant sur face 
- 

0, = constant surface 

flux surface Q = constant: 

I$ is the total poloidal current inside the plasma. (Note that the current inside 
the ribbon 1bI does not contribute to the field at point P (Fig. 6.5).) Coil currents 
are not included in this part of the discussion because we are still solving for the 
components of B,, which is the magnetic field component due to only the plasma 
currents. Equation (6.5.23) requires that the solution for BZf should include an 
integration constant p0 1$?/271. Instead of (6.5.20), we have 
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Fig. 6.6. Integration along a closed 
curve made up of a toroidal co- 
ordinate curve, the magnetic axis 
and two infinitesimally close con- 
nection pieces 

Equation (6.5.24~) is consistent with (6.5.23). 
An alternative way to look at this result for (Bcr), is to consider the loop 

along a if-curve that encloses the poloidal ribbon current I;,&) as shown in Fig. 
6.6. Then Ampkre's loop law becomes 

with 

Thus the loop integral for BCr(q) equals (6.5.23). 
The argument developed above is equivalent to saying that the assumed 

particular solution B f  must be augmented by the gradient of a function h = 

(po/2.n)I$cf such that Bj = B f  + Vh. 

Next we want to find the structure of the vacuum scalar potential @. It is 
the vacuum field component Bo or scalar magnetic potential @ that will bring 
the coil-current contributions into the picture. Referring to Fig. 6.3, we see that 
there are no closed poloidal loops that enclose helical or equilibrium coils as 
long as we stay inside the torus. The central conductor parallel to the minor axis 
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in Fig. 6.3 is absent except in a levitron or levitated octupole producing a 
contribution to the potential (po/2.n)1c0i16f. We assume it is absent from here on. 
Usually, however, the scalar potential cannot have a term linear in Of (cf. our 
discussion near (6.5.17)). 

For toroidal integration loops, remaining inside the torus, it should be clear 
that the coils crossing the disk in the hole of the doughnut that carry a uni- 
directional current will contribute to a net toroidal field and 4 B.dl- V@. dl - 
$d@ f 0. Consequently, the magnetic scalar potential must contain a linear 
(secular) term in i f :  @ - (po/2 .n)(~~coi , s )~f .  Except for this term, the potential 
must be single valued. For example, the part of the scalar potential due to the 
helical coils in a stellarator-which carry currents in opposide directions-is 
periodic. Thus, we can represent the magnetic scalar potential as follows: 

@ = @'+ 8 = 2 ( ~ l c o i l s ) i f  + a(@, Of, i f)  . (6.5.27) 

Note that there exists a hierarchy in the contributions of the coils. The coils 
that wrap around in the toroidal direction (but which stay outside the torus) only 
give rise to a single valued potential. No secular part exists. The coils going 
around the short way can provide a secular part to the potential, since the 
toroidal loop integrals do not always vanish. Of course, the latter coils can also 
provide a periodic part. In a stellarator, the helical coils will also intersect the 
disk in the doughnut hole. However, in a stellarator the current is of opposite 
sign in neighboring wires so the net poloidal coil current due to these coils is 
zero. In a torsatron all helical coils conduct current in the same direction; these 
coils thus provide a net toroidal field and a secular term a if in the potential. 

The result for the covariant B components is, with B = Bj + V@ = Bj + 
v@'+ v 6 :  

a&@, Of 7 i f )  
BQ = -Poij(@,of,if) + -- a@ 

Po 
'or = - it or(^) + a$(@, Of, i f )  

2.n 80, 

A more rigorous school of thought requires the magnetic scalar potential to 
be a physical quantity. This implies that @ cannot have secular terms and must 
be periodic. This viewpoint requires that a scalar magnetic potential cannot be 
used if one considers loop integrals encircling currents (Panofsky and Phillips 
1962, p. 127). In our case, it means that the coil-currents which are encircled and 
consequently contribute to secular terms cannot be described in terms of a 
physical scalar potential. As a result, (6.5.13) and (6.5.15) would not be equivalent 
for a physical potential @. The implication for the covariant B-components is 
that we only deal with a periodic potential & and that we absorb ~ I ~ ~ ~ ~ ,  into the 
integration constant of (6.5.28~) as follows: 
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Is1 is the total poloidal current crossing a disk touching the magnetic axis. The 
poloidal plasma current and the coil currents crossing that disk are included. It 
is convenient to introduce a symbol for the poloidal current (including the coil 
currents) outside a flux surface: 

The index "d" stands for disk. 
The covariant B-components are thus alternatively 

Similar expressions have been given by Shafranov (1968). Although not explicitly 
stated, it must be understood that our integration constants, in (6.5.28c), have 
been absorbed in Shafranov's I. See also Hirshman (1982). 

6.5.3 Relationship to the Boozer-Grad Form 

Now that we know the covariant magnetic-field components, we convert the 
usual covariant form to the covariant Boozer-Grad form of (5.4.25). The generic 
covariant representation of B is 

with the covariant components given in (6.5.31). After substitution of these 
components, we can rearrange (6.5.32) as follows: 
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Here we have defined the following "Boozer-Grad quantity" 

In terms of the poloidal ribbon current, I;,,, for which we have 

we obtain 

or with (6.4.7) 

a = - p o q  . 
With this I, we obtain for the current density J which was originally given as 
J = VQ x Vq in (6.4.5) 

This is exactly the Boozer-Grad form obtained earlier in (5.4.21). 
If we introduce the "Boozer-Grad quantity" x in (6.5.33), 

the covariant form of B reduces to precisely the Boozer-Grad form 

B =  V ~ + I V Q ,  (6.5.40) 

or with (6.5.37), 

To make the link with Boozer's work somewhat clearer, we give below a 
table of our symbols and his (omitting c's, 4n's, po, . . .). For completeness, we also 

/ give the symbols used by Solov'ev and Shafranov. 
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Ours Boozer (1981) Solov'ev-Shafranov (1970) 

6.6 Boozer's Toroidal Flux Coordinates 

We have already mentioned that the flux coordinates 8, and (, are not unique. 
In other words, there is more than one pair of angle functions 8,(R) and (,(R) in 
which the magnetic field is straight. Boozer makes that particular choice of flux 
coordinates, which we denote by 8, and (,, such that the periodic part of the 
scalar magnetic potential vanishes. Thus, he deforms the (Of, (,) coordinate curves 
so that 8 = 0. This gives his Jacobian a rather simple form. Following Boozer's 
(1981) paper, we compute the Jacobian from the contravariant and covariant 
representations of B, (6.1.30) and (6.5.33a), respectively: 

and 

Since B. B = ( B ) ~  = B'B,, we obtain from the dot product of these equations: 

- yiol a 8  It;,, a0 P O ( +  1 + y  Id )+-- 
Jg, 4n2 

pol tor tor pol znJgf asf + a "ft 

Recall that B. V= Bia/aui, the Bi being given in (6.1.25). After solving this 
equation for & we find: 
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Somewhat more symmetrically, this is 

Boozer takes & - 0. Therefore, Boozer's Jacobian, with Q still used as a radial 
coordinate, is 

Boozer (1981) uses the toroidal flux as a flux label, e - Kor. The Jacobian in this 
case is denoted by (&), and is given by 

It relates to the Jacobian & with e as a coordinate, as follows: 

Making use of the definition of iota-bar, t = eol/'k,or, we obtain the 
Jacobian as used by Boozer: 

To find the toroidal Boozer flux coordinates 8~ and CB (in which 8 = 0) in 
terms of other flux coordinates 8, and (, (in which, in general, 3 f 0), we use the 
freedom provided by (6.1.28): 

Recall that this transformation preserves the straightness of the magnetic field 
lines. A proper choice of G, gives the coordinate system extra properties such as 
a zero periodic scalar ma netic potential in Boozer's case. 

The new Jacobian &was calculated in (6.6.5), while the old one is written 
in (6.6.4). Now we look for an alternative relationship between Jf and & in 
order to determine GB. By definition, the inverse Jacobian is 

(&)-I = VQ.(VB VCB) . (6.6.10) 

1 Upon substitution of the Boozer angles 8, and CB from (6.6.9), this becomes 
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Here we used (6.1.25) for Bi. 
This is a magnetic differential equation for GB. If we replace the Jacobians 

in (6.6.1 1) by their computed values given in (6.6.4) and (6.6.5), we obtain 

2n 
B .  VGB = - (BIZ - - 2n ( B ) ~ - B - V I  

0 o ~ o r  + ( I t o r o  PO e o l l t o r  + 'i;or~:ol 

We find that the simple choice 

allows the unique determination of the toroidal Boozer flux coordinates dB and 
cB via (6.6.9). 

We can now relate the Boozer toroidal flux coordinates, (e, eB, c,), to the 
Boozer-Grad Clebsch coordinates, (e, v, x), given above in (6.1.23) and (6.5.39) 
with & = 0: 

The Jacobian & is given in (6.6.5). Note that we still use e as a flux-surface 
label, whereas Boozer normally uses qor. The only difference is that V q O r  = 
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(Itor Ve and that the (Itor is absorbed in Boozer's v; it is for this reason that his v 
contains an t. 

It is interesting to investigate what happens to Boozer's covariant form for 
B in vacuum. To do this, we start from the Boozer-Grad form given in (6.5.40), 
B = Vx + I V e  with x and I given by (6.6.14~) and (6.5.36), respectively. From 
our discussion in Sect. 5.4., we recall that I = 0 when J = 0 (see (5.4.37)). With 
the replacement lioI = 1;: + 1 lcoils - liol(e) 3 x lcoils in vacuum, we obtain a 
simple form for the vacuum field: 

The interpretation of this equation is important. It looks like the magnetic 
field has only a "toroidal" component in vacuum; however, this is not necessarily 
the case. For a tokamak, xIcoils  stands for the toroidal-field coil currents that 
encircle the torus poloidally. In the vacuum case, the poloidal and toroidal 
coordinate curves intersect at right angles (see Fig. 6.7a). In an axisymmetric 
device, the tangent-basis vector el and the reciprocal basis vector Vc are parallel 
such that indeed the vacuum field is in the toroidal direction. In a stellarator, 
~ ( I c o i l s )  also consists only of the toroidal-field coil currents, since the currents in 
the helical windings add up to zero. However, we know that stellarator field lines 

(a) TOKAMAK IN VACUUM 

(b) STELLARATOR IN VACUUM 

'Coordinate curves as seen; 
bending taken out but 

ie ,: constant angles are kept.' 

surface" This is not a topological plot. 

\ B=(~I , , , . I ?~~ ,  
( struight line in 08, iB coordinotes) 

Fig. 6.7a-b. Compa?son of the vacuum field in a tokamak and a stellarator. (a) In a tokamak B 
points in the Vc p C direction. (b) In a stellarator B is still in the VC, direction, but VC, makes an 
angle t with the C ,  direction. (The subscript B refers to Boozer coordinates.) 
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follow spiralling paths in vacuum and are thus not in the usual toroidal direction. 
Yet Boozer's expression in (6.6.15) is correct. The explanation lies in Fig. 6.7b. 
Boozer has adjusted his coordinates so that the periodic scalar potential 8 van- 
ishes while the B lines remain straight. As a consequence, the coordinate sur- 
faces 8, = constant and l, = constant do not intersect at right angles nor do the 
coordinate curves. This has the important consequence that the contravariant- 
basis vector Vl, does not lie in the ecB direction, the latter normally being 
called the toroidal direction. As shown in Fig. 6.7b, the field line lies in the Vl, 
direction which makes an angle with the [, coordinate curve. This angle is 
related to the rotational transform. 

6.7 Ideal-MHD-Equilibrium Conditions 
for Toroidally Confined Plasmas 

To find an equation for 6, the periodic part of the current stream function q, we 
substitute the contravariant components of B and J, given in (6.1.25) and the 
LHS of (6.5.19) in the MHD equilibrium equation Vp = J x B. The first compo- 
nent of this force balance is, in vector form, 

Using 

we obtain 

Since - B'~, ytOr - Bt and aq/aB, = ( V G ,  di/aJ, = (Vtj)cr and BQ = 0, 
the last two terms inside the curly brackets of (6.7.4) represent the dot product 
of ( 4 n 2 & ~ )  with Pi.  We obtain 
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Thus, we find a magnetic differential equation for 4: 

The second and third components of Vp = J x B give no useful information 
because JQ = BQ = 0.' 

In order for (6.7.6) to have a solution, the source term must satisfy two 
constraint conditions ((4.10.7) and (4.10.4)) 

and 

To impose the first condition, we note that d3R = &dedOf dl,. The volume 
integral must be taken over the infinitesimal volume dV between two flux 
surfaces. Hence, we obtain for the first condition: 

or, since all the quantities involved are flux-surface quantities, 

The double integral is proportional to the volume of the thin shell we integrated 
over 

We thus have for this solvability condition: 

. . . . dV 
Ir y - 1  pr = p - ~  . 

pol tor tor pol 
(6.7.12) 

I de 
This is a frequently used form of the ideal MHD equilibrium condition in 
toroidally confined plasmas. 

The second solvability condition must be taken over a closed field line. 
From the e uation of a field line, we have that dl/B = dJ,/&r which with @ = 
% 0 r / ( 2 n d )  equals 2ndlf,/gf/%or. If we integrate over a field line that closes 
upon itself after N toroidal transits, we can write 
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If we now make use of the first constraint in (6.7.12), we obtain 

or with p = dplde and For = dYtOr/de  

For p = d p / d ~  # 0 this condition states that the loop integral of dl /B must 
be constant on rational surfaces: 

The loop integral on the left-hand side is called the "proper length of a field 
line". This condition requires that the proper lengths of all the field lines on a 
rational surface must be the same. This condition is often referred to as the current 
closure condition. If it is satisfied, the device is said to possess true flux surfaces. 
In axisymmetric devices, this condition is satisfied. To see this, consider a particu- 
lar field line at a point A as shown in Fig. 6.8 and compute its ( l / N ) $ d l / B .  Do 
the same for a different field line in the same poloidal plane starting at a point B. 
Now move a toroidal distance A[, = qAe, backwards, where q is the safety factor. 
The field line arriving at point Cis  equivalent to that arriving at point B because 
of axisymmetry. However, the former field line goes to point A because it has a 
rotational transform t = l / q .  Hence, the proper length of both field lines must 
be the same. In nonaxisymmetric systems such as stellarators, the argument does 
not hold, and condition (6.7.14) is not satisfied. If this condition is violated, the 
Fourier coefficients of i j  will exhibit resonant denominators of the form (mt - n) 
leading to "infinite" Pfirsch-Schliiter currents and magnetic islands having fiber- 
like structures. We will discuss in Chap. 12 in what sense the two quantities on 
either side of (6.7.14) differ from each other in general. 

Fig. 6.8. Illustrating that the current-closure condition 
is satisfied in an axisymmetric tokamak. See text 
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It is customary to put the magnetic differential equation for i j  in a simpler 
form by substituting the equilibrium condition given in (6.7.12) into (6.7.6). We 
then have 

or with d V/de r v 

In (Of, i f )  coordinates, the LHS can be found from Bi( Vij)i with the Bi given in 
(6.1.25). Equation (6.7.16) then becomes 

From our expression for the flux-surface average given in (4.9.11) and using 
(6.7.1 l ) ,  we can write the flux-surface average of 1/& 

2 x  2 x  

4nZ 4n2 
0 0 

<(&,)-I) = Z n  Z n  
- -- - -- 

S j def d l ,  Jg, dV/de v ' 

0 0 

(Note that the average of & that Shafranov (1968) uses is not the same as a 
flux-surface average. For Shafranov, (A') = (1 /4n2)  11 dBf d l f  &.) The specific 
flux volume can thus alternatively be written as 

and consequently, the magnetic differential equation for i j  of (6.7.16) reads 

It is interesting to consider the alternative path that Boozer (1981) uses to 
arrive at the same differential equation for i j .  Starting from his Clebsch form for 
the current p o J =  VA x VQ and expanding VA in its covariant components 
as VA =   an la^) VQ + (anlaof) VO, + (aA/a(,) V(, ,  he writes an expression for the 
current density 
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Substitution of this form for J in the MHD equilibrium equation Vp = J x B 
results in a differential equation for 1 as will be shown presently. We use the 
contravariant form for B 

and obtain for the MHD force balance 

Upon application of the bac-cab rule, this becomes 

With the definition of the Jacobian (&)-I = VQ.(V~, x V[,) = 
- V& .(Vef x Ve), we obtain 

With 1 given in (6.5.36) and (6.5.37), 

the above differential equation for 1 reduces to (6.7.6). 
To solve for the unknown function ij, we must solve its magnetic differential 

equation, following the usual procedure (see Sect. 4.10). The functions ij and & 
appearing in (6.7.17) are expanded in a double Fourier series in Of and [, and use 
is made of the equation of a field line Of, = 8, - t[, to eliminate one of the 
variables. The two solubility conditions put constraints on the Fourier expansion 
coefficients and allow proper treatment of resonant denominators of the form 
(mt - n) on rational surfaces. 

6.8 Hamada Coordinates 

In Sect. 6.4., we discussed the condition for straight current lines. The current 
is represented by J = VQ x Vq, where q = (1/2n)i,,,0 - (1/2n)iio1[ + ij, which 
implies that they are straight only when ij is a flux function or simply zero. 
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We wish to use the freedom of (6.1.28) to find a new set of flux coordinates 
in which the Jlines are straight in addition to the Blines being straight. This will 
result in a coordinate system with a Jacobian equal to a constant (which can be 
made unity if desired). These new coordinates are known as Hamada coordinates 
or natural coordinates and are represented by OH and [,. 

The existence of Hamada coordinates was first proved by Hamada (1962). 
An independent proof was later established by Greene and Johnson (1962). Most 
treatments (and ours) follow this latter reference. See also Solov'ev and Shafranov 
(1970); and Boozer (1 98 1). 

The requirement that ij be a flux function or zero implies that B .  Vij must 
vanish. From (6.7.20), we observe that this is the case (for nonzero p) if the inverse 
of the flux-surface average of the inverse Jacobian equals the Jacobian itself. In 
other words, the Jacobian must be a flux function. (There is a confusing misprint 
in Solov'ev and Shafranov, above (2.87). D is the total Jacobian from Cartesian 
coordinates (x, y, z) to Hamada coordinates, (Q, OH, [,). It is not the Jacobian from 
0, [ to B'(our 0,) and C(our [,) as stated above (2.87).) 

Equation (6.7.19) suggests that the choice of flux label, 

provides a very simple expression for the flux-surface average of the inverse 
Jacobian. Since then v = 1, we have 

Hence, to make B and J lines straight, we must take the inverse Jacobian equal 
to 4n2 when Q = V.  Thus 

Q = V is not necessary for the J lines to be straight, but it is very convenient 
because the ubiquitous v equals one. If Q # V, then & = f (Q) is needed. (As 
before, we denote the Jacobian with V as flux label by (&),; the symbol & 
is the "Hamada Jacobian" for the flux label Q.) 

Since we began from the magnetic differential equation for ij, in (6.7.20), we 
may conclude that a Hamada coordinate system exists when the solvability 
conditions of the B.  Vij equation are satisfied. The first implies (RHS) = 0 as 
stated in (4.10.5). This is equivalent to the volume integral condition; cf. (4.10.7). 
It is clear that with & = &equal to a flux function, the flux-surface average 
of the RHS of (6.7.20) is identically zero. Thus this condition reduces to an 
identity. This is not surprising because (6.7.20) is a rewritten form of (6.7.15), 
which was, in turn, obtained by subtracting the solvability constraint (6.7.12) from 
the original B .  Vij equation (6.7.6). 

The other condition is the "current closure condition" 
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Thus, Hamada coordinates exist when the proper equilibrium conditions are 
satisfied. 

In terms of Hamada coordinates 8, and CH, the contravariant components 
of B are flux functions themselves. With & + (&), = 1/4n2, we find from 
(6.1.25): 

B itself keeps the same Clebsch form as before, since the Jacobian did not appear 
in the expression for v in (6.1.23): 

The contravariant current-density components follow from (6.4.13) 

while its Clebsch form, using (6.4.5) and (6.4.7) with = 0, or (6.4.12), reads 

All other formulae and expressions discussed so far can be transformed to 
the Hamada set (V,OH,CH) without any difficulties as long as we recall that 
(&)H = 1/4n2. 

The expression for the Jacobian given in (6.6.4) allows us to compare the 
Hamada system with Boozer's system. With the Hamada choice of Jacobian, as 
given in (6.8.3), we have 

with the dot representing here d/dV. 
This equation says that OH and CH are chosen such that the variation of & 

along a field line satisfies (6.8.9). Recall that Boozer chooses his 8, and C, such 
that 3 = 0 in his system. His Jacobian goes like (B)-2 as shown by (6.6.5). 

To actually find the new coordinates Bf, and CH, we use (6.1.28) 

$ = + ~ L I G H ( Q , ~ ~ ~ ,  ti) (6.8.10a) 
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CH = Cf + *orcH(~, Of 9 Cf) ' (6.8.10b) 

We must find the function GH to ensure that the Jacobian (&)-I = 
VQ. (V8, x VC,) is a flux function. The procedure is analogous to the derivation 
of (6.6.13) for Boozer coordinates. We substitute the expressions for 0, and CH 
in the Hamada Jacobian and find a magnetic differential equation for 
GH(Q, sf9 Cf ) 

1 1 
2nB. VGH = - -- (6.8.1 1) 

& & '  
(The Bi used to arrive at (6.8.1 1) are those in terms of the old system (Of, C,), i.e., 
given in (6.1.25).) As we discussed above (see also Solov'ev and Shafranov (1970)), 
this magnetic differential equation is subject to the usual solvability conditions. 
To actually solve for G.(Q = V, Of, Cf), we write the B.  V operator in terms of the 
old coordinates (sf,[,) but with Q = V.  This last choice is not part of the trans- 
formation, it is merely to make things easy: 

Then expanding the expressions for GH and & in double Fourier series, and 
taking measures to deal with the resonant denominators of the form (mt - n) 
allows us to find the Fourier coefficients for GH. (See Sect. 4.10 on Magnetic 
Differential Equations, or the review by Solov'ev and Shafranov (1970) for 
details.) Once GH is known, the new coordinates 8, and CH have been found. 

Knowledge of the angle functions 8, and CH allows determination of the basis 
vectors and thus the coefficients of the metric tensor gij. Solov'ev (1968, 1975) 
has indicated an alternative route for obtaining the basis vectors of a Hamada 
system. For simplicity, we shall use the indexed notation: 

(Solov'ev (1968, 1975) uses index 3 to denote the radial variable V.  Also, his 
Jacobian equals unity, whereas ours is 1/4n2; we have a factor of 2n in (6.8.5) and 
(6.8.7), whereas he divides through by 2n.) 

The magnetic field B and the current density J are to be written in terms of 
Hamada coordinates as 

1 B = B2e2 + B3e3 = 2 n ~ ; ~ , e ~  + 2n!k,0re3 (6.8.14) 

1 Again, the dot here stands for d/dK 
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Recall that B' = J1 = 0. The systems of equations, (6.8.14) and (6.8.15) can be 
solved for the unknowns e2 and e, in terms of the known vector fields B and J. 
With the help of the equilibrium condition, (6.7.12), where e is identified with V, . . . . 
Iiol qo,  - Itor !Piol = h, we find: 

and 

To find the first covariant-basis vector el,  we expand el = VV along the 
covariant set ei as follows: 

Here we left gl' as 1 VV)'. After solving this equation for e,, we obtain 

For clarity, we define two new symbols for the unknown coefficients of e2 and 
e, in (6.8.19): 

vv 
el =- 

I VVI2 
+ we2 + pe, . 

After some straightforward but somewhat tedious vector manipulations (the 
main points of which are given below), one obtains two magnetic differential 
equations for o and p, respectively. They are a consequence of p0 J = V x Band 
read: 

When these equations have been solved, o ,  p and el,  and thus all three covariant 
basis vectors are known in terms of the known magnetic field and current 
density. 

6.8 Hamada Coordinates 155 

Proof of (6.8.21):' 
We now indicate how the magnetic differential equations can be obtained. We focus on the first 

one, (6.8.21). 
1) From the vector identity V(A. B) = A x (V x B) + B x (V x A) + (A. V)B + (B. V)A, with 

A =  VV,andB=B,B.VV=Oandp,J= V x  B,wefindthat 

2) The perpendicular component of a vector A with respect to a directional vector d is -a  x (d x A). 
Since J I  VV, it follows that VV x (6.8.23) equals 

To obtain terms similar to those of (6.8.21), we dot multiply (6.8.24) by e,: 

3) We concentrate on the last term of (6.8.25). Write the first VV of this term as el and replace the 
second VV by I VVI2(el - me2 - pep) according to (6.8.18) or (6.8.20). The term proportional to 
B. V) VVIz vanishes because e1 x el/l VV12 = 0. Next, we expand B. V as Bia/dui. The terms 
involving aek/aui can be expanded in contravariant components as aek/aui = ej(d.aek/aui). Then 
writing ej in terms of the e'", via the "back-and-forth relations of (2.5.25) with a Jacobian equal 
to 1/4nZ, and application of the boc-cab rule leads to e, .el x ej = (-gt2/4nZ, I VV1Z/4n2,0) for 
j = (1, 2, 3), respectively. These rules imply that the term [-I  VVIZ(e,.el x e3)B. Vp] vanishes, 
while - ( WIZ(e,. el x e z ) B  Vw = - 1  VVI4B. Vw/4n2 survives. After using the property of the 
Christoffel symbol, given in (2.6.22), d.aek/aui = -e,. ad/aui, and (6.8.20), we have 

4) The last two terms of (6.8.26) can be manipulated into a term proportional to e, . VV x (VV. V)B, 
leading to the factor 2 in (6.8.21) and a term proportional to Y;,. The easiest way to prove this 
is to show that e,. VV x (VV. V)B leads to something similar to (6.8.26). Because (VV. V) = 
glka/auk and since B1 E 0, we obtain by using the above mentioned expressions for e,.el x ej: 

We now replace d .  aei/auk = d .  ae,/aui by -ek.aej/aui (for j = 1, 2 in the last two terms) and 
write glk as el .@. After recognizing that we are then left with the covariant expansion of ad/aui 
as @e,. ad/aui, we obtain for (6.8.27): 

5) Comparing (6.8.28) with (6.8.26) gives 

6) After substitution of (6.8.29) into (6.8.25), we recover (6.8.21). 

'Can be skipped without loss of continuity. 



7. Conversion from Clebsch Coordinates 
to Toroidal Flux Coordinates 

In this Chapter, we discuss the conversion formulae from toroidal flux co- 
ordinates to Clebsch functions. First, we deal with the (g, v, 1) system, and after 
that, we discuss the Boozer-Grad (e, v,  X )  system. 

7.1 The Generic Clebsch Coordinate System (e, v, 1) 

It is quite inconvenient to transform from angle flux coordinates to the Clebsch 
function v and the "along the field line" coordinate I. The major problem has to 
do with the fact that the 1 coordinate curve does not close upon itself after one 
toroidal transit. For a qualitative discussion of the problems involved, see Sect. 
4.6.ld. 

In angle flux coordinates, the magnetic field is written as 

The coordinates are (Q, Of, c,). In the Clebsch (g, v, 1) representation, it is 

It is not difficult to see that 

e = e  

Finding 1 as a function of 8, and [, is not easy. The field lines are straight in 
flux coordinates, but the Of and if coordinate curves do not intersect at right 
angles. We must use the metric coefficients gij to relate I to 0, and if, which results 
in an integral relationship. One way to see this is to compute the square of the 
differential arc length (dl)': 

(dl)' = gijduiduj 

= gea,(def)' + 2ge,(def)(dCf) + gc,(dCf)' 
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The equation of a field line, expressed in flux coordinates, dof = +dlf, simplifies 
this a little. We can express (dl)? in terms of only one angle Cf, 

Since the expression under the square root is in general a function of cf, analytic 
integration is not generally possible. The best we can do is to write an integral 
relationship 

An alternative expression for I - l(Of, cf) can be obtained by using the general 
equation of a field line as follows: 

In flux coordinates BCf = yt,,,/(2n&) so that dl is given by 

B =- I B( as well as & are generally functions of 0, and If so again an integral 
formula is the best we can do: 

A second use of the equation of a field line, do, = tdc, or Of, = 8, - +[,can remove 
the Of dependence from B and &. Even in Hamada coordinates, the problem 
is not any simpler. Although the Jacobian can be taken out of the integral, 
B = B(Of, cf) must remain under it. 

7.2 Boozer-Grad Coordinates (e, v, z) 

The covariant and contravariant forms of B  in the (g, v, X) coordinate frame are, 
respectively, 

B =  v X + n v g .  (7.2.1) 

and 

i B =  VQ x Vv . (7.2.2) 
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As discussed above, the covariant Boozer-Grad form reduces to a very simple 
form in vacuum: B = Vx, where 1 can then be thought of as a scalar magnetic 
potential. A second important feature of the "along the field line" label 1 is the 
fact that it can very easily be expressed in terms of the flux coordinate angles 0, 
and 3,. This is probably themajor advantage of the variable 1 over the length I. 

The variables Q and v do not cause any difficulty. As in the previous section, 
they obey (7.1.3) and (7.1.4). Concerning the "along the field line" variable 1, we 
shall now argue that starting from the covariant form of B, there is only one 
possible form that 1 can have in terms of 8, and 3,. (Here, we temporarily 
disregard the fact that we have already found x in terms of Q, 8, and 3, in (6.5.39), 
which, as one recalls, was obtained by finding the covariant components of B in 
flux coordinates and identifying the covariant expression for B with the Boozer- 
Grad form. What we are about to undertake now is a somewhat more direct 
approach.) The argument is closely analogous to that which we presented for the 
stream function v in (6.1.13). 

The function x in (7.2.1) need not be single valued (i.e., periodic) in 8, and 3,. 
Even Vx is exempted from the periodicity property, as long as the ~ V Q  term 
cancels off any non-single valuedness so that B is single valued. However, the 
term 1 VQ can obviously only affect the terms in Vx proportional to VQ. 

As was the case with v, any non-periodic function which is not a linear 
polynomial in 8, or c, must be rejected. 

The "constant" in front of the linear term can be a function of Q. Although 
that term does produce a secular term in 8, or c,, it has VQ in its gradient which 
can be cancelled by the 1 VQ term: V(C(g)Of) = C V8, + 0, c VQ. 

There is a possibility that a periodic function must be included, &(Q,B,, l,). 
Thus x must have the form 

If we absorb the K(Q)  in the function a, we obtain 

x = C(Q)~, + D(Q)C, + *(Q, of, 3,) . (7.2.4) 

With this x, the covariant representation of B of (7.2.1) is 

To find the functions C(Q) and D(Q), we use AmpQe's law along a toroidal 
coordinate curve and along a poloidal coordinate curve, 

f B. = ~ 0 l e n c l o s c d  . (7.2.6) 

This has been explained in (6.5.22) and (6.5.23). We find that 

7.2 Boozer-Grad Coordinates (Q, v, X )  159 

The symbols are all explained in Sect. 6.6.5. As expected, x has the form already 
given in (6.5.39). 

If we choose 8, and 3, such that 6 vanishes in that system, which angles we 
now call 8, and 3, (for Boozer), we recover (6.6.14~). Apart from the arbitrariness 
in v and 1 mentioned in (5.2.13) and (5.4.39), respectively, the functions v and x 
are completely determined. 

It is clear that the expression for 1 given in (7.2.4) is much simpler than that 
for I in (7.1.7) or (7.1.10). Thus, it appears that the (Q, v , ~ )  system is preferable 
to (Q,v, I). However, the flux coordinate angle system (Of, 3,) seems to have an 
advantage over both of these other systems because of the "ambiguity" in the 
constant v surfaces as explained in Sect. 4.6.ld. 



8. Establishment 
of the Flux-Coordinate Transformation; A Summary 

The material in this section on finding the transformation from a particular 
coordinate system to flux coordinates has to a large extent already been discussed 
above, although the details were scattered throughout several sections. Here we 
summarize briefly the methods used and provide some practical references. 

First, it should be understood that use of flux coordinates does not require 
knowledge of the transformation equations. In fact, the transformation itself is 
rarely undertaken. The whole idea of flux coordinates is based on computational 
convenience: they give a helpful decoupling of certain physics problems one 
wishes to focus on (e.g., transport across magnetic surfaces or along magnetic 
field lines) from complicated geometrical features of the device under inves- 
tigation. To gain a theoretical understanding of a variety of physics issues this 
is sufficient. However, when we wish to obtain numbers which can be related to 
experimental data, quantities expressed in flux coordinates must be transformed. 

A crucial assumption in the methods of establishing flux coordinates is that 
the magnetic field and the current density are known everywhere in a finite pressure 

, plasma. Knowledge of Ballows the construction of magnetic surfaces via analytic 
formulae in systems with symmetry and via approximate analytic calculations 
or via numerical field-line following in more general devices. The determination 
of the flux surfaces is part of the more general problem of finding the equilibrium 
state of the plasma. This will be discussed very briefly below. These flux surfaces 
then serve as our first coordinate surfaces. The fact that Bis known at every point 
on the flux surface permits a choice of other suitable coordinates which make 
the field lines appear as straight lines. Jlines also lie in flux surfaces and similarly, 
we can make the current-density lines straight (in addition to having straight 
magnetic-field lines or independently of the shape of the magnetic-field lines). 

8.1 Toroidal Systems 

In toroidal systems, we consider the components of B to be known as functions 
of the flux variable Q and two angular variables 0 and r. For example, if B is 
known in terms of the Cartesian coordinates, a first transformation to an "ideal" 
toroidal-cylindrical or "elementary" toroidal coordinate system (r,B,, c,) is easily 
performed. As soon as the flux surfaces are known the radial variable r can be 

f 
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replaced by a flux function g = Q(Y). So far, we have B m B(e, 8,, re). If we keep 
the coordinate surfaces 0, = constant and re = constant to start with, the con- 
travariant components of B, B. V8, = Bee and Be Vc, = &= are straightforwardly 
determined in terms of (Q, 8,, re). 

In Sect. 6.1, we explained how from B' and B' (in the above example, Bee and 
Bcc) the periodic part C(Q, 0,5) of the streaming function V(Q, 0, () can be found (see 
underneath (6.1.13)). The original [ (= c,) coordinate, together with a deformed 
0-coordinate, now called Of, and equal to 0 + 2n~/%,,, make the magnetic field 
lines straight (see (6.1.22) to (6.1.24)). 

For Boozer and Hamada coordinates, we go one step further. Having 
established the flux coordinates 0, and c,, we deform them further to get rid of 
the periodic part of the "magnetic scalar potential" in Boozer's case, or to make 
the Jlines straight in the Hamada system, in addition to having straight B lines. 
(The Hamada system also has the advantage of a unity or constant Jacobian.) 
In both cases, G(e, Of, r,) must be found and the new "angles" are then determined 
by (6.1.28). Equation (6.6.13) shows the solution for GB = GB,,,,, whereas (6.8.1 1) 
gives the differential equation that should be solved for GH = GHamada. 

If a Clebsch coordinate system is desired, the streaming functions are the 
flux surfaces labeled by Q and the function v = constant: B = VQ x Vv. The third 
variable is either 1 or X, where x = I B dl (see (5.4.26)). To find 1 from the available 
information, one could use the equation of a field line in the coordinate system 
in which B was originally specified. 

A flux-coordinate system is completely specified (in terms of the variables of 
another system) when the transformation equations or the metric coefficients gij 
have been found. 

Specific examples of establishing a flux-coordinate system have been treated 
in the literature. In one approach, Shafranov (1 968) derives the metric coefficients 
starting from a Frenet-Serret coordinate system based upon the magnetic axis. 
The actual computation is performed via an expansion procedure in terms of the 
curvature of the magnetic axis. These axial coordinate systems are discussed in 
considerable detail in the review papers by Solov'ev and Shafranov (1970) and 
by Solov'ev (1975). The expansion procedure in terms of the curvature is de- 
scribed by Shafranov (1966). 

In his 1982 paper, Boozer describes how to construct a magnetic coordinate 
system via field-line following and Fourier expansion. To limit the extent of the 
field line integration, a Gaussian window function is used. This seems to be a 
widely used technique in electronics when dealing with the fast Fourier trans- 
form. (The fast Fourier transform technique and the desirability of window 
functions are discussed in Bergland (1969). A variety of window functions has 
been reviewed in the article by Harris (1978).) For further details on field line 
integration for flux coordinate purposes, see Kuo-Petravic, Boozer, Rome and 
Fowler (1983), Kuo-Petravic (1984) and Beasley, Rome, Attenberger and Hirsh- 
man (1987). An improved field-line-following method, which requires integration 
along two field lines, has been devised by Rome (1989). Reiman and Pomphrey 
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(1989) have developed an algorithm which is a combination of iterative and 
trajectory-following methods. In the next section, we shall say more about 
Boozer's "Fourier field-line-following" method. 

We shall now comment on the computation of the flux surfaces. This calcula- 
tion is not a trivial exercise, even when the magnetic field is known everywhere. 
An analytic result can be obtained for symmetric devices (such as tokamaks or 
helically symmetric stellarators) or in a non-axisymmetric device an approximate 
solution may be found by using the method of averaging or an expansion 
technique near a closed field line. These methods are explained by Morozov and 
Solov'ev (1966). In addition, the review paper by Solov'ev and Shafranov (1970) 
covers a solution procedure for flux surfaces close to the magnetic axis by means 
of a perturbation technique analogous to the stellarator expansion introduced 
by Greene and Johnson (1961). For more general cases (e.g., where a suitable 
expansion parameter does not exist), one has to resort to numerical methods. 
This merely amounts to integrating the equations of a field line. 

Recently, Kuo-Petravic and Boozer (1986) described a numerically econom- 
ical method in which the Hamiltonian character of magnetic-field lines is utilized. 
According to the authors, this is an effective way to evaluate the quality of the 
magnetic surfaces. We shall discuss a few aspects of the magnetic field-line 
Hamiltonian in the next Chapter as this is a rather important concept. 

Frequently, the determination of the flux surfaces is undertaken as part of a 
self-consistent equilibrium calculation. In devices with a symmetry direction, a 
substantial amount of information is summarized in the solution of an equa- 
tion known as the Grad-Schluter-Shafranov equation (after its discoverers, in 
alphabetical order). This is a second-order differential equation for the flux 
variable Y cc Yp,, in terms of the flux functions I = I(Y) = RBT and the 
pressure p = p(Y). It is obtained by substituting J =  (V x B)/p, into 
J x B = Vp = p(Y) VY, after which B is replaced by I V( + (V( x VY). 
Because of axisymmetry, I = I (Y)  is a flux function and one obtains 

The operator on the left may be written as: 

Here z is the vertical coordinate of the cylindrical system, (R,Cc,z). A* is rem- 
iniscent of the notation for the Laplacian A = V2. A* is a "magnetic differential" 
operator similar to the non-angular part of the Laplacian in cylindrical co- 
ordinates: 

F 
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The Grad-Schliiter-Shafranov equation was derived independently by Sha- 
franov (1958) in 1957, by Lust and Schluter (1957) and by Grad and Rubin (1958). 
The derivation of the equation can also be found in the review papers by 
Shafranov (1966), Freidberg (1982), Zakharov and Shafranov (1986) and Hazel- 
tine and Meiss (1985). See also, Callen and Dory (1972). For simple textbook 
treatments, we refer to Bateman (1978), Stacey (1981) and Freidberg (1987). 

Since p and i are not necessarily linear functions of Y and since the boundary 
conditions can be nonlinear as well, the Grad-Schluter-Shafranov equation is in 
general a second-order nonlinear differential equation. Since one must specify 
p(Y) and I(Y) before one knows what the flux surfaces are, there is some 
ambiguity in modelling a plasma. In most calculations of equilibria for experi- 
mental devices, the Grad-Schliiter-Shafranov equation is solved by numerical 
iteration. See e.g. Lackner (1976). A valuable variational method is that by Lao, 
Hirshman and Wieland (1981). (See also Lao, 1984). Certain idealized cases seem 
to be tractable analytically, as has been discussed by Solov'ev (1975) and Zakhar- 
ov and Shafranov (1986). 

The existence of a Grad-Schluter-Shafranov equation is crucially dependent 
on the presence of a symmetry direction because this makes I in the expression - 
for B a flux function. As a consequence, there also exists a G-S-S equation for 
a helically symmetric stellarator. This equation is derived in Zakharov and 
Shafranov (1986); see also, Pytte and Boozer (1981) and White and Chance 
(1984). 

In devices without a symmetry direction such as toroidal stellarators, there is 
no Grad-Schluter-Shafranov equation, and the equilibrium problem is even 
more complicated. To treat this problem, Greene and Johnson (1961) developed 
the so-called stellarator expansion. This procedure solves the equation B. VY = 
0, where Y is expanded as zi 'Y'" such that higher order Y") are considered as 
perturbations with regard to the lowest order Y. To lowest order it models a 
uniform axial magnetic field. The first-order field is a superposition of multi-polar 
fields, and the second order consists of fields which take into account the effects 
of the curvature of the system and the currents in the plasma. This expansion 
procedure was suggested in an earlier paper by Johnson, Oberman, Kulsrud and 
Frieman (1958). The method has been further utilized and/or discussed by 
Anania, Johnson and Weimer (1983a), and by Anania and Johnson (1983b), by 
Johnson, et al., (1984) and by Johnson (1986). Dobrott and Frieman (1971) have 
computed the vacuum magnetic surfaces of an 1 = 3 stellarator using an "optimal 
stellarator expansion". This same expansion was used by Fielding and Hitchon 
(1980) to compute the equilibrium flux surfaces and fields and, in particular, 
the equilibrium value of the vertical field, in an I = 3 stellarator. Later, this 

I 
was extended to arbitrary I-numbers (Hitchon and Fielding, 1981). Related 
procedures have been described by Solov'ev and Shafranov (1970) and Johnson 
(1986). 

Besides analytic (mostly asymptotic) results which can provide physical 
insight, numerical equilibrium codes provide results which are asymptotic in the 
mesh size and.attack more complicated cases. Reviews of numerical methods 
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used to compute the plasma equilibrium are given in the papers of Zakharov 
and Shafranov (1986), and Johnson (1986). More details can be found in Methods 
in Computational Physics, Killeen (1976). In addition, we should mention the 
3-D equilibrium codes by Chodura and Schliiter (1981) and by Bauer, Betancourt 
and Garabedian (1978 and 1984). See also Hirshman and Whitson (1983), Lao 
(1984), Schwenn (1984), Bhattacharjee et al. (1984) and Hirshman and Lee (1986), 
among others. Island formation and destruction of flux surfaces in three-dimen- 
sional equilibria have been investigated by Boozer (1984a, b) and Reiman and 
Boozer (1984). 

Further discussion of toroidal equilibrium can be found in the papers by 
Grad (1967), Kruskal and Kulsrud (1958), Spies and Nelson (1974), and Boozer 
(1981). 

8.2 Open-Ended Systems 

The flux coordinates of concern in open-ended systems are of the Clebsch or the 
Boozer-Grad type. To obtain the transformation equations, the same equations 
as in toroidal systems must be solved. There is one crucial difference concerning 
the flux label and the magnetic surfaces. As pointed out above, in mirrors there 
are no flux surfaces which are traced out by a single field line. One must define 
a closed contour somewhere in the plasma, and the flux surface is that surface 
traced out by all the magnetic field lines intersecting the chosen contour. Con- 
ventionally, for the vacuum field, the curve is chosen to be a circle (concentric 
about the axis) located in the middle of the device at z = 0, when the device is 
bounded by z = f L. (In finite-jl plasmas, the originally circular flux surfaces 
tend to acquire a "square" shape.) The vacuum flux surfaces for tandem mirrors 
in the "long-thin cylinder" or "paraxial" approximation have been computed 
by Furth and Rosenbluth (1964) and by Cordey and Watson (1969). See also 
the review paper by Baldwin (1977). More recent papers dealing with mirror 
equilibrium include those by Hall and McNamara (1975), Pearlstein, Kaiser and 
Newcomb (1981), Newcomb (1981), and Bulmer, et al., (1983). 

9. Canonical Coordinates 
or "Generalized Magnetic Coordinates" 

9.1 Flux Coordinates Versus Canonical Coordinates 

As an extension to the subject of flux coordinates, we discuss concisely the more 
general topic of canonical coordinates for magnetic fields. The word canonical 
derives from the Hamiltonian character of the magnetic field, which will be 
demonstrated presently. Canonical coordinates for B, and the canonical re- 
presentation of B exist even if there are no flux surfaces. Flux coordinates, on the 
contrary, only exist in the presence of magnetic surfaces. The canonical co- 
ordinates are sometimes called "generalized magnetic coordinates". It must be 
understood, however, that this is not a synonym for flux coordinates. The reason 
for the name "generalized magnetic coordinates" is the superficial resemblance 
of the B-field representation in canonical coordinates and flux coordinates. 

9.2 On the Existence of Flux Surfaces, Revisited 

In the section on flux surfaces, we pointed out that they only rigorously exist 
in devices with an ignorable coordinate. In such a case, the irrational field 
lines cover a two-dimensional surface ergodically. In more general systems, the 
magnetic-field lines do not all stay on a surface but in general ergodically fill a 
finite volume. 

We are interested in devices (such as stellarators or real tokamaks) in which 
the field lines generate "surfaces" with very limited ergodic volumes. The mag- 
netic field in such devices is considered as one that has the required symmetry, 
plus a perturbation field. One might expect that there would be no closed 
surfaces left at all due to coupling of the perturbation with the original field 
structure, giving rise to singularities or resonances. However, the KAM theorem 
(after Kolmogorov, Arnold and Moser - references are given below) guarantees 
the existence of certain invariant surfaces in some circumstances. 

Loosely speaking, this theorem states that there are two regions of non- 
vanishing volume (technically, sets of non-zero measure), one of which is small 
compared to the other and shrinks to zero as the perturbation goes to zero. The 
(hopefully) larger region has the familiar structure of embedded tori (flux surfaces 
in the proper sense) covered with dense field-line trajectories. Interlaced between 
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these "good flux surfaces, there is a possibly dense set of surfaces which open 
up into ergodic regions or islands, where the field lines behave erratically and 
may move far from nearby confined trajectories. However, even if a given 
magnetic field line is ergodic within an entire annular volume, it is absolutely 
contained, provided only that there is a closed (KAM) surface on either side. 
Further, the KAM theorem guarantees that for small perturbations, the chaotic 
regions will be thin, albeit of finite volume. 

In conclusion, magnetic surfaces in non-symmetric devices exist only in the 
sense that the perturbed invariant toroidal surfaces of KAM theory exist as a set 
of non-zero measure (Grad 1967; Balescu 1975; Whiteman 1977). The degree of 
flux-surface destruction and island formation depends on the vacuum field 
structure and on the plasma pressure (beta) via the diamagnetic and Pfirsch- 
Schliiter equilibrium currents (Boozer 1984 a, b; Reiman and Boozer 1984). 

Stochastic motion of field lines and other KAM related issues have been 
studied by means of modern Hamiltonian mechanics. Although this is not the 
place to discuss these points in detail, it seems warranted to point out the 
Hamiltonian character of the magnetic-field lines and to show how the transfor- 
mation to canonical coordinates is done in practice. This has been the subject 
of a series of papers by Boozer (1983, 1984c, 1984d, 1985) and by Kuo-Petravic 
and Boozer (1986). We shall base our discussion on their work. An alternative 
route for describing magnetic-field lines by means of non-canonical Hamiltonian 
mechanics has been advocated by Cary and Littlejohn (1983), and Littlejohn 
(1984). Hamiltonian mechanics in general is authoritatively discussed in the 
classic book by Goldstein (1981). Hamiltonian theory applied to stochasticity is 
treated in Lichtenberg and Lieberman (1983). Also recommended are the review 
paper by Whiteman (1977), the appendix in Balescu's (1975) book, and White's 
book (1989). 

Before dealing with the canonical coordinates and the Hamiltonian, we must 
first reconsider flux coordinates as a preliminary. 

9.3 Flux Coordinates 

From our discussion of flux coordinates, we recall that the magnetic field can be 
written as 

Here, Q is a flux-surface label, and Y,,, and Y&, measure the toroidal flux enclosed 
by, and the poloidal flux outside, the surface labeled by Q, respectively. Both Y,,, 
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and PiO, depend only on Q. For simplicity of notation, we introduce two new flux 
functions: 

In terms of these functions, we have 

The rotational transform t, defined by t = - ~ ~ O l / ~ o ,  = -dljl,/d+,, allows us to 
write the above equation as 

This is the best known representation. The flux coordinates are 0, and Cf. 
t is a flux function, t = t(+,). Equation (9.3.4) is the contravariant representation 
of B, not because it is written in terms of (cross products of) contravariant-basis 
vectors Vui, but because it deals with the (somewhat hidden) contravariant 
components. The more transparent contravariant form is revealed if we make 
use of the ei t, ej  "back and forth transformation" relations, where e' = Vuj and 
ei = aR/aui: 

Therefore, we can write instead of (9.3.4a): 

The contravariant components are thus BWt = 0, BB' = t/& and fi = I/&. 
BW1 is zero because B is tangent to the flux surfaces, i.e., B .  V+, = 0 and & is 
the Jacobian: 

(Note the distinction between this Jacobian in terms of the toroidal flux and that 
defined in (6.1.38) which is a function of poloidal flux.) 
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From (9.3.4), we see that B is uniquely determined if t($,), $,, 8, and l;, are 
known as functions of the position vector R such that the gradients can be 
calculated. According to Boozer (1983, 1985), it is more useful to define the field 
by (9.3.6) as far as a practical evaluation is concerned. The magnetic field can be 
constructed if R($,, Of, l;,), i.e., x($,, Of, l;,), Y($,, Of, l;,), and z ($,, Of, l;,), in addition 
to t($,) are known functions. Here, we assume a finite value of the Jacobian 
(&)-I = B Vl;,. In other words, the toroidal field is nonzero. 

The establishment of the transformation R($,, Of, l;,) by means of numerical 
field line following and Fourier decomposition was described by Boozer (1982, 
1984b), Kuo-Petravic, Boozer, Rome and Fowler (1983), Kuo-Petravic (1984), 
Kuo-Petravic and Boozer (1986) and Beasley, Rome, Attenberger and Hirshman 
(1987). (Improvements to this method were made by Rome (1989) and by Reiman 
and Pomphrey (1989).) Because of the double periodicity, the three Cartesian 
components, x, y and z of R can be written as a double Fourier series. We treat 
x, y and z simultaneously via the vector symbol R($,, Of, l;,) = R[x($,, Of, l;,), 
~($17'f9l;f)? z($l?ef?l;f)l' 

Boozer's straight-B coordinate system (Boozer 1980, 1981) makes use of a func- 
tion x as a parameter to measure the "length" along a field line. 

x reduces to the magnetic scalar potential if the plasma is currentless (i.e., B = Vx) 
and is equal to (6.6.14~): 

I,,, and I;,, are flux functions. For flux coordinates where (9.3.10) holds, we earlier 
used a subscript B, i.e., 8, = 0, and l;, = l;,. 

Since the equation of a field line in flux coordinates is given by (4.9.15), 

we can rewrite the exponent of the Fourier series in terms of Of, and x: 

To evaluate the Cartesian coefficients xmn($,), ymn($,) and zmn($,) of Rmn($,), we 
perform a field line integration, starting from an arbitrary point. We choose x 
and Of, zero at the starting point. Since Of, remains constant along the field line 
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trajectory, Of, remains zero everywhere. x is determined by the integration via 
(9.3.9), and thus, this field line integration determines R($,, x) = R($,, Of, = 0 , ~ ) .  
We then have for (9.3.12), where the L.H.S. is now known numerically from the 
field-line integration: 

(mt - n)2nx 
R($,, 4 ,  l;,) = 1 Rmn(h) exp{i 

m, n 
Po(Itor+ + 1;,1) I 

This Fourier decomposition of R($,, Of, l;,) r R($,, x) has distinct peaks. The 
amplitudes of the peaks determine the Rmn($,), and their locations determifie m, 
n and t($,). (The practical numerical decomposition is done with the help of a 
suitable window function. For references, see Sect. 8.1.) In practice, it turns out 
that "about 5 poloidal and toroidal circuits of a field line must be followed to 
carry out the Fourier decomposition to reasonable accuracy" (Boozer 1982). This 
way, R($,, Of, [,)and +(I),) are known, and thus, the flux coordinate representation 
of (9.3.6) can be formed. The method outlined above is only applicable in the 
Boozer coordinate system, where (9.3.10) holds and where l;, = l;, and 8, = 8,. 
A method valid for other straight-B systems is explained below. 

The above explanation is in principle only valid for irrational surfaces, i.e., 
surfaces that are traced out by a single field line. This is not the case for rational 
surfaces on which t is the ratio of two integers. However, as long as the number 
of poloidal and toroidal transits is sufficiently large (e.g., larger than 5), the surface 
can be considered as being adequately covered for all practical purposes. When 
t is the ratio of low integers, we invoke the fact that the real number system is 
dense and thus that any rational number (rational surface) can be approximated 
infinitesimally closely by an irrational number (irrational surface). 

In a later paper, Kuo-Petravic and Boozer (1986) perform the field line 
integration and Fourier decomposition without mentioning the function x (be- 
ware that in that paper, the symbol x is used with a different meaning). There, 
they start out with a definite choice of the toroidal angle l;,, which for convenience 
is taken to be (minus) the azimuthal angle of the cylindrical system (R, -l;,, z). 
This is effectively the angle that we called l;,. In this case the field line integration 
is based on the equations 

dx - BX(x, Y, 4 .  dy - By(x, Y, 4. dz Bz(x, Y, Z) - - -- - - -- - - - -- 
dl;, B. Vl;, ' dl;, B e  Vl;, ' dl;, B. Vl;, 

dR - B(R) 

dl;, B. Vl;, ' 

This allows determination of the function R(l;,) on a particular flux-surface. 
Again, R($,, Of, l;,) and t($,) can be obtained via a Fourier decomposition 
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The notation R(c,) indicates that we have chosen a fixed flux surface. As before, 
Of, has been chosen equal to zero. The expansion in (9.3.15) performed on a 
variety of flux surfaces determines R,, and +. 

9.4 Canonical Coordinates; The Field-Line Hamiltonian 

We are now ready to treat the magnetic-field representation in the more general 
case where field lines are not restricted to a flux surface but cover a finite volume 
ergodically. The types of systems that we are interested in for magnetic confine- 
ment and whose description is still more or less tractable analytically are those 
where the magnetic field B(R) does not differ very much from a field B,(R) which 
has perfect surfaces. The difference between the two fields can then be considered 
as a perturbation to the "perfect" field. 

When a field is represented by means of a "magnetic field line Hamiltonian", 
the field lines can be identified with the phase-space trajectories produced by 
the Hamiltonian. Mathematically, the issue of magnetic-surface quality then re- 
duces to a problem in Hamiltonian mechanics, meaning that a whole wealth of 
methods, such as Canonical Transformations, Hamilton-Jacobi theory, Canonical 
Perturbation theory, mappings, etc. are at our disposal. 

Hamilton's equations for magnetic fields were indicated by Kerst (1962). The 
Hamiltonian character of the magnetic field was implicitly used by Spitzer (1958) 
in the paper in which he presented the stellarator concept, and by Kruskal 
and Kulsrud (1958). More explicit references to the Hamiltonian relationship 
were made by Rosenbluth, Sagdeev and Taylor (1966), Filonenko, Sagdeev and 
Zaslavsky (1967), and by Grad (1967). The field-line problem in the context of 
Hamiltonian mechanics is discussed by Lichtenberg and Lieberman (1983), who 
provide more references. Other references to the Harniltonian nature of field lines 
were given in Sect. 9.2. 

The simplest proof that field line trajectories are derivable from a Hamilto- 
nian was suggested by H. Weitzner (according to Boozer (1985)). A globally 
divergence free vector field can be represented by a single-valued vector potential 
A(R). If we consider a set of variables (Q, 6, c), where Q is a radius-like variable 
characterized by Q = 0 along the magnetic axis, we can write for the vector field 
A(R): 

Here A,, A,, and A, are single valued functions of (Q, 6,r). Note that Q is in general 
not a flux-surface label because flux surfaces may not exist. 
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We know that a magnetic vector potential is determined up to an additive 
term, which is the gradient of a scalar function, VG(e, 6,r). Indeed, we have that 
B = V x A = V x (A + VG). Therefore, we could choose a G such that dG/dQ = 
A,, G = 0 at Q = 0, dG/dO = A, - Y and dG/dc = A( - @. Y and @ are two 
single-valued functions that will be interpreted below. With this choice for G, we 
have 

A = Y V B + @ V c +  VG. (9.4.2) 

Upon taking the curl of this vector potential, we obtain for B: 

This representation of B is known as the canonical form. An alternative proof 
(for which B. Vc must be non-zero) was given by Boozer (1985). 

The expression in (9.4.3) resembles the flux-coordinate representation of 
(9.3.3), but the similarity is superficial; (9.3.3) is only valid for a B field with proper 
magnetic surfaces everywhere, whereas (9.4.3) is valid for any magnetic field in a 
toroidal device. The difference is that in the flux-surface representation, both 
and I(l, are functions of only the flux label 0. In other words, $, = $,($,) only. 
The functions Y and @ of (9.4.3), on the contrary, are both functions of the three 
variables, Q, 8, and c: @ - @(e, 6, c), Y = Y(Q, 6, c). Because Y and @ depend on 
all three coordinates e, 8, c, it follows that 8 and C are arbitrary (poloidal and 
toroidal) angles, whereas the 8, and cf in (9.3.3) must be flux coordinates for (9.3.3) 
to be valid. 

From the knowledge of B(R) everywhere, it is possible to construct functions 
Y and @ such that B is represented by (9.4.3). This will be discussed below. We 
first give a physical interpretation of Y and @ after which we shall indicate the 
connection with Hamiltonian mechanics. 

It is possible to infer the following statement from the formal similarity 
between (9.3.3) and (9.4.3), but a rigorous proof can also be constructed. The 
function Y(Q, 6, c) measures the toroidal flux through a constant Y surface: the 
toroidal flux equals 2nY. Similarly, 27r@ is the poloidal flux outside a constant 
@ surface (i.e., through a disk tangent to a constant @ surface). The formal proof 
makes use of (9.4.3), the expression for a surface element in a constant ui surface, 
dS(i) = &dujduk Vui, the definition of (flux through surface ui = constant) = 
11 B.dS(i), and the fact that @ - @(disk) with d@ = -d@(ribbon). Note that 
the surfaces Y(Q, 8, c) = constant and @(Q, 6, c) = constant do not coincide, in 
general. Also, in general, B- VY # 0 # B. V@. Only in a system where flux 
surfaces exist are @ and Y equivalent., In that case, Y can be taken equal to t,ht 
while @ - $,. 

As mentioned above, (9.4.3) is called the canonical representation of B 
(Boozer 1985). The reason is that the four functions, @, Y, 6,c can be considered 
as canonical variables in a Hamiltonian context. @ will be identified with the 
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"Hamiltonian", [ with the canonical "time", Y with the "momentum", and 8 with 
the "coordinate". 

To see this, we first eliminate the "auxiliary" variable Q from the problem 
and consider @ as a function of the coordinates, Y, 8, [; so @ = @(Y,',8 l). In 
terms of Y, 8, [ coordinates, the equation of a field line reads: 

To find B.  VY, we dot multiply (9.4.3) with VY and obtain 

But with V@ = (a@/dY) VY + (a@/a8) V8 + ((a@/a[) V[, this last equation be- 
comes 

Therefore, we have: 

Analogously, from the second and third equations, we have 

Thus, after identification of [ with t, of @ with - H, of 8 with the coordinate 
q, and of Y with the momentum p, (9.4.7) and (9.4.8) are Hamilton's equations 
of motion: p = -aH/aq and 4 = aH/ap. To emphasize this result, - 0 is called 
the field-line Hamiltonian. Because they satisfy Hamilton's equations, (9.4.7) and 
(9.4.8), Y and 8 are canonical variables or conjugate variables. 

It is sometimes useful to consider the time as a coordinate and the negative 
Hamiltonian as its conjugate momentum. This then allows us to consider [ and 
@ as canonical variables as well; hence the name canonical representation for 
(9.4.3). 

The underlying idea is that in the general case, our magnetic-field Hamilto- 
nian is dependent on toroidal angle [ or on "time". We are thus dealing with a 
"time" dependent Hamiltonian problem in one degree of freedom (characterized 
by one coordinate and one momentum). It is now possible by means of canonical 
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transformation to "transform away" the time dependence by considering an 
"extended phase space", where Hamilton's equations are parameterized by a new 
"time" +r (Lichtenberg and Lieberman 1983): 

The new Hamiltonian is time independent. 
We are now dealing with an equivalent time-independent Hamiltonian in 

two degrees of freedom (2 coordinates and 2 momenta). This permits use of all 
the computational tools that have been devised for conservative systems. It also 
makes it clear that the field-line problem is characterized by a similar level of 
complexity as a two degree-of-freedom system, and this implies the existence of 
stochastic field-line behavior. 

When flux surfaces exist, the magnetic field line Hamiltonian is only a 
function of Y: - Q0 = - O0(Y), since then @, r +,(Q) = +,(+,). This means that 
the Hamiltonian is in action-angle form and that the action Y (denoted J in 
Hamiltonian mechanics) is a conserved quantity, while the angle 8 = 8, depends 
linearly on the toroidal angle [ = Cf (Hamiltonian time t). The latter relationship 
is exactly the equation of a field line in flux coordinates 

The rotational transform t plays the role of a constant "frequency" in the 
action-angle picture. 

In Hamiltonian language, a magnetic field with perfect magnetic surfaces 
everywhere is integrable (Lichtenberg and Lieberman (1983); Goldstein (1981) 
uses the word "separable"). Since we are interested in magnetic field configura- 
tions that have "reasonably good" surfaces in the sense explained in Sect. 9.2., 
we also wish to consider near-integrable systems, where the canonical variables 
of the field-line Hamiltonian are chosen so that the Hamiltonian is a function of 
the canonical momentum (= action) alone, plus a small perturbation. Such 
Hamiltonians are said to be in "near action-angle form." In our field-line case 
considered above, it would look like: 

The field-line Hamiltonian contains all the information on the existence of 
surfaces, islands and stochastic regions. The near-integrable Hamiltonian prob- 
lem is treated by means of the canonical perturbation theory of Hamiltonian 
mechanics (see Goldstein (1981), and Lichtenberg and Lieberman (1983)). 



174 9. Canonical Coordinates or "Generalized Magnetic Coordinates" 

9.5 Practical Evaluation of the Field-Line Hamiltonian 

Critical to this evaluation of the Hamiltonian function @ ( Y ,  8, C )  is the assump- 
tion that the given magnetic field B(R) is close to one with perfect magnetic 
surfaces B,(R). The method to be discussed was developed by Boozer (1983), and 
the numerical implementation of it has been considered by Kuo-Petravic and 
Boozer ( 1  986). 

By analogy to the case where perfect surfaces exist, we are interested in the 
transformation equation R($,, O f ,  C, ) .  Here (Q, 8, C )  are set equal to ( $ , , O f ,  [,), 
being the flux coordinates for the magnetic field related to the unperturbed 
Hamiltonian @ , ( Y )  - @,(~,b,). Note that the angles of the canonical set are 
arbitrary, thus it is perfectly legitimate to make this choice. 

We can no longer evaluate Rmn($,) and t($,) for all values of $,. However, it 
can still be done over much of the plasma volume, for many $, values of 
interest. Smooth interpolation between these values then leads to R,($,) or 
R(+,, O f ,  i f )  and +($,). Knowledge of these quantities allows the construction of 
the "gedanken" field with perfect surfaces B,, according to (9.3.6a), in which the 
left-hand side now reads B,. Keep in mind that ($,, Of ,  C , )  are not flux coordinates 
for B, only for B,. Thus B,. V$, r 0, but B .  V$, # 0. According to Boozer (1983), 
($,, O f ,  C , )  form an appropriate system for determining Y and @. 

When we consider (9.4.3) with 8 = O f ,  C = C, ,  Y = Y(llr,,8,,[,) and @ E 
@($,, O f ,  C, ) ,  and expand VY and V@ along the basis vectors V$,, VB, and VC, 
via the chain rule, we obtain 

The usual way to write Bin terms of contravariant components is 

If we now substitute the ei o ej "back and forth transformation", given in (9.3.5) 
into (9.5.2), and use its dual form, 

in the B .  Vui expressions of (9.5.2), we obtain after comparing with (9.5.1): 

and 
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The right-hand side of these equations is known, since B(R) is given and 
R($,, O f ,  C, )  is known after field-line integration and Fourier decomposition. In 
fact, the last two equations determine Y and @. The first one can be dropped as 
it does not provide any new information; it is consistent with the other two 
equations, since its derivation was based on the general form of B in (9.4.3), which 
in turn was based on (9.4.2) and B = V x A and thus on V .  B = 0. 

Integration of (9.5.4b) and (9.5.44 allows determination of @($,,Of, C f )  and 
Y($,, O f ,  C , ) .  In practice, one picks a number of different 0, and (, values and uses 
a fast Fourier transform. After elimination of the "auxiliary" radial variable $,, 
one obtains the field-line Hamiltonian - @ in terms of its variables (Y, O f ,  C f )  in 
Fourier decomposed form. 

The nature of 8, and C , ,  being flux coordinates for B,, is not important for 
the canonical representation of B. Other coordinates, Q, 8, and C can do the job 
as well. This alternative and more general set was used by Kuo-Petravic and 
Boozer (1986). In terms of these general coordinates, the field-line Hamiltonian, 
in Fourier decomposed form, is 

@, is the 8, [ averaged part of @ and is the Hamiltonian of B,. Since Y is known 
as a function of 8, C )  it is possible to construct the canonical transformation 
equations from Cartesian coordinates R(x, y, z) to ( Y ,  8, C )  as R(Y,  8,() .  All the 
information regarding the magnetic field is contained in the functions @ ( Y ,  8, C )  
and R(Y,  0,C). A typical example based on the theory outlined above has been 
worked out by Kuo-Petravic and Boozer (1986). 
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In the third and last part of this book, we deal with five subjects that are related 
to some issues we addressed in the earlier chapters, but which, in the interest of 
not interrupting the flow of reading, have been postponed until the end of this 
treatise. In some cases, the topics to be covered now are clarifications of material 
discussed earlier; in other cases, they should be seen as additional information, 
given for the sake of completeness. (The topics covered do not necessarily reflect 
a preference by the authors; the subjects presented themselves automatically 
during the course of writing.) 

In Chap. 10, we treat "proper" toroidal coordinates. This coordinate system 
is to be considered as a three-dimensional version of the bipolar coordinate 
system. Although this system is not frequently used for toroidally-confined- 
plasma computations, we think it is important that the reader should be aware 
of its existence, and understand the fundamental distinction between this system 
and those treated in earlier chapters. 

Chapter 11 deals with the dynamic equilibrium of an ideal tokamak plasma. 
Fully realizing that the notion of an infinitely conducting plasma only has 
meaning in a scaling sense (i.e., that the zero-resistivity plasma is an asymptotic 
case), we interpret a + co literally, and consider the consequences for a tokamak 
"through" which the transformer is pumping magnetic flux. We show that both 
the plasma and the flux surfaces move radially inward due to the presence of a 
perpendicular electric field, confirming the frozen-flux theorem. 

In Chap. 12, we clarify the relationship and the distinction between the 
specific flux volume dV/d Yt0, and the "proper" length of a field line j d l / ~ .  

Chapter 13 treats the transformation properties of vector and tensor com- 
ponents. It clarifies the names covariant and contravariant. It also makes clear 
why the normally used Levi-Civita symbols and the Christoffel symbols do not 
qualify as tensors. 

Finally, in Chap. 14, we give two alternative derivations of the divergence 
formula. Although the derivation given in Chap. 2 suffices from the "result" point 
of view, it is interesting to see how (more elaborate) approaches, used frequently 
in the mathematical-physics literature, lead to the same result. 

10. "Proper" Toroidal Coordinates 

10.1 Introduction 

"Proper" toroidal coordinates are not frequently utilized for describing the 
physics of toroidally confined plasmas. However, they have been employed 
occasionally (Shafranov 1960 and Fielding and Hitchon 1980). Furthermore, 
these coordinates have their own intrinsic value, since many problems in mathe- 
matical physics in toroidal geometry have made use of them (see e.g. Morse and 
Feshbach 1953). 

"Proper" toroidal coordinates are constructed by three-dimensionalizing 
the two-dimensional "bipolar" coordinate system by means of a rotation, just 
like spherical coordinates are the three-dimensional generalization of the two- 
dimensional polar system. We will first introduce the bipolar coordinate system 
in an intuitive way, explain its meaning, and simply write down the equations of 
the constant coordinate curves. Then we show the analogy between the 3-D 
spherical system and the 2-D polar system. Next, we will exploit this analogy to 
construct the "real toroidal" coordinate system. Finally, we derive the equations 
of the 2-D bipolar system, a task that we postpone until the end in order not to 
interrupt the logic. 

10.2 Bipolar Coordinates: Intuitive Considerations 

In two dimensions, we always work with curves, not with surfaces. The position 
of a point is determined by the intersection of two constant-coordinate curves 
u1 = c1 and uZ = c2,  where c1 and cZ are constants. The two-dimensional bipolar 
coordinate system is based on two intersecting families of circles, q = constant 
and < = constant, as shown in Fig. 10.1. These curves resemble the loci of 
constant electrostatic potential and electric-field lines of two point charges of 
opposite signs located at points A and B. The coordinates < and q of a point P 
are defined as 

< = a l - a ,  and q=lnr:) 

where d l  and d ,  represent the distances from the fixed points A and B to the 
point P, respectively, and a ,  and a ,  are the angles between the x-axis and the 

! 
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Fig. 10.1. Constant coordinate curves of the two- 
dimensional bipolar coordinate system 

Fig. 10.2. Definition of the coordi- 
nates q and 5. 5 = a, - a,; q = 

In(d,ld,) 

lines AP and BP. These quantities are shown in Fig. 10.2. The transformation 
formulae are 

a sinh q 
x = (10.2.2a) 

coshv-cost; O < t ; < 2 ,  

a sin 5 -00 < q <  +00 
Y =  

cosh q - cos 5 (10.2.2b) 

and the constant coordinate curves are given by 

where a is defined in Fig. 10.2. Both constant coordinate curves are circles. One 
family has its center on the y-axis (10.2.3), the other on the x-axis (10.2.4). Their 
radii are dependent on the values of t; and q. Note that the family represented 
by (10.2.3) passes through the points A and B for all values oft;. 
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10.3 The Relationship of 3-D Spherical Coordinates 
to 2-D Polar Coordinates 

Now, we compare the transformation formulae of the common 2-D polar co- 
ordinate system of Fig. 10.3 with the 3-D spherical system of Fig. 10.4. The latter 
is obtained by rotating the 2-D system about its y-axis, after which we rename 
the axes: the 2-D y-axis becomes the z-axis of the 3-D system, and the 2-D x-axis 
is now identified with the axis denoted by an asterisk (*) in Fig. 10.4, which we 
now call the p-axis. Thus, the 2-D x-y plane can be thought of as the z-p plane 
in 3-D. Then the 3-D x- and y-axes are constructed such that they make a 
right angle with each other, and f, 9, i form a right-handed basis. Note that 
p = in the 3-D system. The location of the p-axis is fixed by prescribing 
an angle 4 such that x = p cos q5 and y = p sin 4. If we now observe that the angle 
8 in 3-D is measured from the 3-D z-axis (our former 2-D y-axis), whereas angle 
8 in the polar system is measured from the 2-D x-axis (the p-axis in 3-D), then 
we know that sin 8 in 2-D should be replaced by cos 8 in 3-D and vice-versa. 

Fig. 10.3. Two-dimensional polar coordinate system. P has coordinates 
(r, 0) 

O= const 
cone 

Y 
plane 

\ \  ( * Fig. 10.4. Three-dimensional spherical coor- 
dinate system. P has coordinates ( 4 ,8 ,4 )  
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Thus, the 2-D equations x = r cos B and y = r sin 8, become in 3-D: Q = r sin 8 
z = r cos Q (r and r are defined in Figs. 10.3 and 10.4, respectively; in the present 
context, r = r). By using then the angle 4, we also obtain x and y in the 3-D 
system. Schematically, we have thus 

2-0  Polar 3 - 0  Spherical 
x = r c o s 8  -+ @ = * s i n 8  -+ x = rsin8cos4 

The constant coordinate curves are "transformed in a similar way to constant 
coordinate surfaces. We see that the 2-D x2 + y2 = r2 = constant circle becomes 
a sphere: Q' + z2 = r2 = constant or x2 + y2 + z2 = r2 = constant. The 2-D 
straight line 8 = constant is transformed into a cone 8 = constant. The third 
constant coordinate surface is a new one, originating from the (rotation) angle 
4 = constant. 

10.4 "Proper" Toroidal Coordinates as a 3-D Version 
of Bipolar Coordinates 

Completely analogously, we can now establish the "proper" toroidal coordinate 
system by rotating the 2-D bipolar system of Fig. 10.1 about its y-axis, such that 
the t = constant circles go over into spheres, while the q = constant circles become 
tori. With similar replacements as above, i.e., x(2-D) -+ Q = ,/= (3-D), 
y(2-D) -+ z(3-D), a (rotation) angle [ such that x(3-D) = ~ c o s  C and y(3-D) = 
Q sin C, and with (the old bipolar variables) t and q now retaining their original 
meaning in contrast to the Q H 8 relationship, we obtain 

a sinh q 
X = 

cosh q - cos [ (COS C) 

and 

a sinh q 
Y = c o s h q - - c o s ~  (sin C) 

from (10.2.2a). According to (10.2.2b), we have then for z: 

a sin t 
Z = 

coshq-cost ' 

If we take the toroidal coordinates as (t,  q, C) in that order, then a right-handed 
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system implies that [ should be measured from the x-axis towards the y-axis. 
This clarifies the above relationships between x, y, and C. 

The equations for the constant coordinate surfaces are easily obtained from 
(10.2.3) and (10.2.4) by using our prescription above. Thus, 

x2 + y2 + (z - acot [)' = a2 csc2 t ; [ = constant , (10.4.2a) 

is the equation of a family of spheres with center on the z-axis (at z = acot t )  
and radius (a csc t). Also, 

((x2 + Y2)1/2 - acoth q)2 + z2 = a2 csch2 q ; q = constant , (10.4.2b) 

represents the equation of a toroidal surface, with the minor axis having a radius 
(acoth q). The cross sections with the z - Q plane ([ = constant plane) are circles 
with radius (acschq). Finally, we have a plane [ = constant (the z - q plane) 
with equation 

The coordinate system is an orthogonal one, and its scale factors hi are 

la sinh ql 
h - 
5-cosht l -cos t  

' 

10.5 The Bipolar Coordinate System: A Detailed Analysis 

Our last task is to derive (10.2.2) for the bipolar system. (See e.g. Margenau and 
Murphy 1976.) We find it convenient to introduce a complex variable u, defined 
by u = x + iy. Its complex conjugate is denoted by u* = x - iy. Since x = 
(u + u*)/2 and y = i(u* - u)/2, we would like to find expressions for u and u* as 
functions of the bipolar variables t and q defined in (10.2.1). From Fig. 10.2, we 
obtain that 

If we write the first equation as u - a, the second as u + a, and divide the two 
by each other, we find 

Here, we have used the definition equations of t and q given in (10.2.1). Then 
from (10.5.2), it follows that 
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e-i(S+i" + 1 e-iw + 1 - Analogously, with the definition of q, and the Pythagorean theorem, we 
= ae-i(t+iq) - 1 - am 

with w = 5 + iq. From the Euler formula, eiw = cos w + i sin w, and thus, tan w = (d2)2 ( x + ~ ) ~ + Y ~  - ,29 = - - 
sin w/cos w = i(e-'" - eiw)/(e-'" + eiw) = i(l - e2'")/(1 + eZiW), so we can re- (x - a)2 + y2 
write (10.5.3): 

- x2 + y2 + a2 + 2ax - u = + ia cot(w/2) x2 + Y2 + a2 -2ax 
' 

u* = -iacot(w*/2) . After some rearranging, (10.2.4) is recovered. 

Now, we substitute (10.5.4) into x = (u + u*)/2, and use the identities cot p = 
cos plsin p, w = t + iq, w* = 5 - iq, cos p - cos q = -2 sin(p + q)/2 sin(p - q)/2, 
and sin(p - q) = sin p cos q - sin q cos p, in order to obtain: 

sin iq 
x = ia 

cos t - cos iq ' 

Since sin(iq) = i sinh q and cos(iq) = coshq, this equation leads to (10.2.2a). The 
computation of (10.2.2b) is completely analogous. 

Finally, we compute the constant coordinate curves given in (10.2.3) and 
(10.2.4). From the trigonometric identity tanp = i(1- e2'P)/(1 + e2'P) given above, 
we derive easily that 

If we now observe that tan a, = y/(x - a) and tan a, = y/(x + a), we obtain upon 
using (10.5.5) with p = al ,  and subsequently, p = a,: 

i + y/(x - a) 
- ln 

i + y/(x + a) 
t = a l - a 2 = i [ l n (  2 

i - y/(x - a) ) ( i - y/(x + a) )] 
i ( ix - i a+y) ( ix+ ia -y )  

= I n  
2 (ix - ia - y)(ix + ia + y) 

i x2 + y2 - a2 - 2iay 
= -In 

2 x2 + y2 - a2 + 2iay 

After taking the anti-logarithm, and factoring, we find 

x2 + y2 - a2 + 2iay (g) = 0 

or 

~ ~ + ~ ~ - - a ~ - 2 a y c o t ~ = O .  

With csc2 5 = 1 + cotZ t, we retrieve (10.2.3). 



11. The Dynamic Equilibrium 
of an Ideal Tokamak Plasma 

11.1 Introduction 

To acquire a good understanding of the relationship between the different flux 
measures in a tokamak ('Y,,,, P i , ,  'Ip,), a careful investigation of the time evolu- 
tion of the flux surfaces in an ideal plasma (with a + a) is called for. Plasma and 
flux surfaces will be shown to move in response to a time-varying transformer 
flux. 

In this Chapter, we do not intend to "prove" relationships, but only to make 
certain statements plausible. We shall make use of certain ideas that are familiar 
to most readers, but which have not been discussed in detail in previous chapters, 
where we referred to this Chapter. 

11.2 A Useful Identity in Tokamak Geometry 

The representation of the magnetic field in terms of the contravariant-basis 
vectors Vui is discussed in Sects. 6.1-3. In an axisymmetric tokamak, with 
symmetry angle C,, the magnetic field can be written (see (6.3.10)) as: 

We assume that the toroidal field B, and the poloidal field 4 are in the positive 
i, and 0 directions, respectively. Y is the radial variable and is related to Y,",, by 
Y = - Y~,,/27t (apart from an additive constant which is unimportant here but 
which will be mentioned at the end of this Chapter); VY;, points radially inward, 
whereas VY points radially outward. I is a flux-surface quantity equal to BTR 
and VC,. VY = 0. As a consequence of this last property, it follows from (1 1.2.1) 
that I VYI/R = Bp or I VY( = REp. 

A very useful geometric relationship that we shall use below can be derived 
from the B representation in (11.2.1): we wish to decompose the component 
perpendicular to B, which is tangent to the flux surface ( a  B x  VY), into a 
toroidal component ( a  VC,) and a parallel component ( a  B). Take the cross 
product of VY with (1 1.2.1): 
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The expression between brackets of the first term equals (I VC, - B). To the last 
term we apply the bac-cab rule and take into account that VC; VY = 0. We 
obtain 

The unit vector perpendicular to B, but tangent to the flux surface is then 

Recalling that I VYI = R h ,  

11.3 The Existence of an Electric Field in a Tokamak Plasma 
with Infinite Conductivity 

A time-varying magnetic flux through the core of a transformer "generates" a 
non-electrostatic electric field E(A).'r which is tangent to any circle symmetric 
about the core of the transformer (see Fig. 11.1). The superscript (A) indicates 
that we are dealing with an E due to a aA/at (and not a V@). The value of E(A)7'r 
at any position can be found from the law of Faraday-Lenz. 

Next we consider a torus encircling the transformer core (Fig. 11.2). Suppose 
that the torus is an ideal conductor, a -+ a. There cannot exist an electric field 
in this ideal conductor, and Faraday's law is now obeyed via the generation of 
a surface current in response to a d P / d t  such that Y,,,,,,, remains constant. 
Said differently, the changing current density J generates a changing poloidal 
magnetic field whose flux change through the hole of the disk cancels d!P/dt 
exactly. Still another way of looking at it is that the electric field E(A),'r due to 
the transformer is cancelled by an equally large, but reverse electric field E(A),rcact 
generated by the changing poloidal field so that at any moment E(A)*'O' = 0. In 
terms of loop voltages, e = 1 E(*)."2nR) equals Id P/dt l ,  whereas, E(A),rcac'27cR( 
is related to ILdi/dtl, where L is the self-inductance of the torus ring, and i is 
the current. Hence, the current i changes proportionally to !P. 

The situation is different in a tokamak plasma. In Fig. 11.3, we consider a 
typical flux surface containing an ideal plasma at an instant t = to. At this time 
t = to, a spiraling magnetic field is present (B, = BTo + Bpo) as well as a non-zero 
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Fig. 11.1. Vacuum electric field E'-",", induced by a changing flux in 
the transformer: d Vtr/dr 

B due t o 7  % 

Fig. 11.2. The net electric field 
in an ideal conductor encirc- 
ling a transformer is zero: 
p A l . r s a s 1  = - p A ) . t r  . s ee text 

due 
Jl I 

Fig. 11.3. Electric-field components, current-density components and magneticfield components in 
an ideal plasma in response to an increasing transformer flux. See text 
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current density Jl l , .  We assume that the transformer flux has been increasing - 
say, linearly - from t = 0 to t = t o ,  and will continue to do so for t > to .  (The 
(perpendicular) diamagnetic current which is necessary for equilibrium does not 
influence our explanation here and is not mentioned henceforth.) The current 
density J l l o  is not only a surface current, but must exist inside the plasma to 
generate the poloidal magnetic field. 

The requirement in an ideal plasma is that there cannot exist an electric field 
parallel to B ,  since that would cause the current to blow up. In response to a 
linearly increasing !Pr, the current density JIl  will also increase linearly, somewhat 
similarly to the case considered in Fig. 11.2. In simplistic terms, as far as the 
current response is concerned, the tokamak case that we are dealing with now, 
could be compared with an ideal conductor in which the current is forced to flow 
helically; all + co along the helix, a ,  + 0 perpendicular to the helix. (We shall 
show below, however, that JII  not only increases on the flux surface that we 
isolated, but also further inside the plasma.) The increase in Jll  during a small 
time interval At is represented by JI;. The increasing current density Jl l  = J l l o  + JI; 
has components in the toroidal and poloidal directions. Its toroidal component 
opposes the increase of flux through the hole (disk) of the toroidal surface (in 
much the same way as was the case in Fig. 11.2). The electric-field component 
"generated by this changing toroidal component of Jl l  (and thus the changing 
poloidal field l$.) is labeled by E$A,'.reac'. However, because the current density J 
is spiraling around, it will not be able to cancel the total electric-field component 
E$A).Lr. (The subscripts T specify that the E-fields are in the toroidal direction.) 
So we might expect that a net toroidal component of E will survive. This is 
explained momentarily. 

The poloidal component of the increasing Jll increases the toroidal magnetic 
field. The change in BT during At is denoted by B;. Application of Faraday's law 
along a poloidal loop shows that an increasing BT = BTo + B; sets up a poloidal 
electric field. In Fig. 11.3, this field is indicated as EbA).'""'', since it follows from 
the "reaction current" J l l .  Since a poloidal E-field has a parallel component, and 
no net parallel electric field can be tolerated, there must be another electric-field 
component that cancels this parallel component of E$A)*reac' . As shown in Fig. 
11.4, that field must be toroidal, so that the only surviving electric field is in the 

n Ep -has co-mponents 

' F, A\/" E,, 8 El,,=; 
E,  YET has components - 

1 8 E1.2sE 
- 

zI= 7;+g 

Fig. 11.4. Perpendicular and parallel components of E, and &; see text 
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perpendicular direction. This is exactly the surviving toroidal electric field we 
alluded to in the former paragraph (see also, Hinton and Hazeltine (1976), 
p. 252). In contrast thus to an ideal conductor (as in Fig. 11.2), there can be a 
toroidal electric field component because the magnetic field spirals (as long as 
the total E is in the perpendicular direction). The fields EiA) and EhA) are constant 
in time for a linearly increasing transformer flux. Although we did not say so, 
they obviously were already present from t = 0 to t = to .  

The fact that a perpendicular E field can exist in an ideal plasma should be 
no surprise, since in a fully ionized plasma, the "perpendicular conductivity" 
defined as the proportionality constant between current density and electric field 
is zero. (The perpendicular conductivity found in the literature is the propor- 
tionality constant between the perpendicular current and the perpendicular 
friction force in analogy with the parallel one.) Rather than causing a current, a 
perpendicular electric field causes an E x B fluid motion (see Golant, Zhilinsky 
and Sakharov (1980) and Braginskii (1965)). Note that, even if we had assumed 
that Jll were only a surface current (in analogy with the ideal conductor), a field 
E',A) would still have existed inside the plasma. 

11.4 Motion of the Plasma and the Flux Surfaces 

11.4.1 Plasma Motion due to E x B Drift 

When an electric field is present in a plasma, the latter will move with a fluid 
velocity E x BIB2. In the case we are considering here, we find that the plasma 
pinches radially inward. Letting v denote the plasma fluid velocity, we compute 
the radial "velocity" as follows: 

E x B  - B x  VY 
V .  V'Y = v'Y.---- - E.- 

B2 B2 

By means of the geometric identity of (1 1.2.3), this gives 

or with 

Ell = E . B  and ET = E-go = E .  R V[,, 

I 
v . V Y = - E l l - R E T .  

B 

In our ideal plasma, the infinite conductivity requires that Ell vanishes, so we 
obtain 

In the last expression, the label (A) has been added to the electric-field symbol. 
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EkA) is the net toroidal electric field, part of which is caused by the transformer, 
and a (counteracting) part is due to the reaction currents dJll/dt. VY is radially 
outward, and EkA) is a positive number (see Fig. 11.3); it thus follows that the 
plasma pinches inward. 

11.4.2 Motion of Flux Surfaces Defined by the Poloidal Disk Flux Y:o, 
Consider now the flux surfaces labeled by Y,",,, the poloidal disk flux. We define 
the flux surfaces by Yjol = constant. This implies that at that surface 

After expanding dldt as a convective derivative, we get 

Here us is the velocity of a flux surface Y,"O, = constant. Note that only radial 
flux surface motion makes sense physically. 

To find an expression for the partial derivative in (1 1.4.6), we start from the 
"radial" contravariant component of Faraday7s law: 

Since B is by definition tangent to a flux surface, we know that B. VY = 0. It 
then follows from a(B. VY)/at = 0 that VY. dB/& = - B. a VYIat. Since we are 
dealing with smooth quantities, we can interchange the Vand d/at operators to 
obtain 

For the right side of (1 1.4.7), we observe that 

Because u3 = lo and a/a[, - 0 as a consequence of axisymmetry, we see that only 
the Eco (covariant) component is of concern. Thus, 
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In this derivation we have used the fact that 

since a/aco = 0 and Vc; VY = 0 = VC; V8, all because of axisymmetry. We 
employed E = ~ , e ,  = Eco VC,, where Vc, = e , / ~ .  Faraday's law is then, from 
(1 1.4.8) and (1 1.4.9), 

This means that 

ay 
- = RE, + flux function . 
at 

With Y = - Y,d,1/2n, and with ET = EkA), the net electric field, we see that the 
flux function can be chosen to be zero. (This follows from the integral form of 
Amp6re's law where a C, loop is taken through point A of Fig. 11.3.) The time 
rate of change of the poloidal flux through a disk bounded by a fixed C, loop is 
thus 

% 1 fix, = - 2nREkA) . 
at disk 

After substitution of this result in (1 1.4.6), the latter can be solved for the radial 
flux-surface "velocity": 

(In u,d, s stands for surface and d for disk.) Taking into account that Y = - Y$,/2n, 
we observe from (1 1.4.4) and (1 1.4.13) that the plasma E x B inward pinch 
velocity is exactly equal to the radial velocity of the flux surfaces. This is a 
statement of the frozen flux theorem: plasma and flux surfaces are tied together. 

An observer sitting on (and moving with) the plasma will find that the 
fluid-pinch motion generates a motional EMF. The electric field connected with 
this motional EMF is exactly the negative of the electric field that caused the 
E x B inward motion in the first place. This is as it should be: an observer moving 
with the plasma, or thus the plasma itself, does not see any electric field. The 
electric field is only present in the lab frame. 

11.4.3 Motion of Flux Surfaces Defined by the Poloidal Ribbon Flux Ppl 

Suppose now that we wish to label a flux surface by the poloidal ribbon flux (see 
Fig. 11.3). To actually show that the flux surfaces labeled by 'Y",, = constant 
move with the same radially inward velocity as the plasma, we return to (1 1.4.10) 
or (1 1.4.1 1). When we now identify Y = Vpo1/2n, we must recognize that the 
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ribbon flux does not know about the transformer; all it contains is the "reaction 
flux" due to an increase of B,, and (Jll),. The integration constant that we called 
the "flux function" in (1 1.4.1 1) is the ubiquitous space independent transformer 
loop voltage (devided by 2n) e(t)/2n = = $E-dl/2n = Id !P/dtl/2n that 
we encountered in Fig. 11.1 (e(t) is spatially uniform, but E(A),tr a 1/R). Instead 
of (1 1.4.12), we obtain for the case of the ribbon flux: 

The appropriate signs can be understood from (1 1.4.12): Y = !PL,/2n and E$A'-react 
- - ~ k A ) , r e a C t  6, A = - I ET (A),react 16,; A thus EiA).reac' is a negative quantity (see Fig. 11.3). 

With the flux surfaces, qo, = constant defined in a similar way to (1 1.4.5), 
we find for their radial "velocity" 

From Fig. 11.3, it is clear that EkA)." + E(A),reac' T = EkA)vtr - 1 Er).reactl = Er) ,  where 
E r )  is the magnitude of the net toroidal electric field (EkA) > 0). Thus 

A comparison with (1 1.4.4) and (1 1.4.13) shows that, indeed, 

Thus plasma and flux surfaces labeled by a constant poloidal (ribbon or disk) 
flux move together. 

11.4.4 Motion of Flux Surfaces Defined by the Toroidal Flux Yt0, 

Finally, we show that the toroidal-flux label Ytor leads to a similar conclusion. 
We could invoke the general applicability of the frozen-flux theorem: the plasma 
and the flux surfaces (regardless of their label) move together. Simple manipula- 
tions with formulae, however, provide some physical insight: the toroidal-flux 
change should be connected with the poloidal electric field. 

To find the inward E x B plasma velocity, we first derive a geometric 
relationship for the component perpendicular to B in terms of poloidal and 
toroidal components. From (1 1.2.2) we obtain: 

The only induced E-field component present is in the perpendicular direction 
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and points in the +(VY x 8) direction. The E x B fluid flow is 

After multiplication of (1 1.4.18) with E(!), we find that the poloidal component 
of the electric field is given by 

With our conventions E'f) is positive (see also Fig. 11.4). The radial fluid velocity, 
in terms of the poloidal electric field is thus 

tor 
IVY I v.VJY =EY)?. 

BT 

In going from (1 1.4.18) and (1 1.4.19) to (1 1.4.21), we have converted Y into 
YtOr/2n. (We could have written down this result immediately from (11.4.4); 
multiply its RHS by Bp/Bp and after replacing RBp by I VYI, set ELA' = 

-(Bp/BT)Ea).) Note that VY in the relations (1 1.2.1), (1 1.2.3), (1 1.4.4) and 
(11.4.18), in fact, is the gradient of a poloidal flux (which is why we could set 
( VY I = RBp). However, VYtor K VYpo,, and the proportionality constant cancels 
in (1 1.4.21). 

For the motion of the flux surfaces, we go back to (11.4.7), (11.4.8) and 
(11.4.9). Because Be VYtor = 0, (11.4.8) holds for Y = yOr/271. Noting that 
t = 1 VY;o,(/I V!P,,,I, the magnetic field B, in terms of VKor equals 

If we go through the exercise of(11.4.9) for Y now replaced by Kor/271, and replace 
(Vc0 x VIY,,,) by 2n(B - I Vc0)/t, we obtain 

The combination of the adjusted (1 1.4.8) and (1 1.4.23) leads to 

Although the poloidal electric field component is completely generated by "re- 
action" currents, it is related to the net toroidal E-field via E$" = - ( B T / ~ P )  E'kA). 
Equation (11.4.24) holds for ET equal to both EkA) and E$~)."""' because of the 
operator B. Y It gives, upon integration, 
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For circular (idealized) flux surfaces, t = l/q = RBp/rBT, where r is the minor 
radius. Thus with RB,/B,t = r, it is clear that (11.4.25) is in agreement with 
intuition. 

The flux surface motion follows from d YtOr/dt = 0, expanded via the con- 
vective derivative, 

Again, the flux-surface motion (1 1.4.26) equals the radial plasma motion given 
in (1 1.4.21). For mnemonic purposes, one should think of ( VYto,J/BT - 271r. 

The physical picture is consistent. Plasma and flux surfaces, regardless of 
their labeling move radially inward together. By shrinking, the flux surfaces 
provide smaller areas for their (constant) contained fluxes. Consequently, both 
B, and B, increase (as we argued in Fig. 11.3). The increase of B, within the 
plasma is the reason why the parallel current must also increase inside the plasma 
and not only on the surface. (Recall that a toroidal current on a toroidal surface 
of radius ro influences only the magnetic field on the outside, for r > ro, not that 
on the inside.) 

11.5 Constancy of the Rotational-Transform Flux Function 

From our discussion above, we learned that the magnetic fluxes within the flux 
surfaces remain constant and therefore that the concept of flux surfaces as flux 
tubes retains its physical meaning. This also implies that the poloidal and 
toroidal fluxes for an infinitesimal shell of flux volume remain constant. The 
toroidal and poloidal components of the magnetic field increase proportionally 
so that t remains constant. Because of potential (notational) confusion when 
interpreting the literature, we shall now demonstrate the constancy oft.  

First, we need a relationship for the rotational transform in terms of the 
quantities appearing in the B-field expression, (1 1.2.1). By definition, the rota- 
tional transform is 

6 Pw, - VPw, dR 
+ = -  - 

6 F o r  VFor. dR ' 

Equation (11.5.1) stresses that t is related to the spatial variations of qo, and 
Ytor. The vector dR is an arbitrary differential position vector. The toroidal flux 
KO, equals 
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The differential toroidal flux 6 Ytor in terms of the poloidal ribbon flux label Y, 
i.e., 6 Y = 6 YiO1/2n, is then 

Recall that I = I(Y). Since the flux-surface average of a quantity @ is defined as 

we obtain for (1 1.5.3): 

With q = l/t = 6 YtOr/(2n6 Y), we get for the safety factor: 

The time rate of change of the safety factor q on a (moving) constant- Y flux 
surface can be related to its change at a fixed point R in space via the chain rule: 

The last form follows from changing the order of differentiation in 
a/a Y), a Y/at I, which makes this vanish. We now substitute the expression for 
q, given in (11.5.6) into the right side of (1 1.5.7). When we take into account that 
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because the volume of a flux surface through a fixed point R does not change, 
we obtain: 

For the second term, we shall substitute (1 1.4.14). The first term can be obtained 
from the toroidal component of Faraday's law as follows: 

and thus 

In Sect. 4.9.3. we prove the relationship: 

Therefore, (1 1.5.1 1) can be rewritten as: 

The quantity E .  Vlo x VY is proportional to the magnitude of the poloidal 
electric field component (in Fig. 11.3). With ( VY( = RB, and ( Vc0( = 1/R, we 
have that E .  Vco x VY = B,Er) = BPEbA).""". (Recall that ELA) = - JEbA)l.) After 
substitution in (1 1.5.9), we obtain 

- EkA) (see also Fig. 11.3), and Below (11.4.15) we saw that E ~ ) ~ "  + E$A).react - 
below (1 1.4.21), we stated that EkA) = -(Bp/BT)EbA). Taking into account that 
I = RBT then leads to 
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as argued intuitively above. 
The reader might get a false impression when consulting the literature. In 

most cases, the above analysis is performed for a finite-conductivity plasma 
(see, e.g., Stacey (1981) or Hirshman and Sigmar (1981)). Instead of identifying 
E.  VC, x VY in (1 1.5.13) with BpEr), we could have replaced VC, x VY by 
(B - I VC,). Then (11.5.14) would have been replaced by 

Now, for instance, Stacey (1981) does not clarify the term E\;L) further, although 
it is understood that it is our E\;L)J=~~'. One might get the impression that only 
his (E(,:)B) term must be set to zero as a + oo, while the "ubiquitous" e(t) 
survives, erroneously leading to a nonzero aqlat 1 y.  When interpreting (1 l.5.17), 
we must realize that the total parallel electric field must vanish. Since we have that 

the parallel E-field contribution of the transformer voltage must vanish as well 
in our ideal plasma. 

11.6 Remarks on the Evolution of a Finite-Resistivity Plasma 

When a finite-resistivity plasma (a # GO) is considered, the frozen-flux theorem 
no longer holds, and the plasma and flux surfaces "leak through" each other: the 
flux surfaces move inward faster than the plasma (the flux surfaces still obey 
(1 1.4.13), whereas the plasma follows (1 1.4.3)). Note, however, that in the toka- 
mak neoclassical banana regime, the radial inward pinch velocity, now called the 
neoclassical or Ware pinch, approximately equals the radially inward velocity of 
the flux surfaces. Thus even in the presence of collisions and therefore resistivity, 
the plasma and flux surfaces can remain tied together. For details, see Hinton 
and Hazeltine (1976, Chap. 3). Also, in a finite resistivity plasma, the parallel 
current does not keep increasing but saturates at a value equal to aE\;L). This 
can be understood qualitatively from an analogy with a circular conductor as in 
Fig. 11.2. When a + oo, the current follows the flux change Id Y/dt ( = Lldildt 1, 
where L is the self-inductance. When a is finite, the current levels off to the 
above-mentioned value as (1 - e-'/') with the time constant 7 = LIR. 
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A more detailed discussion of the plasma dynamics in resistive plasmas 
is beyond the scope of this book. To do a proper quantitative analysis, the 
equilibrium and transport equations must be considered simultaneously, and the 
problem must be solved self-consistently. Interesting considerations concerning 
classical and neoclassical transport are discussed in Hinton and Hazeltine (1976) 
and Hirshman and Sigmar (1981); see also, the other references given in Chap. 
4, above (4.7.7). 

11.7 The Relationship Between Poloidal Disk and Ribbon Fluxes 

Having considered the motion of an ideal plasma and flux surfaces embedded in 
it, we may say a few final words about the relationship between the poloidal disk 
and ribbon fluxes. In principle, the expression for the magnetic field given in 
(11.2.1), B = I VCo + V[, x VY, makes most physical sense for Y proportional 
to the poloidal flux inside the plasma: 

From Fig. 11.3, we see that the poloidal disk flux is related to the ribbon flux as 
follows: 

d - yltotal - y r  
Yp01 - pol pol . (1 1.7.1) 

The total poloidal flux, represented by q',",:"' is the flux through a disk bounded 
by the magnetic axis. It contains the transformer flux and the flux generated by 
the plasma currents. 

Above we showed that the time rate of change of the poloidal ribbon flux 
and the poloidal disk flux through the ribbon and disk, respectively, constructed 
through a fixed point A (on the line 0-MA, where MA stands for magnetic axis) 
are exactly opposite. Compare (1 1.4.12) and (1 1.4.14). This implies that the total 
poloidal flux remains constant. From the moving flux surface picture, we can 
draw the same conclusions: poloidal disk and ribbon fluxes are each conserved 
through their enlarging and shrinking areas, respectively, again establishing that 
the poloidal flux is constant. The above points out that 

Because yzl is merely a constant, it was not mentioned previously. Indeed, all 
we are concerned with are derivatives of fluxes. It did not appear in the time 
derivatives because of (1 1.7.2), nor in the gradient expressions, since V y $ '  = 0. 
For this reason, we could identify Y = 'Y",,/271 in (1 1.2.1) with - Y,",,/271 and not 
as in (11.7.1). We must have VY = VY;,,/271 = - VY&,/271, and so we may 
ignore the constant Vg?'. 
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Fig. 11.5. The net poloidal magnetic field B, is the sum of the vertical field B, and the field B,, 

In our discussion above, the vertical magnetic-field component, which is 
needed for equilibrium with respect to horizontal motion, has not been men- 
tioned. This is because the vertical field is merely part of the net poloidal field in 
the sense that it reduces the original poloidal field (due to the toroidal plasma 
current component) on the inside of the torus and strengthens it on the outside 
(see Fig. 11.5 for an idealized case). It is the net poloidal field including the vertical 
field that determines the position and the shape of the flux surfaces, which are 
"centered - not necessarily concentrically - about the magnetic axis. This is in 
fact the position where the net vertical field vanishes. 

The vertical field is varied in order to achieve a desired position of the plasma 
column. The required field has been calculated for tokamaks by Shafranov (1966), 
Shafranov and Zakharov (1972), and Greene, Johnson and Weimer (1971). See 
also Zakharov and Shafranov (1986). Formulae analogous to those of Greene, 
Johnson and Weimer (1971) were obtained for a stellarator by Fielding and 
Hitchon (1980). For elementary textbook discussions on the necessity of a vertical 
or "maintaining" field, see e.g., Bateman (1978); Golant, Zhilinsky and Sakharov 
(1980) or Stacey (1981). From the point of view of this discussion, the vertical 
field is not distinguishable from the other poloidal fluxes; the total poloidal field 
is still "frozen in". 

In this Chapter we have idealized and neglected many influences concerning 
the vertical or "maintaining" field. For an overview of some of these potentially 
important effects, see the review papers by Mukhovatov and Shafranov (1971) 
and Zakharov and Shafranov (1986). 

In most discussions concerning flux coordinates, this dynamic analysis is of 
secondary importance. One pretends that the flux surfaces are stationary and 
does not mention the time dependence. When we are interested in only the spatial 
dependences, time is merely a parameter, and we can establish the geometrical 
relationships at any time t .  

12. The Relationship Between dl/B and dV/d Y,., 

In many elementary discussions it is "proved in an intuitive manner that the 
specific volume v(KOr) = dV/d KO, equals the closed line integral $ dl/B. That this 
is true only in an approximate sense, and that a distinction is to be made between 
rational and irrational surfaces is discussed in the authoritative review paper by 
Solov'ev and Shafranov (1970). For completeness, we reproduce their arguments 
in this Chapter albeit converted to our notation. 

To evaluate Jdl/B, we make use of the equation of a field line in flux 
coordinates 

-- -- 
B V fi K o r  

Recall that eOr = d Y,or/d~. After multiplication in the numerator and the deno- 
minator by dV,de, we have 

In Chap. 4, we explained that 

If & is expanded in a double Fourier series in 8, and if as 

we obtain after substitution and integration in (12.1.3) 

The integral of (12.1.2) becomes, upon Fourier expansion, 
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The prime on the summation sign indicates that the term m = n = 0 must be 
omitted. Combination of (12.1.2), (12.1.5) and (12.1.6) results in 

We now define what is called the "proper length" of a field line: 

This integral is taken along a field line Of, = Of - tCf, from Cf = 0, to Cf = 271N. 
After performing the integral in (12.1.7), we have thus 

When the field line lies on a rational surface, it closes upon itself after, say, 
no circuits of the minor axis and mo toroidal circuits. For that field line, 

For this type of field line, N = m,. Making use of the fact that 

eiox - 1 
lim -- = a ,  
x+o ix 

we have then with a = 271N: 

From this expression, it is clear that the integral $ dl/B taken along different field 
lines on the same rational magnetic surface will, in general, assume different 
values, depending on the value of the field-line label Of,. (Recall that Of, is 
equivalent to v or jl in the Clebsch representation). In fact, depending on the 
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particular field-line label, U will oscillate about dV/d Ytor. The fact that $ dl/B is 
not always constant on a rational surface has serious consequences as was 
mentioned above. 

For the case of irrational surfaces, we observe that fd l /B  integrated from 
Cf = 0 to Cf = 271 should not be very different from the value of U(e, df0) on the 
nearby rational surface characterized by t = n,/mo. For a large number of cir- 
cuits, N + co, the function U(e, Of,) is averaged, with the result: 



13. Transformation Properties of Vector 
and Tensor Components 

In this Chapter we wish to investigate how the components of vectors and 
tensors change when another coordinate system is chosen. We want to find out 
what happens to the components under a general transformation of the form 
ui' - u'(ul, u2,u3) for i = 1, 2, 3. We find it convenient to use primes "on" the 
indices for quantities related to the new system; here, ui', rather than putting a 
prime or a bar on the u symbol, such as u" or ili. This is for notational purposes, 
since the indices then will match on the RHS and LHS of the equations. This 
will become clear below. 

13.1 Transformation of the Basis Vectors 

The first task is to find expressions for the basis vectors in the new coordinate 
system in terms of the basis vectors in the old one. Let there be two curvilinear 
coordinate systems (u', uZ, u3) and (ul', uz', u3'). Both systems are defined by 
transformation equations of the form 

There then exists a transformation directly from uj to ui' 

and vice versa: 

uj = uj(ul', uZ', u3') , or u j  = uj(ui') . 

(The only limitation we impose on these transformations is that the Jacobian is 
nonzero.) We define the local basis vectors in each system as usual: 

and 
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Since we can think of the dependence of R on ui' (as in R(ul', uZ', u3')) as being 
established via the uj, i.e., R(u'(ui')), we can apply the chain rule of calculus to 
(13.1.6) as follows: 

so that we have with definition (13.1.5) 

where a summation over j is understood. Observe that the indices on both sides 
of the equation "line up" as usual. Equation (13.1.8) is called the "direct" transfor- 
mation (from old to new). Application of the chain rule to the RHS of (13.1.5) 
leads to the coefficients for the "inverse" transformation 

The summation is over i ,  not over ir(i' does not exist by itself); the prime is simply 
attached to i to denote transformed quantities. If we would sum over i t ,  this would 
be a dummy index, and we could replace it by another, e.g., an unprimed index. 

Analogous operations can be applied to the reciprocal-basis vectors ei = Vui 
and ey = Vuy. Via the chain rule, we obtain 

and 

13.2 Transformation of Vector Components 

In order to find the relationship between the contravariant components of a 
vector A = Ajej = Ai'ei. in different coordinate systems, we substitute (13.1.9) 
into Ajej and equate it to Ai'ei,. This gives 
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The inverse expression follows from substituting (1 3.1.8) into Ai'ei, and equating 
it to A'ej 

A summation over repeated indices is implied, and the remaining index on the 
RHS is carried over to the LHS. 

Objects that transform in the same fashion (having primed and non-primed 
indices in the same place) are said to transform cogrediently (Mathews and 
Walker 1970; Springer 1962; Behnke 1974; Menzel 1961). Objects that transform 
the other way around transform contragrediently. It is now convention to name 
the transformation properties after the similarities with those of the tangent-basis 
vectors ei. Objects that transform cogrediently to the tangent-basis vectors (i.e., 
similarly to the e,) are called covariant objects. Those that transform contra- 
grediently to the tangent-basis vectors (i.e., differently from the ei) are con- 
travariant objects. 

A comparison of (13.2.1) and (13.2.2) with (13.1.8) and (13.1.9) respectively, 
shows that the primes in the partial deriviates are in the "wrong" places. There- 
fore, the components A' transform contragrediently to ei and are therefore called 
contravariant components. 

To find the transformation properties of the components of A which have a 
subscript, we start again from A = Ajej with Aj = A.ej. We now dot multiply 
this expression for A by ei, in order to obtain 

The scalar product of the basis vectors is a Kronecker delta 6i so that 

Similarly, the inverse transformation is 

Equations (13.2.4) and (13.2.5) use primes in the same places as the tangent-basis 
vectors of (13.1.8) and (13.1.9), explaining the namecovariant components for Ai. 

These transformation properties can be used as a definition of "vectors". A 
"vector" could be defined as an object whose components transform in the way 
explained above. Depending on which transformation property applies, we talk 
about its co- or contravariant components. This definition is probably the most 
familiar to physicists and engineers. 
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13.3 Transformation of Tensor Components 

The transformation rules given below are limited to second-order tensors. Gen- 
eralization to higher order is straightforward. We shall only state the transforma- 
tions because their derivation is completely analogous to that for vectors. Even 
better, we can simply write down the answer if we look carefully at the indices. 

The covariant components Fij of a tensor Fijeiej transform as: 

aum aun F. = F  -- 
r ' j '  rnn aUl' aUj' 

For the contravariant components, we have 

There is no distinction between the transformation properties of the two sorts of 
mixed components. We just need mixed components of the same sort on both 
sides of the equation: 

13.4 Transformation of Components of Special Tensors 
and Symbols 

13.4.1 The Kronecker Delta 

We show now that the Kronecker delta written as 6; represents the mixed 
components of the identity tensor. We have, according to (13.3.5), 

Here we have used the chain rule. This shows that the Kronecker delta, having 1 the values of either 1 or 0, remains unchanged in another coordinate system. 



208 13. Transformation Properties of Vector and Tensor Components 

The symbols dij and 6'' being equal to 1 if the indices coincide and zero otherwise 
can likewise be shown n o t  to qualify as components of a tensor. As shown in 
Chap. 3, the covariant and contravariant counterparts of 6; are the metric 
coeficients gij and gij, all being components of one and the same "fundamental 
tensor". The transformation properties of the metric coefficients are shown 
momentarily. 

13.4.2 Metric Coefficients 

To show that the gij are legitimate components of a tensor, we make use of the 
property that the arc length is an invariant quantity not influenced by a change 
in coordinates. We must have that 

We apply the chain rule to the primed differentials as follows: 

aum' a~ n' durnt = - dui and dun' = -duj . au auJ 

This gives for (13.4.2) 

which is exactly the transformation law for covariant components. 

13.4.3 Levi-Civita Symbols 

To show that the Levi-Civita symbols cijk and cijk, which have a value + 1 ,  - 1 
or 0 ,  are n o t  tensor components, we assume for a moment that they are legitimate 
components and apply the tensor transformation rules. We will then find a 
contradiction. By way ofexample, we treat only ci jk.  Its transformation properties 
would be 

Since the RHS is summed over i, j and k, and because cijk assumes only values 
+ 1, - 1 and zero, there are nine terms. If we look carefully at that sum, we 
observe that it equals the Jacobian of the transformation for I ,  m and n equal to 
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any even permutation of 1 ,  2, 3; it equals minus the Jacobian for 1, m, n an odd 
permutation and is zero otherwise. Therefore, we have 

in the notation of Chap. 2. There is a rule similar to the chain rule for Jacobians: 

a(ul ,  U ~ , U ~ )  - a ( ~ l ,  u ~ ,  u 3 )  a ( ~ ,  y, Z )  - - Jgr -- 

a ( ~ ~ ' ,  U ~ ' , U ~ ' )  - a ( ~ ,  y, Z )  a ( ~ ' ' ,  uZ', u3') & 
Hence we obtain for (13.4.7) 

This shows that for c,,, = + 1 ,  - 1 or 0 ,  the transformed component would be 
equal to fa/& and zero instead of f l ,O.  Therefore, the cijk are not compo- 
nents of a tensor, as they do not transform properly. The argument for cijk is 
analogous. Note that in (13.4.9), our rule of lining up indices no longer works. 
The reason is that we introduced a new symbol Jg' and we attached the prime 
to that. 

The reader can check easily that the components of the "permutation 
tensor", Eijk = cijk. and Eijk = cijk/& do transform as required. 

13.4.4 Christoffel Symbols 

The Christoffel symbols were defined in Sect. 2 . 6 . 1 ~  as 

and 

These symbols are n o t  tensor components in general. We leave its proof as an 
exercise, because it is found in many textbooks on mathematical physics. We do 
give a few hints though as well as the answer. Compute agm.,./aun' where g,.,, is 
given by the inverse relationship of (13.4.5). The product rule of differentiation 
is applied, and the term involving agji/aun' is expanded via the chain rule as 
(agj i /auk) (auk/aud). Doing this for all the terms in (13.4.1 1 )  leads to 

a u j  aui auk aZui auk 
[m', l'nl 3 = - --; ,; [ j, ik] + - -- sum aui au a u l r a u n '  a u m T  gik 
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In the first step, we made use of the commutativity of the dot product, while in 
the last line, we used (2.6.20). Using the product rule of differentiation in reverse, 
we have 

1 a 
{V-e,} =-,(else, x e,) , 

J aut 
which in turn, because of (2.5.22a) is 

Substitution into the expression for V- A, (14.1.2), leads to the "standard di- 
vergence expression 

or because of the product-differentiation rule 

1 a 1 a 
divA = V .  A = ---(&A~) = - -(JA~) , 

Jg auk J auk 
since i and k are dummy indices. In the above derivations, we did not make 
explicit use of Christoffel symbols or covariant derivatives. 

14.2 Divergence-Formula Derivation Employing 
Christoffel Symbols 

Next, we give the derivation of(14.1.7) with Christoffel symbols and the covariant 
derivative, since it is this derivation that is found in most reference works. Rather 
than using the rule V.(product) as in (14.1.1), we apply the definition of the V 
operator "acting on" the vector A, and subsequently invoke the covariant deriva- 
tive formalism developed in Sect. 2.6. Thus, 

where we have used the notation of (2.6.6). Because of (2.6.15) and (2.6.31), this 
becomes 

div A = V .  A = Atk (14.2.2) 
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A summation is implied over all repeated indices, i.e., k and i. If we compare this 
last result with (14.1.2), the curly brackets anticipated a similarity between V.ei 
and the Christoffel symbol in (14.2.3): 

In (14.2.4) a summation over k is implied. Although we kept k fixed, above, the 
formulae can be used for k variable. 

This identity also follows from (14.1.3) and the definition of the Christoffel 
symbol of the second kind, (2.6.25). 

Because of the identity in (14.2.4), we can substitute the result for V-ei 
obtained in (14.1.5) into (14.2.3) to retrieve the expression for the divergence in 
(14.1.7). However, there is an alternative derivation that makes no explicit use of 
the basis vectors. This derivation has the advantage (for theoretical physics) that, 
once the divergence is defined, as in (14.2.2), no reference to basis vectors is 
needed, but only to metric coefficients. A determinant can be computed by means 
of the Laplace development. If we call g = det [gij], we have that 

where Gij is the cofactor of the element gij. The summation is only over j. Since 
Gij does not contain the element gij explicitly, we can write the derivative of g 
with respect to gim (i is the fixed index in (14.2.5), and m is one of the j's) 

Application of chain-rule differentiation to the expression ag/auk gives 

In the last equality, we have applied a relationship discussed underneath (2.5.14) 
From the definition of the Christoffel symbol of the first kind, (2.6.26), we 

observe that 

I or because of the symmetry of gim: 

ag im [m, ik] + [i, mk] = - auk . 
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Then (14.2.7) becomes 

ggim([m, ik] + [i, mk]) . 
i ,m 

This can be rewritten with Christoffel symbols of the second kind according to 
(2.6.30), recalling the symmetry of gim, 

which, because i and m are dummy (summation) indices, becomes 

Application of (2.6.27), omitting the summation sign, and interchanging the 
dummy indices i and k, finally leads to 

which is the same as (14.1.5). 
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-, conversion to toroidal flux coor- 

dinates 157 - 159 
- covariant form of B 109, 110, 11 1, 112 
- logic behind 108 
Boozer-Grad function x 107 - 1 15 
- as the magnetic scalar potential in 

vacuum 108. 114 

-, B as its gradient, in vacuum 114 
-, coordinate surfaces for 113 
-, determination of, via field line integra- 

tion 168 
-, related to the arc length along B 109, 

110, 113 
-, related to the flux-coordinate angles 108, 

141, 144, 158, 168 
Borisenko 7, 17, 54 
Bracket notation 
- for dyad components 41 
- for vector components 16 
Braginskii 190 
Buck 10 
Bulmer 164 
Burke 54 
Butkov 7, 13, 32, 54 

Callen 163 
Canonical 
- coordinates 3, 99, 165- 175 
- form of B 171 
- perturbation theory 174 
- variables, for magnetic-field descrip- 

tion 171,172 
Cartesian 
- components of a position vector 10 
- components of a vector 9 
- coordinate system 9, 16 
- -, irrelevance of co- and contravariant 

designation 17 
- -, irrelevance of sub- and superscript nota- 

tion 17 
- coordinates 11 
Cory 166 
Catto 91, 92, 108 
Chain rule of differentiation (of calculus) 
- applied to the derivative of metric coeffi- 

cients 213 
- for Jacobians 209 
- for safety-factor evolution 196 . 
- for the transformation properties of basis 

vectors 205 
Chance 163 
Chopmon 46, 54 
Choduro 164 
Choquet-Bmhat 54 
Christoffel symbol(s) 34-35, 52, 178, 

209-210 
- as defined by Stacey (1981) 34 
- in a rectilinear system 35 
- of the first kind 34 
- of the second kind 34 
-, transformation properties of 209 - 210 
- used in the divergence-formula deriva- 

tion 212-214 

Clebsch coordinate system(s) 2, 67, 
100-115, 156-159 

-, Boozer-Grad @, ,9 or V .  X) 107 - 1 15, 
157- 159 

- -, Jacobian for 109 
-, generic@,bor V, I) 100-107, 156-157 
- -, Jacobian for 104, 105 
Clebsch coordinates 
-, Boozer-Grad variant 107- 115, 157- 159 
-, conversion to toroidal flux coordinates 

156-159 
-, generic 100-107, 156-157 
- in toroidal devices 73, 75-76 
- in open-ended devices (mirrors) 76 
- relationship to co- and contravariant for- 

malism 103 - 107 
Clebsch form of B 
- as contravariant representation 105, 108 
Clebsch representation of B 100, 103, 105, 

108, 113, 117, 156, 157 
- in Hamada coordinates 152 
- in tokamaks 126 
- in toroidal flux coordinates 121, 156, 

166, 167 
- -, in general geometry 121 
- -, in tokarnaks 121, 123 
Clebsch representation of J 112, 129, 130, 

141 
- in Hamada coordinates 152 
Clebsch stream function 100, 102, 107 
-, field line-labeling function as 103 
-, flux-surface-labeling function as 103 
- for the current density (A or rl) 112, 129, 

141, 150 
- for the magnetic field (B or v)  
- -, in terms of arbitrary angle variables 

117-119 
- -, in terms of Boozer coordinates 144 
- -, in terms of flux-coordinate angles 120, 

131, 156 
Clebsch transformation 100 
Clebsch-type coordinate systems 67, 

100-115 
Closed-loop integral involving dl/B 
- and the current-closure condition 65, 

148 
- -, for the Hamada system 151 
- and the flux-surface average 87 - 89 
- and the specific flux volume 201 -203 
Coefficients, metric 20-22 
Cofactor of a matrix element 22, 213 
Cogredientuy) 206 
Coil current(s) 129- 130, 145 
- and the magnetic scalar potential 134, 

138-139 
- in a stellarator/torsatron 145 
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- in a tokamak 145 
Complementary solution, of a differential 

equation 133 
Component form of the equation of a 

magnetic-field line 55 
Components 
-, curl in terms of derivatives of covariant 

- 37 
-, divergence in terms of derivatives of con- 

travariant - 36, 212 
-, mixed, of a dyad 42 
- of a dyad 41, 42 
- of a second-order tensor 47 
- of a third-order tensor 50 
- of the covariant derivative 31 
- of the fundamental tensor 48-50 
- of the identity tensor 48-50 
- of the metric tensor 48-50 
- of the permutation tensor 52 
-, parallel, of a vector 37-38 
-, perpendicular, of a vector 37-38 
-, physical 126 
-, relationship between tensor - 47 -48 
-, transformation properties 
- - of tensor - 207 
- - of vector - 205 -206 
- - properties of vector and tensor - 178, 

204-210 
Components, contravariant 
- of a dyad 42 
- of avector 16, 17,21 
- o f B  
- - in Hamada coordinates 152 
- - in toroidal flux coordinates 120, 131, 

167 
- o f J  
- - and the covariant B components 135, 

136 
- - in Hamada coordinates 152 
- - in current coordinates 130 
Components, covariant 
- of a dyad 42 
- of a vector 16, 17, 21 
- of B 122 
- - in toroidal flux coordinates 133- 140, 

136, 138, 139, 140 
- of the gradient vector 36 
- of the magnetic vector potential 133 
-, related to the Boozer-Grad form 

131 - 142 
Conditions 
-, solvability, for a magnetic differential 

equation 94, 147 
Conductivity 
-, electrical 56 
- -, finite, in a plasma 198- 199 
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Conductivity (cont.) 
- -, infinite, in a plasma 187 - 190 
- -, perpendicular 190 
Confined plasmas 
-, curvilinear coordinates for the description 

of 67 
-, ideal MHD equilibrium conditions for 

toroidally - 146- 150 
Confinement systems 
-, curvilinear coordinates in 67-76 
Constraints 
-, solvability, for a magnetic differential 

equation 94, 147 
Contraction, of a tensor 45 
Contragredient(1y) 206 
Contravariant 3, 16, 206 
- basis vector(s) 19, 21 
- -, for the generic Clebsch system 104 
- -, transformation properties 204- 205 
- components 
- - of a dyad 42 
- - of a second-order tensor 47 
- - of a third-order tensor 50 
- - of a vector 10, 16, 17, 21 
-- o f B  
--- in Hamada coordinates 152 
--- in toroidal flux coordinates 120, 

131, 167 
-- of J 
--- and the covariant B components 
135, 136 

--- in current coordinates 130 
--- in Hamada coordinates 152 
- - of the basis vectors 19 
- - of the covariant derivative 31 
- - of the fundamental tensor 48 - 50 
- - of the identity tensor 48 - 50 
- - of the metric tensor 48 - 50 
- - of the permutation tensor 52 
- -, relationship to other tensor com- 

ponents 47 - 48 
- -, transformation of 205-206, 207 
-, mnemonic aid 16 
- object 16 
- representation of B 
- - as a Clebsch form 105, 108 
- -, generic 104, 116, 174 
- - in a Clebsch coordinate system 104, 
105, 108, 113 

- - in Boozer-Grad coordinates 113 
- - in toroidal flux coordinates 142, 150, 

166, 167 
- "vectors" 17 
Convective derivative 191, 195 
Convention for the double-dot product 

46 

Conversion 
- from Boozer-Grad coordinates 

to toroidal flux coordinates 157 - 159 
- from Clebsch coordinates 

to toroidal flux coordinates 156- 159 
Coordinate curve(s) 10, 1 1, 67 
-, constant - in 2D 179, 182, 184 
-, differential arc length along 28, 125, 136 
- for the Clebsch system 103 
- for the cylindrical-toroidal (hybrid) 

system 69 
- for the "elementary" toroidal system 69 
- for the generalized cylindrical-toroidal 

system 71 
- in axisymmetric systems 123 
- in stellarators versus tokamaks 145, 146 
-, magnetic-field lines as 60, 61 
Coordinate surface@) 10, 11, 67 
-, flux surfaces as 70, 116 
- for the Boozer-Grad function x 113 
- for the Clebsch system 103 
- for the coordinate (v  or B) labeling field 

lines 75, 87, 88, 113 
- for the cylindrical-toroidal (hybrid) 

system 69 
- for the "elementary" toroidal system 69 
- for the generalized cylindrical-toroidal 

system 71 
- for the "proper" toroidal system 183 
- for the spherical system 182 
- in stellarators versus tokamaks 145, 146 
-, magnetic surfaces as 70, 116 
Coordinate system(s) 
-, bipolar 68, 179- 180, 183- 185 
-, Boozer-Grad 98, 107 - 115 
-, Cartesian 9 
-, Clebsch 67, 100- 115 
-, curvilinear, in confinement systems 
67 - 76 

-, cylindrical 1 1, 68, 69 
-, cylindrical-toroidal (hybrid) 67, 68 - 70 
-, "elementary" toroidal 67, 68 - 70 
-,flux 97-164, 165-170 
- generic Clebsch 100- 103 
-, "natural" 72 
-, orthogonal 11 
-,polar 179, 181-182 
-, "proper" toroidal 68, 179- 185 
-, right-handed 68 
-, spherical 11, 179, 181-182 
-, straight-B 1. 2 
see fluxcoordinate systems 
Coordinates 
-, bipolar 68, 179-180, 183- 185 
-, Boozer 142- 146 
-, Boozer-Grad 98. i07 - 115 

- -, conversion to toroidal flux coordinates 
157-159 

-, Boozer's toroidal flux 98, 142- 146 
-, canonical 3, 99, 165- 175 
-, Cartesian 11 
-, Clebsch 98, 100-1 15 
--, generic 100-103 
- - in open-ended systems 76 
- - in toroidal systems 73, 75-76 
-, current 129 
see also straight current-density coordinates 
-, curvilinear 1, 11, 10- 17 
- - in confinement systems 67 - 76 
-, cylindrical 11, 68, 69 
-, flux 1, 10, 70-73, 97-164 
- -, Clebsch-type 100- 115 
--, toroidal 116-155, 165-170 
-, generalized 
- - cylindrical-toroidal 70-73 
- - magnetic 3, 165 - 175 
-, Hamada 98, 150- 155 
-, illustrative example of flux - in a 

tokamak 73 
-, magnetic-flux 1, 10, 70-73, 97- 164, 
165 - 170 

-, magnetic, generalized 3, 165 - 175 
-, non-flux - in a tokamak 126- 128 
-, orthogonal 1 1  
-, polar 181-182 
-, "proper" toroidal 68, 178, 179- 185 
-, rectilinear 1 1 
-,spherical 11, 179, 181-182 
-, straight B 98, 116-122 
see also flux coordinates 
-, straight current-density 98, 129- 131 
- -, relationship to flux coordinates 130 
- -, versus Hamada coordinates 130- 13 1 
-, symmetry flux - in a 

tokamak 122- 126 
-, toroidal-flux 98, 116- 155, 165 - 170 
-, vector differentiation in curvilinear 
30-37 

Cordey 164 
Correction term for vector differentiation 

31, 32, 33 
Covariant 3, 16, 206 
- basis vectors 19, 21 
- - for the generic Clebsch system 104 
- - for the Hamada system 154 
- -, transformation properties 204-205 
- Boozer-Grad form of B 112, 141 
- components 
- - of a dyad 42 
- - of a second-order tensor 47 
- - of a third-order tensor 50 
- - of a vector 10, 16, 17, 21 
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--  o f B  122 
--- in toioidal flux coordinates 

133-140, 136, 138, 139, 140 
--- related to the Boozer-Grad form of 

B 141 
- - of the basis vectors 19 
- - of the covariant derivative 31 
- - of the curvature vector 61 
- - of the fundamental tensor 48-50 
- - of the identity tensor 48- 50 
- - of the magnetic vector potential 133 
- - of the metric tensor 48-50 
- - of the permutation tensor 52 
- -, relationship to other tensor com- 

ponents 47-48 
- -, transformation of 206, 207 
- derivative 30-35 
- - in terms of the metric coefficients 
32-34 

- - used in the divergence-formula deriva- 
tion 212 

- - using Christoffel symbols 35 
- differentiation 30-35 
-, mnemonic aid 16 
- objects 16 
- representation of B 
--, generic 104, 105, 140 
- - in "final" Boozer-Grad form 110, 112, 
141, 157 

- - in "intermediate" Boozer-Grad 
form 109, 111, 112 

- - in (Q, 8, I) coordinates 105, 109 
- - in toroidal flux coordinates 142 
- representation of the magnetic vector 

potential, generic 132, 133 
- "vectors" 17 
Cowling 46, 54 
Cross 63 
Cross product 
-, divergence of a - (vector identity) 39 

(V. 9) 
- identities 38-39 
- of vectors in curvilinear coordinates 27 
Curl 
- divergence of a - (vector identity) 39 

(V. 16) 
- in terms of the covariant derivative 37 
- of a cross product (vector identity) 39 

(V. 10) 
- of a gradient (vector identity) 39 

(V. 15) 
- of a vector expressed in curvilinear coor- 

dinates 36- 37 
Current 
- behavior in an ideal tokamak plasma 
187-190 
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Current-closure condition 65, 148 
- and the Hamada system 151 
Current coordinates 129 
-, mathematical definition of 130 
-, notation for 129 
-, relation to flux coordinates 130 
- versus Hamada coordinates 130- 131 
Current density 
-, Clebsch representation of 112, 129, 141 
- (Clebsch) stream function 112, 129, 150 
- -, boundary ("initial") conditions 

for 114 
- - related to the Pfirsch-Schlilter current 

113-114 
- - related to the pressure gradient 

113-114 
-, contravariant components of the 135, 

136 
- flux (E "current") 
- -, poloidal 129 
- -, toroidal 130 
- lines 
- -, equation (integrated form) 
--- in current coordinates 130 
--- in toroidal flux coordinates 129 
-, straight - coordinates 129- 130 
- -, mathematical definition of 130 
- -, relation to flux coordinates 130 
- - versus Hamada coordinates 130- 131 
Current, poloidal plasma - 140 
Current, total poloidal - 140 
Currents, coil 129, 130 
- and the magnetic scalar potential 134, 

138- 139 
Curvature 
-, components with respect to a surface 60 
-, covariant components of the - vector 

61 
-, geodesic 60, 61, 62 
-, local radius of 58 
-, magnetic-field line - 58 -62, 63 
-, normal 60, 61, 62 
-, radius of - vector 58 
- vector 58, 59, 60, 61 
Curve(s) 
-, constant coordinate - in 2D 179, 182, 

184 
-, coordinate 10, 1 1, 67 (see also coor- 

dinate curves) 
-, magnetic-field lines as coordinate - 60, 

61 
Curvilinear 
- coordinate system(s) 
- -, cylindrical-toroidal hybrid 67, 68 - 70 
- - for plasma-confinement systems 

67 - 76 

- -, generalized cylindrical toroidal 70-73 
- -, Jacobian of a 23 
- coordinates 1, 10-17, 11 
- - for plasma-confinement systems 

67-76 
- -, generalized poloidal and toroidal angles 

as 71 
- -, vector differentiation in 30-37 
- transformation 10 
"cyc" (definition of "ijk cyc 123") 15 
Cyclic permutation 15 
Cylindrical angle, related to the toroidal 

angle 68, 69, 123 
Cylindrical (coordinate) system 11, 68 
-, zero off-diagonal metric coefficients 

in 20 
Cylindrical-toroidal hybrid coordinate 

system 67, 68-70 

Davis 15 
Degenerate magnetic surface (magnetic 

axis) 66 
del operator 35 - 37 
-, definition of 35 
-, parallel component 59 
-, perpendicular component 59 
Delta, Kronecker 14, 22, 48 - 50 
Derivative 
-, absolute 32 
-, convective 191, 195 
-, covariant 30-35, 212 
-, directional 59 
-, intrinsic 32 
- of a vector in curvilinear coordinates 

30-37 
Deschamps 54 
Determinant 
-, Jacobian expressed as a 23 
- of the metric tensor 51 
- of the product of two matrices 25 
Differential 
- absolute 31 
- arc length 20 
- - along a coordinate curve 28, 136 
- - along a toroidal coordinate curve 125 
- - along B and the Boozer-Grad function 

X 109, 110 
- area element in a coordinate surface 28, 

29 
- elements 28-29 
- equation 
- -, homogeneous solution of 133 
- -, magnetic 93-96, 144, 147, 149, 153, 

154 
--- constraints (solvability conditions) 

94, 147 

- -, particular solution of 133 
- forms, references on 54 
- geometry, references on 10, 54 
-, intrinsic 31 
- position vector as contravariant "vector" 

17 
- volume elements 29 
Differentiation 
-, covariant 30- 35 
- of basis vectors 30-32 
- of vector components 30-32 
- of vectors 30-37 
- - and Christoffel symbols 30-35 
Diffusion equation for the magnetic 

field 56 
Directional derivative 59 
Disk 
-, magnetic flux through a 77, 78, 79, 

81 
-, poloidal - flux 77, 78, 79, 81 
Divergence 
- formula for vectors 36 
- - alternative derivations 178, 211 -214 
- of a basis vector 21 1-212 
- - in terms of a Christoffel symbol 213 
- - in terms of the Jacobian 212 
- of a cross product (vector identity) 39 

(V. 9) 
- of a curl (vector identity) 39 (V. 16) 
- of a dyad (identity) 53 (T. 10) 
- of a position vector (vector identity) 39 

(V. 17) 
- of a vector expressed in curvilinear coor- 

dinates 36 
dl/B integral 
- and flux-surface averaging 87 - 89 
- and the specific flux volume 201 -203 
Dobrott 163 
Dory 163 
Dot product 26 
-, double - 46 
-, gradient of a - (vector identity) 39 

(V. 12) 
- in a general curvilinear system 26 
- in an orthogonal system 26 
- in an orthonormal system 26 
- of a dyad with a vector 40-41 
- of a vector with a tensor 44 
Double-dot product 46, 52-53 (T. 4-T. 8) 
Drew 43 
Dual 
- basis (vectors) 15 
see also reciprocal basis (vectors) 
- relations between basis vectors 15, 24 
see also "back-and-forth* relations" 
Dummy index 14 

Dyad 
-, components of a 41 
-, divergence of a (identity) 53 (T. 10) 
-, expansion of a, along "basic-dyads" 

41 
- identities 52-54 
-, nonion form of a 43 
Dyadic(s) 43 
- and second-order tensors 43 
-, literature on 54 
-, nonion form of a 43 
- notation 3 
-, references on 54 
Dyads 40-44, 46-47, 52-54, 55 
-, definition of 40 
-, double-dot product between 46, 52 (T. 4) 
-, examples of, in plasma physics 40 
-, literature on 54 
-, notation of 40-41 
-, references on 54 
Dynamic equilibrium of a tokamak 

plasma 79, 178, 186-200 

E x B  motion 58, 190-191, 192, 193 
Einstein convention see Summation conven- 

tion 
Electric field 
- in an  infinitely conducting tokamak 

plasma 187 - 190 
- motion of plasma and flux surfaces due 

to an 190-195 
Electrical conductivity 56 
-, finite, in a plasma 198 - 199 
-, infinite, in a plasma 187- 190 
-, perpendicular 190 
"elementary" toroidal (coordinate) 

system 67, 68-70, 128 
Elmo Bumpy Torus 84 
EMF 192 
End losses (contributions) in mirrors 91 
Equation 
-, magnetic differential 93 - % 
- of a current-density line 
- - in arbitrary toroidal coordinates (in- 

tegrated form) 129 
- - in current coordinates (integrated 

form) 130 
- of a magnetic-field line 55-56 
- -, differential form 55, 56, 157, 169, 172, 

20 1 
--- , in canonical coordinates 172 
--- , in Clebsch-type coordinates 107 
--- , in flux coordinates 84, 120, 201 
- -, integrated form 1 17, 168, 173 
--- in Clebsch-type coordinates 107 
--- in flux coordinates 87, 119, 120 
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Equations, Hamilton's, for a magnetic-field 
line 172 

Equilibrium 
-, dynamic - in a tokamak plasma 79, 

178, 186-200 
-, flux-surface determination and 162- 164 
- - references on 162- 164 
-, ideal MHD - conditions for toroidally 

confined plasmas 146- 150 
-- and the Hamada system 151, 152 
-, MHD - equation 146, 150 
-, plasma - time evolution, references 79 
Euclidean vector space 17, 19, 48 
Euler formula 184 
Evaluation of the magnetic-field-line 

Hamiltonian 174- 175 
Even permutation 15 
Evolution in time of an ideal tokamak 

plasma equilibrium 186 -200 
Existence 
- of Hamada coordinates 152 
- of magnetic surfaces 65, 148, 165-166 
Expansion 
- coefficients of a vector along a basis 9 
-, Fourier 95-96, 118, 150, 153, 161, 

168- 170, 175, 201 -202 
- of a dyad along "basis dyads" 41 
- of a vector 8 
- - along reciprocal sets of vectors 8 
- - along the reciprocal basis set in cur- 

vilinear coordinates 15 
- - along the tangent basis set in cur- 

vilinear coordinates 15 - 16 
-, stellarator - 163 
Extended phase space 173 
Exterior product 41 

Faraday (-Lenz) law 56, 187, 189, 191, 192, 
197 

Ferziger 46, 54 
Feshbach 2, 7, 34, 43, 46, 54, 179 
Feynman 132 
Field line, magnetic 
- as coordinate curve 60, 61 
- curvature 58-62, 63 
- definition 55 
-, equation of a 55-56 
- -, differential form 55, 56, 157, 169, 172, 

20 1 
- --  , in canonical coordinates 172 
--- , in Clebsch-type coordinates 107 
--- , in flux coordinates 84, 120, 201 
- -, integrated form 117, 168, 173 
--- , in Clebsch-type coordinates 107 
--- , in flux coordinates 87, 119, 120 
- Hamiltonian 65. 170- 175, 172 

- -, evaluation of 174- 175 
- integration, method for establishing flux 

coordinates 161, 162, 168- 170 
- label, notations for 108 
-, principal normal to a 58, 61 
-, "proper length" of a 148, 178 
- - and the specific flux volume 201 -203 
-, straight - coordinates (in toroidal 

systems) 116 - 122 
see also magnetic-field line 
Field lines, magnetic 
- and magnetic tension 63 -64 
- as elastic cords 63 
-, motion of 56-58 
Fielding 68, 163, 179, 200 
Filonenko 170 
Finite-resistivity, evolution of a - plasma 

198- 199 
Flanders 54 
Fluid velocity of the plasma 56 
Flux 
-, frozen - theorem 56-58 
- function 81 
-, transformer - 186, 187, 188, 189, 190, 

199 
Flux-coordinate system 
-, references 122, 161, 162 
see also flux coordinates 
Flux-coordinate transformation 98 - 99, 120 
-, references 161 
-, summary 160- 164 
- - for open-ended systems 164 
- - for toroidal systems 160 - 164 
Flux coordinates 
-, Boozer's toroidal 142- 146, 161 
- -, mathematical definition of 143 
-, Clebsch (Q, 8, 1 )  
- - in open ended systems (qualitative 

discussion) 76 
- - in toroidal systems (qualitative discus- 

sion) 73, 75-76 
-, Clebsch-type 100- 115, 161 
see also Clebsch coordinates 
-, conversion from Clebsch coordinates to 

toroidal - 156- 159 
-, definition of 1, 98 
- establishment of 160- 164, 166- 170 
-, Hamada 150-155. 161 
- -, references on 151 
-, illustrative example 73 
-, "justification" for the use of 160 
-, magnetic see magnetic-flux coordinates 
-, mathematical definition of toroidal - 120 
-, non- - in tokamaks 126- 128 
-, non-uniqueness of 121 

-, notation 
- - for Boozer's toroidal - 143 
-- for Hamada - 151 
- - for symmetry - in tokamaks 123 
-- for toroidal - 120 
-, overview of 98-99 
-, qualitative description 70- 73 
-, references on 1, 122, 161, 162 
-, symmetry - in a tokamak 122- 126 
-, toroidal 98, 116-155 
Flux, magnetic 
-, axial 77, 82 
-, azimuthal 77, 82 
-, form-invariant expression 79- 80 
-, poloidal 77, 78, 79, 81 
- - as flux-surface label 81, 116, 191 - 193, 

199-200 
-, toroidal 77, 80, 81 
- - as flux-surface label 81, 116, 

193 - 195 
-, total time derivative of the - through a 

surface 57 
Flux surface 
- average 85-93, 1% 
- - as annihilator of B-V 92-93 
- -, definition of 85 
- - expressed as a surface integral 85, 86 
- - expressed as a volume integral 85 
- - in an axisymmetric device 87 - 89 
- - in open-ended devices 89 
- - in terms of toroidal and poloidal 

angles 86 
- - of a divergence 90-92 
- - of the inverse Jacobian 149 
- - of the Jacobian in a Hamada 

system 151 
- -, properties 90- 93 
- - related to the line integral of 

dl/B 87-89 
-, definition 
- - mathematical 81 
- - physical 64, 65, 77 
-, determination/computation 162- 164 
- -, numerical treatments 163 - 164 
- -, references 162 - 164 
- function 81 
- label 70 
- -, Clebsch stream function as 103 
- -, notations for 108 
- -, radially increasing 1 16 
- labeling 77-82 
- motion in an ideal tokamak 

plasma 190 - 195 
- motion of 79 
-, poloidal disk flux as label for 78-79, 

81, 191-192, 199-200 
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-, poloidal ribbon flux as label for 78 - 79, 
81, 192- 193, 199-200 

- quantity 81 
-, toroidal flux as label for 77, 81, 

193 - 195 
- velocity 192, 193, 195, 198 
Flux surfaces, (magnetic) 61, 64-67 
- as constant pressure surfaces 65 
- as coordinate surfaces 70 
-, definition 64, 65, 77, 81 
-, degenerate 66 
-, existence of 65, 165 - 166 
- in open-ended systems 67 
- in stellarators 66 
- in tokamaks 66 
- in toroidal systems 65 - 66 
-, irrational 65 
-, rational 65 
-, vacuum 65 
see also magnetic (-flux) surfaces 
Force balance (equation) 65, 11 1, 146, 

150 
Form-invariant expression 
- for the poloidal and toroidal currents 

129, 130 
- for the poloidal (magnetic) flux 80, 119 
- for the toroidal (magnetic) flux 80, 118, 

1 % 
Formulae 
-, Frenet-Serret - 62 
-, tensor - 52-54 
-, vector - 38- 39 
Fourier expansion 
- for evaluating jdl/B 201 -202 
- for evaluating the field-line Hamilto- 

nian 175 
- for solving a magnetic differential equa- 

tion 95-96, 150, 153 
- method for establishing flux coor- 

dinates 161, 168-170 
- of the Jacobian 201 
- of the magnetic-field components 118 
Fowler 161, 168 
Frame, Frenet-Serret 62 
Freidberg 163 
Frenet-Serret 
- formulae 62 
- frame 62 
- trihedron 63 
Frieman 163 
Frozen-flux theorem 56-58, 79, 192, 193, 

198 
Function(s) 
-, flux 81 
-, multiple-valued 70, 71 
-, single-valued 72 
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Fundamental tensor 48 - 50, 208 
- in relation to the identity tensor 48-50, 

208 
- in relation to the metric tensor 48 - 50, 

208 
-, sum of dyad form of the 49 
Furth 164 

Garabedian 108, 164 
Gauss' theorem, application of 80, 90 
Gaussian window function 161 
Generalized 
- angle variables 7 1 - 72 
- cylindrical-toroidal coordinates 70- 73 
- magnetic coordinates 3, 165 - 175 
- poloidal angle 7 1 - 72 
- toroidal angle 71 - 72 
Generic 
- Clebsch coordinates 100- 103 
- toroidal flux coordinates 1 16- 122 
Geodesic curvature 60, 61, 62 
Geometrical object 43 
Goetz 10, 60 
Golant 56, 190, 200 
Goldrtein 46, 54, 166, 173 
Grad 79, 100, 101, 108, 163, 164, 166, 170 
Grad 
- -SchlUter-Shafranov equation 162 - 163 
- -Shafranov equation see Grad-SchMter- 

Shafranov equation 
see also Boozer-Grad 
gradient 35 - 36 
- as a covariant "vector" 18 
-, curl of a (vector identity) 39 (V. 15) 
- of a dot product (vector identity) 39 

(V. 12) 
- of a function, definition 14 
- of the coordinate surfaces 

as basis vectors 10 
- vector, covariant components of the 36 
Grassmann algebra 41 
-, references on 54 
Greene 1, 122, 151, 162, 163, 200 
Greenside % 
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-, flux 61, 64-67 
-, irrational 65 
-, magnetic 61, 64-67 
-, rational 65 
-, ruled 87 
-, toroidal 64 
Symbol(s) 
-, Christoffel 34-35, 52, 178, 209-210 
-, Kronecker-delta 22, 48 - 50 
-, Levi-Civita 50-52, 178, 208-209 
Symmetry 
- and the existence of flux surfaces 65, 

165-166 
- angle as toroidal angle in tokamaks 120, 

121, 122, 186 
- of Christoffel symbols 34 
- of metric coefficients 20 
-, quadrupole, and end losses in mirrors 92 
Symon 7, 54, 64 
Systems, coordinate see coordinate systems 

h g e n t  basis vectors 10, 1 1 - 13 
-, subscript notation for 13 
-, transformation of 204-205 
-, unit - 13 
Tangent vector to  a field line 55, 58 
7brapov 7, 17, 54 
Tqvlor 170 
Tension 
- in elasticity theory 64 
-, magnetic 63 - 64 
Tensor 
- analysis 40 
- components 
- - of a second-order 47 
- - of a third-order 50 
- -, relationship between the 

various 47-48 
- -, transformation properties of 178, 

204-210, 207 
--- for the identity tensor 207-208 
--- for the metric tensor 208 
--- for the permutation tensor 209 
- contraction 45 

-, fundamental 48- 50, 208 
- identities 52-54 
-, identity 48-50, 207 
-, metric 48 - 50, 208 
- product 41 
-, rank of a 45 
Tensors 40-54 
-, "basis -" 41 
-, double-dot product of 46 
-, dyadics as 43 
-, dyads as "simple" - 40-44, 46- 47, 

52-54, 55 
-, first-order 44 
-, fourth-order 44 
-, literature on 54 
-, n-th order 44 
-, nonion form of 43 
-, polyadics as 44 
-, polyads as "simple" - 44 
-, references on 54 
-, second-order 40- 50 
-- "simple" - (dyads) 40-44, 46-47, 

52-54, 55 
- - written as a sum of at  least three 

dyads 42 
-, tetradics as 44 
-, tetrads as "simple" - 44 
-, third-order 44, 50 
-- "simple" - (triads) 44 
-, triadics as 44 
-, triads as "simple" - 44 
-, zeroth-order 44 
see also dyadics and dyads 
Tensorial objects 40- 54 
Tetrad 44 
Tetradic 44 
m t b o o k  treatments 
- of differential forms and Grassmann 

algebra 54 
- of differential geometry and curvilinear 

coordinates 10, 54 
- of flux coordinates and magnetic 

geometry 1 
- of plasma-equilibrium evolution 79 
- of quaternions 2 
- of tensors, dyadics and dyads 54 
- of the Grad-Schliiter-Shafranov equa- 

tion 163 
- of vectors and tensors (in curvilinear 

coordinate systems) 7, 54 
Third-order tensor 44, 50 
Thorne 54 
Time evolution of an ideal tokamak plasma 

equilibrium 186- 200 
Tokamak 
- dynamic equilibrium 79, 178, 186-200 

- geometrical identity in a 186- 187 
-, magnetic-flux surfaces in a 66 
- non-flux-coordinates in a 126- 128 
- representation of B in a 
- -, Clebsch 121, 123, 126 
- -, flux-coordinate 121, 123, 126 
-- , "usual" tokamak form 124, 125, 127, 

186 
-, simple example of flux coordinates in 

a 73 
- symmetry flux coordinates in a 122- 126 
- the electric field in an ideal - 

plasma 187 - 190 
Tori, ideal or perfect 67, 69 
Toroidal 
- angle 69, 7 1 
- angle, generalized 71 -72 
- angle-like variable 71 
- direction 66, 69, 146 
- electric field in an ideal tokamak 

plasma 189, 190 
- transit 65 
- winding number 83 
Toroidal Boozer-flux-coordinate system 2, 

142-146 
Toroidal confinement systems 
-, canonical coordinates in 165 - 175 
-, curvilinear coordinates in 67 - 76 
-, flux coordinates in 1 16 - 155 
-, flux surface average in 86 - 89, 90 -93 
-, ideal MHD equilibrium conditions 

in 146-150 
-, magnetic-surface labeling in 77 - 82 
-, magnetic surfaces in 65 -66 
-, rotational transform in 82-84 
Toroidal coordinate system(s) 
-, "elementary" 67, 68-70, 128 
- for toroidal confinement systems 68-76 
-, hybrid cylindrical- - 67, 68-70 
-, "pseudo" 68 
- zero off-diagonal metric coefficients 

in 20 
Toroidal coordinates 
- , "proper" 3, 68, 178, 179-185 
- - and bipolar coordinates 182- 183 
- -, scale factors hi 183 
Toroidal current-density flux (or cur- 

rent) 129 
Toroidal flux coordinates 98, 1 16 - 155 
-, Boozer coordinates 98, 142- 146 
-, conversion from Clebsch coordinates 

to 156-159 
- Hamada coordinates 150 - 155 
- mathematical definition of 120 
-, symmetry - in tokamaks 

122- 126 
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Toroidal magnetic field 122 
- in tokamaks 124, 127, 186, 189 
Toroidal magnetic flux 77 
- as flux-surface label 77, 80, 81, 1 16, 

193 - 195 
-, form-invariant expression for 79 - 80, 

118, 196 
Toroidal straight B coordinates 2, 116- 155 
Toroids 67 
Torsatron, coil currents in 139 
Torsion 62 
Transform, rotational 81, 82 - 84 
- as flux-surface label 1 16 
- as "frequency" in the action-angle 

Hamiltonian picture 173 
- as the slope of a field line in flux coor- 

dinates 120 
-, constancy of, in an ideal tokamak 

plasma 195- 198 
-, definition of, for time-dependent pro- 

blems 83, 195 
Transformation 
- angle, rotational 82 
-, Clebsch 100 
-, Curvilinear 10 
-, invertible 10 
-, Jacobian of a 23 
-, one-to-one 10 
Transformation equation 
- for alternative flux coordinates 121 
- for current coordinates 130 
- for flux coordinates 120 
- for Hamada coordinates 152 - 153 
- for toroidal Boozer coordinates 143 - 144 
Transformation, flux-coordinate 
-, establishment of 98-99, 168- 170 
-, mathematical definition of 120 
-, summary of 99, 160 - 164 
Transformation properties 
- of basis vectors 19, 204-205 
- of tensor components 178, 207 
- of the Christoffel symbols 209-210 
- of the Kronecker delta 207-208 
- of the Levi-Civita symbols 208-209 
- of the metric coefficients 208 
- of the vector derivative 31 
- of vector components 178, 205 -206 
Transformer (in a tokamak) 186, 187, 188, 

189, 190, 191, 193, 198, 199 
Ttiad 
- as synonym for trihedron 62 
- as third-order "simple" tensor 44 
Triadic 44 
Ttihedral, Frenet-Serret 62 
Trihedron 8 
-, Frenet-Serret 62, 63 

Triple product 
-, Jacobian written as a 23, 24 
- of vectors 
- -, scalar - 8, 38 (V. 1) 
- - , vector - (bac-cab rule) 38 (V. 2) 
- written as the determinant of a 

matrix 23 
l'tivelpiece 46, 54 

Unit tangent vector 13 
- to a magnetic-field line 55, 58 
- -, notation for 55, 58, 104 
Unit vector 
- along B 55, 58 
- -, notation for 55, 58, 104 
- in a Cartesian coordinate system 9 
-, notation for 9 

Vacuum magnetic surfaces 65 
Van Blade1 46, 54 
Vector 
-, contravariant components of a 16 
-, covariant components of a 16 
-, curl of a 36-37 
-, curvature - 58, 59, 60, 61 
- derivative and its transformation proper- 

ties 31 
- differentiation 
- - and Christoffel symbols 34-35 
- - in curvilinear coordinates 30 - 37 
-, divergence of a 36 
-, gradient - 35-36 
- identities 38-39 
-, Laplacian of a (vector identity) 39 

(V. 14) 
-, magnitude of a 26 
- notation 3 
-, parallel component of a 37-38 
-, perpendicular component of a 37-38 
-, position - 10, 11, 14, 17 
- product see cross product 
-, radius of curvature - 58 
-, transformation of - components 178, 

205 - 207 
- triple product (bac-cab rule) 38 

(V. 2) 
Vector potential, magnetic 170- 171 
- a n d  the canonical form of B 171 
- as stream function for the poloidal 

field 127 
- for (general) toroidal flux-coordinate 

systems 131 - 133 
-, generic covariant form 170 
- in tokamaks 126, 127 
-, physical versus mathematical 132 
-, single-valued (physical) 132, 133 

Vector space 
-, dual 17, 19 
-, Euclidean 17, 19 
- of contravariant vectors 19 
- of covariant vectors 19 
Vectors 7-39 
- as first-order tensors 40, 44 
-, basis - 8, 10, 15 
- -, transformation properties 204 - 205 
-, contravariant - 17 
-, contravariant basis - 19 
-, covariant - 17 
-, covariant basis - 19 
-, cross product between 27 
-, dot product between 26 
-, identities involving tensors and 52 - 54 
-, reciprocal basis - 14- 15 
-, scalar triple product of 8, 23 
-, tangent basis - 11 
Velocity 
-, fluid - of the plasma 56 
-, flux-surface - 192, 193, 195, 198 
-, radial inward pinch - 190, 192, 194, 

198 
Vertical magnetic field 78, 200 
Voltage, loop 187, 193 
Volume element 
-, differential - 29 
-, infinitesimal - d 3 ~  85, 86 
-, infinitesimal -dV 86 

Volume inside a flux surface 
- as flux-surface label 77, 81, 82, 

116 
- - in the Hamada system 151 
-, mathematical expression for 81 
Volume, specific flux 178 
- and the "proper length" of a field 

line 201-203 
- related to the line integral of dl/B 148, 

201 - 203 

Walker 7, 10, 32, 54, 206 
Ware pinch 198 
Watson 164 
Weimer 163, 200 
Wheeler 54 
White 1, 108, 163, 166 
Whitemon 166 
Whitson 164 
Wielond 163 
Wimmel 52 
Winding number, toroidal 83 
Window function 161 
Woodson 54 
Wrede 7, 19, 54 

Zokhorov 163, 164, 200 
Zoslovski 170 
zeroth-order tensor 44 
Zhilinsky 56, 190, 200 


