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8

Single-particle motion — guiding center theory

8.1 Introduction

A major goal of this book is to provide an understanding of how magnetic fields confine
charged particles in a fusion plasma. As such, one would like to develop an intuition about
the detailed behavior of particle orbits in self-consistent magnetic fields. In particular, it
must be demonstrated that charged particles stay confined within the plasma and do not
become lost drifting across the field and hitting the first wall.

As a first step towards this goal this chapter focuses on the motion of charged particles in
prescribed magnetic and electric fields. No attempt is made at self-consistency — for example,
to include the currents and corresponding induced magnetic fields resulting from the flow
of charged particles. The fields are simply specified as known quantities. They are assumed
to be smooth, slowly varying functions in order to be compatible with the requirement
that plasmas be dominated by long-range collective effects. The question of self-consistent
fields is deferred to future chapters after appropriate models have been developed.

In the process of studying single-particle motion it will become apparent that there is a
well-separated hierarchy of frequencies that characterize the different types of motion that
can occur. The fastest and dominant behavior corresponds to gyro motion in which particles
move freely along magnetic field lines and rotate in small circular orbits perpendicular to
the magnetic field. This motion provides perpendicular confinement of charged particles
and makes a toroidal geometry necessary in order to avoid parallel losses.

The next contribution to the hierarchy of frequencies involves slow spatial and time
variations in the fields, which lead to important modifications of the basic gyro motion.
This regime is known as “guiding center motion.” Of particular interest is the development
of guiding center drifts (vy) across the magnetic field. These drifts are, in general, slow
compared to the thermal speed (|v,| < vr) but are nevertheless very important for several
reasons. First, one must check the direction of v, to make sure that particles do not drift
directly into the wall — they do not, although it is by no means obvious at the outset. Second,
these drifts are largely responsible for the currents that flow in the plasma and are therefore
essential for the ultimate development of self-consistent models.

The study of guiding center motion in slowly varying fields is the main topic of this
chapter. Here, the key word is “slowly.” Guiding center theory exploits the assumptions
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140 Single-particle motion in a plasma

that the fields vary slowly in space with respect to the gyro radius and slowly in time
with respect to the inverse gyro frequency. The primary motivation for the development of
guiding center theory is that the theory provides the basic intuition necessary to understand
particle confinement in fusion plasmas.

Continuing, the third regime in the hierarchy of frequencies is the Coulomb collision
frequency vcoy. While such collisions are rare, they are nevertheless crucial for the under-
standing of magnetic confinement. The reason is that Coulomb collisions are the primary
mechanism by which particles and energy diffuse across a magnetic field (ignoring for the
moment plasma turbulence) thereby reducing confinement. Even though collisions are infre-
quent, veou K |Vg|/rL = wg, they represent the first appearance of a physical mechanism
that leads to confinement losses.

The last term in the hierarchy corresponds to nuclear fusion collisions, which unfortu-
nately are very rare. These are basically hard-sphere collisions, which were discussed in
Section 3.2. Fusion collisions have little direct effect on particle motion. Indirectly they
affect plasma confinement through alpha particle heating and D-T fuel depletion.

In summary, the hierarchy of frequency scales is

W > Wg 2> VCoul 2> Vius- (8.1)

This chapter describes gyro motion and then focuses on guiding center theory, which
correspond to the first two terms in the hierarchy. Coulomb collisions are discussed in the
next chapter.

This chapter is organized as follows. The discussion begins with the basic building block
of magnetic fusion — gyro motion in a uniform, time independent magnetic field. The gyro
orbits are derived exactly starting from Newton’s law and the Lorentz electromagnetic
force.

Next, a sequence of modifications is made to the magnetic field to model more realistic
magnetic geometries. For each modification, attention is focused on calculating the resulting
guiding center drift. The analysis makes use of straightforward perturbation theory, which
exploits the assumptions of slow space and time variation of the applied fields. This allows
each guiding center drift to be calculated by superposition.

There are a number of drifts to include. First the E x B drift arising from perpendicular
electric and magnetic fields is calculated. Although it may seem counter-intuitive at present,
the non-zero electric field does not violate the plasma’s shielding ability and in fact this
drift is mandatory in order for the shielding effect to be maintained. Next, perpendicular
gradients in a straight magnetic field are introduced leading to the V B drift. Following this,
the straight field assumption is relaxed. It is shown that the curvature of a magnetic field
leads to a drift appropriately known as the curvature drift.

The next modification is time dependence in both the magnetic and electric field. The
dominant effect is the development of an inertia-driven drift, known as the polarization
drift. The final modification involves gradients parallel to the magnetic field. This generates
a parallel mirroring force that tends to keep particles with a high perpendicular velocity
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8.2 General properties of single-particle motion 141

confined between regions of high magnetic field and gives rise to the mirror concept.
However, while the mirroring force improves parallel confinement, in the end collisions
destroy the effect and the need for toroidicity persists.

The descriptions above indicate that there are a substantial number of modifications to
include, and one may wonder whether or not the list is complete. In terms of the guiding
center drifts the list is indeed complete — there are no additional guiding center drifts within
the order to which the theory is carried out.

The main conclusion from this chapter is that a magnetic field can quite effectively
confine charged particles in the perpendicular direction. There is no long-time confine-
ment parallel to the field and this leads to the requirement for a toroidal geometry. While
a number of slower cross-field particle drifts do develop because of modifications and
additions to the constant, uniform magnetic field, the direction of these drifts does not
lead to a flow of particles directly to the first wall. In terms of fusion, guiding center the-
ory predicts good confinement of charged particles for a wide range of toroidal magnetic
geometries.

8.2 General properties of single-particle motion

The development of guiding center theory begins with a discussion of several general
properties of single-particle motion in magnetic and electric fields. Included in the discussion
are the statement of the exact equations of motion to be solved and the derivation of general
conservation laws leading to the identification of exact constants of the motion.

8.2.1 Exact equations of motion

The starting point for the development of guiding center theory is the exact equations of
motion as determined from Newton’s law. For plasma physics applications only the magnetic
and electric forces, given by the Lorentz force are required. Gravity is a very small effect
and can be neglected. The equations to be solved are thus

dv
— =¢q(E B),
mdt q(E +v xB)

dr
— =YV
dr

(8.2)

In general, B=B(r,t) and E = E (r, t) are functions of three dimensions plus time.
Equation (8.2) is thus a set of coupled, non-linear, ordinary differential equations for the
unknowns v and r as functions of ¢. They will be solved for a wide variety of cases by
exploiting the underlying assumptions of guiding center theory, namely that the spatial
variations of B and E occur on a length scale long compared to a gyro radius and that time
variations occur on a time scale slow compared to the inverse gyro frequency.
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142 Single-particle motion in a plasma

8.2.2 General conservation relations

Several general conservation relations can be derived from Eq. (8.2). These involve the
conservation of energy and momentum. When applicable the conservation relations lead to
“exact constants of the motion,” which strongly constrain the particle’s orbit.
Consider first the situation in which E = 0 and B is independent of time: B = B (r).
Forming the dot product of Eq. (8.2) with v leads to
dv. d,, ,
= (L =0 8.3
V' T (5m7) (8-3)
or

%mv2 = const. (8.4)

The conclusion is that the kinetic energy of a particle in a static magnetic field is a constant.
In other words, a static magnetic field can do no work on a charged particle. Another basic
related result is that a static magnetic field produces no force parallel to B, a result that
follows trivially from the relation B - (v x B) = 0.

This relation can be generalized to include a static electric field. Since the fields are
assumed static, Faraday’s law implies that E (r) = —V¢ (r). The dot product of Eq. (8.2)
with v is again formed. One now makes use of the identity (for a static field)

a6 _ 3¢ +v-Vo¢ Vo (8.5)
_ = — V- =V- s .
dt ot
from which it immediately follows that
W= %mv2 + q¢ = const. (8.6)

The sum of kinetic and potential energy is a constant.

A simple prescription exists for the determination of exact constants of the motion.
In general the fields are functions of x, y, z, r. Consider the special cases where one or
more of these variables is ignorable (i.e., the fields do not depend on these variables). For
each ignorable variable, there is one exact constant of the motion. The time independent
case above led to the conservation of energy. As another example assume the fields are
independent of the coordinate y but not x, z, t. Introduce the scalar and vector potential
in the usual way: E = —V¢ — dA /0t and B = V x A. Forming the dot product of the
momentum equation with e, leads to

d
—mv, = q(E, — v, B, + v By)

dr
dA, dxdA, dzdA,
4 (7 T o T d oz )
dA,

=%, (8.7)
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8.3 Motion in a constant B field 143
where in the last step use has been made of the fact that dA, /0y = 0. It thus follows that
py = mv, +gA, = const. (8.8)

The quantity p, is the y component of canonical momentum. In a similar way it can be shown
(see Problem 8.1) that in a cylindrical geometry with azimuthal symmetry (i.e., 9/06 = 0)
the & component of canonical angular momentum is also a constant of the motion:

Py = mrvg + qrAg = const. (8.9)

The existence of exact constants of the motion often proves useful in understanding the
behavior of particle motion in complex electric and magnetic fields. In the discussion that
follows, relatively simple forms for B and E are chosen that allow for a complete analytic
solution of the particle orbits, and that explicitly demonstrate the existence of exact constants
of motion.

8.3 Motion in a constant B field

The basic building block of magnetic confinement is the behavior of a charged particle
in a uniform, time independent, magnetic field. The orbit of such a particle exhibits good
confinement perpendicular to the direction of the magnetic field and no confinement parallel
to the magnetic field. This behavior can be explicitly demonstrated by solving Newton’s
laws of motion assuming E = 0 and B = Be,, where B = const.

In component form, the full set of Newton’s laws reduces to

dv, /dt = wcvy vy (0) = vy = v cOs @,

dv,/dt = —wv,

vy (0) = vy9 = vy sing,

dv,/dr =0 v, (0) = v, = vy,

dx/dt = v, x (0) = xo, (8.10)
dy/dr = v, ¥ (0) = yo,

dz/dt = v, z(0) = zp.

Here w. = ¢ B/m is the gyro frequency (sometimes also called the cyclotron or Larmor fre-
quency) and v, @, v, Xo, Yo, Zo are constants representing the initial velocity and position
of the particle.

8.3.1 Parallel motion

Focus first on the motion parallel to the field. The relevant subset of equations is

dv,/dt =0
dz/dt = v,

v.(0) = vy = vy,

20— 20, 8.11)

The solution is easily found and is

v:(1) = vy,

z(t) = zo + yyt. (8.12)
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144 Single-particle motion in a plasma

The behavior corresponds to a constant uniform motion. There are no parallel forces provid-
ing confinement and particles simply proceed unimpeded. The motion is therefore uncon-
fined along a given magnetic line.

8.3.2 Perpendicular motion

In the x,y plane the force is always perpendicular to v. Intuition from classical mechanics
suggests that this will lead to a circular-type motion and this is indeed the case. Consider
first the relevant equations for the velocity:

dv,/dt = w.vy vy (0) = vy9 = v cOs ¢,

1
dv,/dt = —wcv, vy (0) = vyp = vy sing. ®.13)

Eliminating v, yields

d*v,/de* + vy =0,
v, (0) = vy sing, (8.14)
dvy (0) /dt = —wcv, (0) = —w.v | cos ¢.

Equation (8.14) is a linear, ordinary differential equation with constant coefficients. Its
general solution is easily found, and applying the initial conditions leads to

vy (1) = —vosin(@f — @),

vy (1) = v cos(wet — ). (8.15)

Observe that the particles rotate with an angular frequency equal to the gyro frequency. Also,
for a uniform magnetic field, not only is the total kinetic energy conserved, but the separate
parallel and perpendicular energies are individually conserved: v2 (1) = vﬁ = const. and
v; (1) + v} (1) = v} = const.

The solution for the perpendicular motion is completed by integrating the velocity, yield-
ing expressions for the particle trajectory x(z), y(f). One obtains

x(t) = xg + rpsin(wct — @),
(1) = yg +rLcos(wet — ¢). (8.16)

Here, the gyro radius (sometimes called the Larmor radius) is given by rp, = v, /o, =
mv_ /qB. The quantities x,, y, are defined as the guiding center position of the particle:

Xg = Xo +rpsing,

(8.17)
Vg = Yo — I'LCOS .
This nomenclature is motivated by the trajectory relationship
(x — x)* + (v — yp)* =11, (8.18)

which is illustrated in Fig. 8.1. Observe that the orbit of the particle is circular with a
radius equal to the gyro radius. The center of the orbit is located at x,, y, and hence the
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8.3 Motion in a constant B field 145

Figure 8.1 Gyro orbit of a positively charged particle in a magnetic field. Shown are the guiding
center x,, y, and the initial position xo, yo.

name “guiding center.” Since the gyro radius is, in general, quite small in comparison to
the plasma radius, one can conclude that there is good confinement perpendicular to the
magnetic field.

The concept of the guiding center is, as its name implies, the basis for “guiding center
theory.” By following the velocity and position of the guiding center for more general
fields one obtains an accurate picture of the average particle location, differing from the
exact orbit by only a small deviation of order of the gyro radius. Guiding center motion
indeed provides a powerful intuition into the motion of charged particles in slowly varying
magnetic and electric fields, a very common practical situation.

A further property of gyro motion is the direction of rotation. Because the electrons
and ions have opposite sign charges, they rotate in opposite directions. The actual rotation
direction is determined in Fig. 8.2 by calculating the direction of the force £ |¢| v x B. An
easy way to remember the rotation direction is to note that the magnetic field generated by
the electric current of a gyrating particle always opposes the applied magnetic field; that is,
the gyro motion is diamagnetic. The sign of the charge can be easily taken into account in
the description of gyro motion by defining the gyro frequency and gyro radius to always be
positive, . = |q| B/m, r. = mv,/|q| B, and rewriting the solutions as follows:

ve(1) = vy cos(wet £ @),

v, (1) = Fv, sin(wt = ¢),
x(t) = xg + rysin(wct £ @),
y(t) = yg F rLcos(wct + @),

(8.19)

where the upper sign corresponds to a negative charge. Hereafter, the oscillating parts of
these solutions is abbreviated to Vgyro(?) and ryro (7).
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146 Single-particle motion in a plasma
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Figure 8.2 Force on a charged particle showing that the rotation is in the diamagnetic direction. For
ions g = +e, while for electrons g = —e.

Lastly, consider the scaling consequences of gyro motion. Note that the gyro frequency
increases with the magnetic field B: high B — high .. Also the electron gyro frequency is
much larger than the ion gyro frequency by the ratio m;/m.. The gyro radius increases with
the perpendicular velocity v, and decreases as the magnetic field B increases: high v, , low
B—> large ry . For a typical thermal particle with v, = vy = (2T /m)"/? the ion gyro radius
is larger than the electron gyro radius by the ratio (m;/m.)"/?. Typical numerical values
have been given in Chapter 7 and are repeated here for convenience:

eB

we =—=176x10"B =8.8 x 10" 57",
ne
eB 7 8 —1
wi=—=479%10"B =24 x 10%s7",
i " (8.20)
(2m.T,)"> N s
Me= ——— =107 x 104X - =83 x 10 m,
e B
omiT, 1/2 T1/2
ry = EIT 646 % 107 Z 5.0 % 10 m,
eB B

These values correspond to 7x = 15keV, B = 5T, and a deuterium mass.

8.3.3 Consequences of gyro motion

The combined perpendicular and parallel motion of a charged particle corresponds to a
helical trajectory as shown in Fig. 8.3. Particles spiral unimpeded along field lines with
a small perpendicular excursion equal to the gyro radius. This has important implications
for the geometry of a magnetic fusion reactor. Specifically, the magnetic geometry must be
toroidal. A technologically simpler, linear geometry does not work, as shown in Fig. 8.4(a).
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8.3 Motion in a constant B field 147

Figure 8.3 Helical trajectory of a charged particle in a uniform magnetic field.
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Figure 8.4 (a) Particles streaming along a magnetic line and being lost as they collide with the wall.
(b) Magnetic lines wrapping around a torus preventing free streaming end loss.

Observe that in a finite length linear geometry all magnetic field lines must eventually make
contact with the first wall as they leave the system. The particles therefore free stream
along the field lines directly colliding with the wall in a very short time. In other words,
the particles are not confined and there is no time for fusion reactions to occur. This crucial
problem is avoided in a toroidal geometry as illustrated in Fig. 8.4(b). Here, particles again
spiral continuously along field lines. However, they never make contact with the first wall
since the field lines do not leave the chamber in a toroidal geometry and the particle’s
perpendicular excursions are very small: r1; < a.

It should be noted that various ingenious configurations have been invented to “plug” the
ends of open ended systems. These configurations are based on the “mirror” effect, which
is discussed shortly. Even so, in practice, the end losses are just too great to overcome
and it is for this reason that all the leading magnetic geometries for fusion applications are
toroidal.

To reiterate, the gyro motion of charged particles in a static, homogeneous magnetic field
serves as the basic building block for magnetic confinement of fusion plasma.
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148 Single-particle motion in a plasma

8.4 Motion in constant B and E fields: the E x B drift

The first additional contribution to the static magnetic field to consider corresponds to a
constant (in space and time) electric field. This may seem a little strange in view of the
discussion in Chapter 7, which demonstrates the highly effective ability of a plasma to
shield electric fields. The compatibility of Debye shielding with the existence of electric
fields is discussed as the analysis proceeds, and in fact it is shown that no contradictions
arise.

For the moment, in keeping with the spirit of “single-particle motion”, itis simply assumed
that constant electric and magnetic fields are prescribed. The challenge then is to determine
the motion of a charged particle in the combined set of fields. The modifications to the
original gyro motion separate into two contributions, one due to the parallel electric field and
the other due to the perpendicular component. It is shown that the parallel component leads
to a constant acceleration and the perpendicular component leads to an initially surprising
drift perpendicular to both E and B known as the E x B drift.

8.4.1 Effect of a parallel electric field

In addition to the constant magnetic field B = Be,, assume a constant electric field E =
E| + E|e; exists in the plasma. Consider first the effect of the parallel electric field. The
parallel component of Newton’s law reduces to

dv,

}’n? = qE” UZ(O) =1. (821)

The solution is easily found and is given by
v.(1) = vy + %EHI. (8.22)

In addition to the free streaming motion associated with v there is a constant acceleration
due to the parallel electric field. Hypothetically the particle velocity would continue to
increase monotonically and indefinitely until it became relativistic.

In practice, there is a reason why this does not often occur. The ability of electrons and
ions to free stream along the magnetic field implies that the parallel electric field that can be
generated in a plasma is in general very small, in accordance with the principles of Debye
shielding. The actual parallel electric field is not, however, quite as small as predicted by
Debye shielding because of the presence of Coulomb collisions. These collisions produce a
small frictional drag on the parallel motion leading to a small, but finite plasma resistivity.
This resistivity generates a small (but still higher than the Debye value), parallel electric field,
similar to the small, but finite, voltage drop across a length of copper wire. The combination
of a small electric field and the frictional drag force limits the maximum velocity achievable
by a charged particle to non-relativistic values. The frictional drag force due to collisions
is discussed in detail in the next chapter.

A final interesting point concerning parallel motion is that under certain conditions,
the frictional drag due to collisions is too weak to prevent the slowing down of a certain
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8.4 Motion in constant B and E fields 149

class of electrons in the plasma. In this situation the electrons do indeed accelerate to
relativistic velocities. These electrons are appropriately called “runaway electrons” and this
phenomenon is also discussed in the next chapter.

8.4.2 Effect of a perpendicular electric field

The next topic concerns the effect of a perpendicular electric field on gyro motion. Consider
first the mathematical solution to the problem. To simplify the analysis assume that E; =
E.e., where E, = const. The perpendicular equations of motion become

dv, q
a1 = w.Vy+—Ey,
" (8.23)
dv,
d—t' = —WcVy.
Eliminating v, by means of the second equation yields
dv E,
T, o (vy + E) —0. (8.24)

The solution is easily found by introducing a new velocity variable v; =v,+ E,/B. The
equation for v; simplifies to

2.,/

d vy,

dr?

and corresponds to the gyro motion previously discussed.

The solution for the original velocity thus becomes
V(1) = Voyro (t) — (E/B)ey. (8.26)

Note the addition of a new drift perpendicular to both E and B. This result is easily gen-
eralized to an arbitrary perpendicular electric field E; = E.e, + E,e,, where E,, E, are
constants. For the general case one introduces a new perpendicular velocity variable

+ v, =0 (8.25)

v,.=v, —E, xB/B% (8.27)
The basic equation of motion for the perpendicular (x, y) components, given by
dv
m— = =q(EL +v. xB), (8.28)
reduces to
v / (8.29)
—— =w.V ] Xe,. .
dr o

Equation (8.29) corresponds to gyro motion in a uniform magnetic field. The general form
for the original velocity can, therefore, be written as

vi() = ngro(t) + Vg,

ExB
Ve = 7

(8.30)
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150 Single-particle motion in a plasma
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Lower v Smaller r
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Figure 8.5 (a) Effect of E, on a positive charge and (b) the resulting perpendicular E x B drift. (c)
Effect of E; on a negative charge and (d) the resulting perpendicular E x B drift.

The conclusion is that the addition of a uniform perpendicular electric field superimposes a
constant drift velocity (V) on the gyro motion. This drift is known as the E x B drift and
is perpendicular to both E and B. It is also independent of the mass and charge. In other
words, electrons and ions drift with the same velocity.

The next step is to develop a physical picture of the origin of the E x B drift and then
lastly to address the issue of how the existence of a perpendicular electric field can be
compatible with Debye shielding. A physical picture of the E x B drift can be obtained
by examining Fig. 8.5 and recalling that the gyro radius increases with the perpendicular
velocity: ri, ~ v, /B. Consider the motion of a positive charge located in an electric and
magnetic field as shown in Fig. 8.5(a). This illustration shows the gyro motion of the charge
without the electric field. As the particle moves from point 1 to point 2, the effect of the
electric field, because of its direction, is to accelerate the charge — increase its velocity. As
it moves from point 2 to point 3 it slows down returning to its original velocity. Note that at
every point along the top part of the trajectory the velocity is larger than the original velocity
without the electric field, implying that on average its gyro radius has increased in size.

The opposite is true on the lower portion of the curve. From point 3 to point 4 the charge
is decelerated and slows down. From point 4 back to point 1 the charge accelerates back
to its original velocity. Over the bottom portion of the trajectory the average velocity and
therefore the average gyro radius is smaller than without the electric field.
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8.5 Motion in fields with perpendicular gradients 151

The combination of these effects is shown in Fig. 8.5(b). A higher v, on the top portion
of the trajectory and a lower v, on the bottom portion lead to a drift perpendicular to both
E and B resulting from the different sizes of the average gyro radius. A similar picture
holds for negatively charged electrons as shown in Figs. 8.5(c) and 8.5(d). Observe that the
direction of the drift is independent of the size of the charge.

Lastly the simultaneous existence of a perpendicular electric field and Debye shielding
has to be reconciled. There are two points to consider. First note that since both electrons
and ions have the same E x B drift velocity this corresponds to a macroscopic fluid flow
u; = Vg without the generation of any electric current J; = en (u;; —u,.) = 0. The
expression for the E x B drift velocity can thus be rewritten as E; +u; x B = 0. Now
recall from the theory of low-frequency electromagnetism that the electric and magnetic
fields in a fluid moving with a velocity u; can be transformed to the reference frame
moving with the fluid by the relations E'y = E; +u; x B and B’ = B. Consequently, in
the reference frame where the fluid is stationary it follows that E|, = 0, which is consistent
with the principles of Debye shielding.

The second point is slightly more subtle. In future chapters it will be shown that small
perpendicular electric fields (but still larger than the predicted Debye value) can exist in
a plasma. This involves the development and solution of self-consistent plasma models.
Qualitatively, such electric fields arise because perpendicular to B the electrons and ions
are magnetically confined and therefore are not free to flow and shield out any local charge
imbalances that may develop. It will be shown that these imbalances are a consequence of
the different size electron and ion gyro radii and ultimately lead to potentials on the order
ofep ~ T.

Insummary, the E x B driftis one of the fundamental cross-field drift velocities appearing
in the guiding center theory of charged particle motion.

8.5 Motion in fields with perpendicular gradients: the V B drift

The second modification to gyro motion to be investigated involves inhomogeneities in the
fields. Specifically, this section includes the effects of gradients in B and E perpendicular
to the magnetic field. Although the B field is inhomogeneous, its direction nevertheless
remains straight; that is, B is assumed to be of the form B = B(x, y)e,. For the electric
field, the gradients allowed are given by E = E,(x)e, + E,(y)e,. Note that V x E = 0.
Were this not the case, then from Faraday’s law, a time dependence would have to be
included in B. The time dependence issues are discussed in Section 8.7. The form of field
gradients considered here appear in plasmas created in long, straight, solenoidal coils.
The analysis presented below demonstrates that the magnetic field gradient produces a
particle drift perpendicular to both B and V B known as the V B drift. The gradient in the
electric field is shown to produce a small shift in the gyro frequency, which is of no great
consequence for present purposes. The analysis is carried out using a straightforward pertur-
bation expansion. The small parameter in the expansion is the ratio of the gyro radius to the
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152 Single-particle motion in a plasma

X

Figure 8.6 Width of the x dimension of a gyro orbit in a field with a weak gradient: r;, < a.

scale length characterizing the field inhomogeneities: /. VB/B ~ r,VE/E ~rp /a < 1.
The magnetic and electric fields vary slowly compared to the gyro radius. The details of the
perturbation expansion proceed as follows.

8.5.1 Perpendicular gradient in B with E = 0

To simplify the calculation assume initially that E = O and B(x, y) — B(x). These assump-
tions are relaxed shortly. The perpendicular equations of motion can then be written as
mdv, /dt = gB(x)vy,
mdv, /dt = —gB(x)vy,
dx/dt = v,,
dy/dt = v,.
These equations are complicated non-linear differential equations because of the x depen-
dence of B. The equations are simplified by exploiting the small gyro radius approximation.
The key step is to Taylor expand B about its guiding center. The implication is that a weak
field gradient only allows a particle’s x position to deviate slightly from its guiding center
trajectory. See Fig. 8.6. Under this assumption, the perpendicular equations of motion can
be written as

(8.31)

0B(x,) x — x
dv, /dt & wc(x,) [1+M—g} .

dxg B(xy)

dv, /At ~ —wu(x )[1 + 8B(Xg)ﬂ] v (8.32)
’ ce dxg B(xg) |

dx/dt = vy,

dy/dt = v,.

Note that the magnitutude of second term in the square bracket is smaller by the ratio r /a.
The solution to Eq. (8.32) is found by a straightforward perturbation expansion:
V=V0+V1 +"‘7

(8.33)
r=ro+r +--.
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8.5 Motion in fields with perpendicular gradients 153

The expansion is substituted into the equations of motion. Setting the leading order contri-
bution to zero yields

dvy/dt = w.vy X e,

(8.34)
dl‘()/dt = Vp.

Since w. = w(xy) = const., the solution to Eq. (8.34) is simply the basic gyro motion given
by Egs. (8.15) and (8.16).

The zero order solution is now substituted into the first order contribution to the pertur-
bation equations, which can be written as

dvyg vi 0B
— vy = — 7= [1 — cos2(wct — @),
dr ’ 2B 0x, (8.35)
dvyy vi 0B .
—— — W Vy] = ——— sin2(w.t — ¢).
dr 2B dx,

These are linear inhomogeneous differential equations. Observe that there are two types of
driving terms — a constant term and a term oscillating at twice the gyro frequency. Since
the equations are linear the response to each type of driving term can be determined by
superposition. It is shown in Problem 8.2 that the second harmonic terms give rise to a
small shift in the location of the guiding center plus a small correction to the size of the
gyro radius. Neither of these effects is of any consequence since they do not result in a
guiding center drift. They can thus be ignored for present purposes. Under this assumption
the equations for the velocity components reduce to

dv, vi 0B

T T oo,

du,; § (8.36)
d—; + w.vy = 0.

These equations are identical in form to Eq. (8.23), which produced the E x B drift. By
direct comparison it follows that any driving term representing a constant acceleration
F/m — qE/m gives rise to an equivalent E x B drift of the form

vV, — 1FxB 8.37)
F= ;B .
Applying this result to Eq. (8.26) leads to the V B drift
vi 1 0B
Vyp = (8.38)

———e,.
2w B dx,
In Problem 8.2 it is shown that this result can be easily generalized to the 2-D case B =

B(x, y). The result is a generalized form of the V B drift given by

v} Bx VB
2w, B2

Vvp=F ) (8.39)
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Figure 8.7 (a) Magnetic field gradient due to B = B(x)e,. (b) Gyro motion ignoring the B field
gradient. (c) Gyro motion plus the V B drift.

where the upper sign corresponds to a negative charge and it is understood that the field is
evaluated at the guiding center.

Observe the following properties of the V B drift. (1) The drift is perpendicular to both
B and VB. (2) For a typical thermal particle (v; ~ vr) the VB drift is small compared to
the thermal velocity: |Vyg/vr| ~ ri/a. (3) Since the drift is proportional to mvi it has the
same (velocity-averaged) magnitude for electrons and ions when 7, = 7; = T'. (4) Since
Vyp is proportional to 1/g the direction of the drift is opposite for electrons and ions,
causing a net flow of current.

A physical picture of the V B drift can be obtained by examining Fig. 8.7. A magnetic
field profile with an admittedly exaggerated magnetic field gradient is shown in Fig. 8.7(a)
and Fig. 8.7(b) illustrates the zeroth order gyro motion for a positive particle in which the
effects of the gradient are ignored. Recalling that the gyro radius scales as i, ~ v, /B, it
follows that along the trajectory from point 1 to point 2 to point 3 the gyro radius will be
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8.5 Motion in fields with perpendicular gradients 155

slightly larger because the magnetic field is slightly smaller. Similarly, from point 3 to point
4 and back to point 1 the gyro radius is slightly smaller because of the increased magnetic
field. These modifications to gyro motion are combined in Fig. 8.7(c) demonstrating the
existence of the V B drift. A similar picture holds for negative charges.

The V B drift makes an important contribution to the flow of current and the corresponding
self-consistent magnetic field in a fusion plasma.

8.5.2 Perpendicular gradient in E with uniform B

The next topic involves the effects of a weak perpendicular gradient in the electric field.
The magnetic field can be considered to be uniform (B = const.) since the effects of a weak
gradient in B have already been calculated and, as has been shown, can be easily included
by means of superposition. The derivation below demonstrates that the main effect of the
electric field gradient is to produce a small correction to the gyro frequency which is of no
great significance.

The analysis is carried out assuming the following form for the electric field: E =
E\(x)e,. This form satisfies V x E = 0 so that no time dependence need be included
in the magnetic field. As with the VB drift, the mathematical solution is obtained by a
straightforward perturbation technique in which the electric field is expanded about the
guiding center position of the particle. The relevant equations for the velocity components
become

dv, E.(x JoE,
dr _w°[vy+ ;g)]%%ax (r = xg),
o e (8.40)

— 4+ w.v, = 0.

Note, that if there were no gradient in the electric field the solution would be given by the
sum of the gyro motion plus E x B drift as expected. When the gradient is included one
must be careful before simply substituting the zeroth order solutions into the correction
term on the right hand side of Eq. (8.40). The reason is that this term might oscillate at the
fundamental gyro frequency, thereby appearing as a potentially resonant driving term in
the equation. As is well known, a resonant driving term often leads to solutions that grow
linearly with time. In other words, the solutions become linearly divergent with ¢ and the
perturbation procedure breaks down.

A more careful examination of Eq. (8.40) shows, however, that resonant growth does not
occur and the solutions remain bounded. To see this, differentiate the first equation and then
eliminate dv, /df by means of the second equation. A short calculation yields

v, 1 JE,
2 (1 - .= 0. 8.41
an ( w.B axg)” ®841)

Equation (8.41) shows that the main effect of a perpendicular gradient in the electric field
is to generate a small correction to the gyro frequency. There is no new particle drift or
resonance. In other words, the effect is of no great consequence and is ignored hereafter.
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156 Single-particle motion in a plasma

Finally, it is worth noting that if one carries out the expansion one order higher in the ratio
rp/a a drift does develop known as the “finite gyro radius” drift. This drift is in the same
direction for electrons and ions but is larger in magnitude for the ions. However, because
of its small magnitude (r,/a smaller than the other guiding center drifts) it does not play
an important role for much of the fusion plasma physics discussed in this book. For this
reason it is ignored hereafter, although it is discussed in Problem 8.3.

8.6 Motion in a curved magnetic field: the curvature drift

The spatial dependence of the magnetic fields thus far considered has been either uniform
or possessing a perpendicular gradient. In all cases, however, the direction of the field has
been straight, along the e, direction. The present section relaxes this constraint and allows
for a curved magnetic field. It is shown that the field line curvature leads to a new guiding
center drift perpendicular to both the magnetic field and the curvature vector. The drift is
driven by the centrifugal force felt by a particle due to its free streaming, parallel motion
along a curved field line. Hence, it is known as the “curvature drift.”

The analysis is first carried out for a simple curvilinear geometry in which the fields
are assumed to be of the form B = B(r)ey and E = E,(r)e,. A perturbation expansion is
again used. Once the drift has been calculated, the derivation is extended to a generalized
curvilinear geometry. The first derivation begins by noting that in a cylindrical coordinate
system the position, velocity, and acceleration are related by

r(r) = r(e, + z(ne;,

v(t):gzd—re +r%eg+%e=ve+vgeg+ve7 (8.42)
dt — dr " dr de © "7 e

a(t) = ﬂ = <% — v_g)er + (dﬁ + v,v9>e9 + %e,.
dr dr r dr r dr ~

Here, use has been made of the fact that the directions of two of the unit vectors change
with 0:

de, oe, do )

= - = — €y,
dr 00 dt r
8.43
deg 0 €y do Vg ( )
— = —— = ——¢,.
dr a6 dr r
The equations of motion for the velocity components can now be written as
dv, v} ¢
— = Z(E, —v.B),
dr r m( v:B)
Qe _d,p (8.44)
dr m
dvg v
— =0.
dr r
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8.6 Motion in a curved magnetic field 157

The dominant behavior again corresponds to gyro motion plus an E x B drift. This
can be seen by introducing a perturbation expansion similar to the VB drift analysis:
v(t) ~ vo(t) + vi(t). Here, vo(t) consists of V1o(f) = Vgyro + Vi and vgo(t) = v = const.
Note that parallel now refers to the 0 direction. The next step is to substitute into Eq. (8.44)
and to expand all quantities about the guiding center position 7. A short calculation yields
an equation for vy(z):

dv we(r — IB IE, vt
- WVl X € = M —Vio X € + e |+ —Her,
dr B 0rg org Yo (8.45)
dvji _ vrovzo ’
dr Ie ’

where w. = qB(rg)/m.

The solution has the following properties. The parallel velocity v (¢) develops a small,
unimportant, second harmonic modulation, a consequence of the fact that both v,((¢) and
v,0(t) are oscillatory at the fundamental frequency and are 77 /2 out of phase. The first two
terms on the right hand side of the v, ; equation represent the V B drift and the E | (r ) gyro
frequency correction already discussed. Only the last term represents a new contribution.
Because the perturbation expansion essentially linearizes the first order equations, the effect
of the new term can again be calculated using superposition.

Physically, this term represents the centrifugal force acting on the particle because of
its free streaming parallel motion along a curved magnetic field line. Mathematically, the
term has the form of a constant external force. Therefore, in accordance with Eq. (8.37)
a guiding center drift develops that is perpendicular to both the magnetic field and the
centrifugal force. It is known as the curvature drift and is given by

i

Ve = e, (8.46)

Z

wclr

with all quantities evaluated at the guiding center. The drift has a similar scaling as Vyp
except that vi is replaced with 2vﬁ. It is small compared to the thermal velocity (|V,|/vr ~
rp/a) and comparable in magnitude for electrons and ions of similar temperatures. The
direction of the curvature drift for electrons is opposite to that for ions and therefore generates
a current.

The expression for V, can be generalized to an arbitrary curvilinear magnetic geometry
by introducing the radius of curvature vector R.. Several steps are required. First, the
unit vector parallel to the magnetic field is introduced: b(r) = B/B. Second, the velocity
vector is decomposed into a perpendicular and a parallel component: v(z) = v, + v;b.
Next, the perpendicular components of the equations of motion (with E = 0 for simplicity)
are extracted by forming the operation

b x {[%(vl +vyb) — (v + vjb) x b} x b} =0, (8.47)
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158 Single-particle motion in a plasma

where w, = ¢ B(r)/m. The various terms are simplified as follows:

b x {[wc(Vv. + vb) x b] x b} = —w.v x b,
el o= ().

dr de ),

d db (8.48)
b x {[E(U”b)} X b} = UHb X |:<5> X b:|

The last term can be further simplified by noting that for a unit vector b - b = 1 and therefore
b-db/dr = (1/2)d(b - b)/dt = 0. Also, the term db/dr can be rewritten as

dbm®) _ (3 4 p—v. v (8.49)
dr  \ar  dr =V ' ’

Combining results leads to a simpler form of the perpendicular equations of motion:

(%) — vy xb=—vv, - Vb—ub-Vb. (8.50)
t )y

The left hand side of this equation represents the familiar gyro motion. In the context of a
perturbation expansion the right hand side of the equation represents two inhomogeneous
driving terms, both smaller by 71 /a. The term with v v, oscillates at the gyro frequency
with zero average value. It thus makes small modifications to the gyro motion as previously
discussed, but does not lead to a drift of the guiding center. Only the last term has the form
of a constant external force. It represents the generalization of the centrifugal force and
leads to the curvature drift.

The last step in the analysis is to determine a relation between the magnetic curvature
vector b - Vb and the radius of curvature vector R.. This relationship is easily established
by examining Fig. 8.8. Observe that the change in b along a curved magnetic line is given
by

b
db=h(r,.[+dl) ~b(r,. 1) =~ dl = (b- Vb,

dl (8.51)
|db| =df = —.

R

c

Here use has been made of the fact that the change along the magnetic field is equivalent to
taking the parallel gradient: 9/d] = b - V. From the geometry and the definition of the radius
of curvature vector it is clear that R, is anti-parallel to b - Vb. Therefore R, = —K'b - Vb.
The scale factor K is found by noting that |b - Vb| = |db|/dl = 1/R.. Combining results
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8.7 Combined Vyp and V,. drifts in a vacuum magnetic field 159

Figure 8.8 Geometry showing the relation between b - Vb and R.. Here, b =b(r,,/) and b’ =
b(r,, !+ dl). Similarly for R, and R’,.

leads to

b- Vb R,
. = —R—g. (8.52)
The generalized form of the curvature drift can now be calculated. Equation (8.52) is
substituted into the centrifugal force term in Eq. (8.50). Then, using the relation between
a constant external force and the resulting guiding center drift given by Eq. (8.37), one
obtains the desired generalization:

v — ViR xB
“ =¥ RB

(8.53)

Again the top sign refers to electrons.
Like the VB drift, the curvature drift makes an important contribution to the flow of
current in a plasma and the determination of the self-consistent magnetic fields.

8.7 Combined Vyj and V, drifts in a vacuum magnetic field

In a steady state fusion plasma with E = 0, an inhomogeneous, curved magnetic field
produces two guiding center drifts — the V B drift and the curvature drift. For the special
situation where the plasma currents are small, the magnetic field becomes approximately
a vacuum magnetic field and a simplifying relationship exists between Vyp and V,. The
goal of this section is to derive this relationship. It is shown that for vacuum fields Vy g and
V, are both in the same direction, implying that there is no way for their resulting currents
to cancel.
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160 Single-particle motion in a plasma
The derivation follows from the well-known vector identity
VB -B)=2B x (V xB)+2B- VB. (8.54)

For a vacuum magnetic field V x B = 0. One now forms the cross product of Eq. (8.54)
with b. A short calculation yields

B x R,
R2

C

Bx VB =Bbx[bb-VB)+ Bb-Vb] = —B (8.55)

Using this relation in the expression for the V B drift (Eq. (8.39)) leads to a simple expression

for Vyp + V,:

R. xB
R’B

2
Vot Vor = F—0f + 2 (856)
we 2

As stated, each drift is obviously in the same direction and hence the resulting currents

cannot cancel. This leads to the following interesting question. If the guiding center cur-

rents always add, and if Vyp and V, are the only current-producing guiding center drifts

associated with an inhomogeneous, curved magnetic field, how then can B correspond to

a vacuum field? The answer lies in the development of an additional macroscopic fluid

like current, known as the “magnetization current”’, which exactly cancels the Vyp + V,

contribution to J. A discussion of the magnetization current is deferred until Chapter 10,
where self-consistent fluid models are developed.

8.8 Motion in time varying E and B fields: the polarization drift

The next contribution to the theory of single-particle guiding center motion involves the
effects of slow time varying electric and magnetic fields. Specifically, attention is focused
on fields of the form E(r, 1) = E (r,, t)e, + E,(r, t)e, and B = B(r, t)e.. It is shown
that the main consequences of the time variation are the development of a new guiding
center drift known as the “polarization drift” and the identification of a new approximate
constant of the motion known as the “adiabatic invariant.”

The polarization drift arises from the effects of particle inertia in a time varying electric
field. As E; changes slowly in time the particle motion tracks the time evolution of the field,
although lagging slightly behind because of particle inertia. The analysis demonstrates that
the resulting polarization drift is in the direction of E; (and not E; x B) and is larger for
ions than electrons because of the heavier ion mass.

The adiabatic invariant predicts how the perpendicular energy of a charged particle
evolves in time in the presence of a slowly varying magnetic field. It is shown that an
increasing B field causes a corresponding increase in v? . The invariant is not an exact con-
stant of the motion in the sense that its value remains unchanged only after time averaging
over the gyro motion.
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8.8 Motion in time varying E and B fields 161

The analysis is separated into two parts. In the first part the magnetic field is assumed
to be uniform in space and time (B = const.) and the electric field is assumed to vary only
withtime (E = E.(t)ex + E,(t)e,). This simplified model captures the essential features of
the polarization drift. The mathematical solution is obtained by a straightforward iteration
procedure.

The second part of the analysis allows the magnetic field to also be a function of time.
This slightly complicates the calculation because a time varying B field generates a spa-
tially varying electric field in accordance with Faraday’s law. These effects are treated
by introducing a special mathematical time transformation into the analysis. Two results
follow. First, there is a slight modification to the polarization drift. Second, the new
approximate constant of the motion is derived. This constant is known as the adiabatic
invariant fi.

8.8.1 The polarization drift for E, = E.(t)e, + Ey()ey and B = const.

This subsection focuses on the simple form of the fields given above. The mathematical
analysis of the polarization drift is presented first, followed by a simple physical picture.

Mathematical derivation

For the fields under consideration the equations of motion for the perpendicular particle
velocity are given by

dv,/dr — w.vy = w E(t)/B,

8.57
dvy/dt + wc.vy = o Ey(t)/B. ( )

A formal exact mathematical solution to these equations is readily obtainable for arbitrary
E,, E,. However, the solutions are not very insightful since they involve a variety of compli-
cated integrals. Insight can ultimately be obtained by making use of the slow time variation
assumption, which then allows an approximate evaluation of the integrals.

For present purposes, it is more convenient mathematically to assume slow variation
from the outset. With this assumption, one can obtain an accurate approximation to the
solution by means of a straightforward iteration procedure. The basis for the procedure
is the introduction of a small parameter that measures the slowness of the time variation.
Specifically, the characteristic frequency w associated with the time variation of the electric
fields is assumed to be low compared to the gyro frequency: |E, |/|E.| ~ w < w.. The
low-frequency assumption guarantees that each new term in the iteration is smaller by w/w,
than the previous term.

The first step in the iteration procedure is to introduce a new velocity variable v/, that
subtracts out the E x B drift.

v, = v, + Ey(1)/B,

vy, = v, — E.(t)/B. (8.58)
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162 Single-particle motion in a plasma

The equations of motion for v/; become

dv’, ,  LdE,
a T TR A
, (8.59)
dvy t o — 1 dE,
a T B A
Note that the right hand side of Eq. (8.59) is smaller by w/w, than the corresponding terms

in Eq. (8.57).

The next step in the iteration is to treat the terms on the right hand side of Eq. (8.59) as
anew “constant” (actually slowly varying) external force. In analogy with the E x B drift,
these terms can be explicitly separated out from the solution by introducing a new velocity
variable v| as follows:

, n 1 dE,
V.=
Y wB dt’
(8.60)
v/ — v//_"_ 1 %
Y Y @B dt
The equations for v/| are now given by
dv’ B 1 d°E,
— WV = ——— ~ 0,
dr ) w.B dr? 8.61)
" 2 :
ﬂwcvu:_ L EPE o
dt o w.B di?

The terms on the right hand side of Eq. (8.61) can be neglected since they involve the
same components of electric field as the starting equations and are smaller by (w/w)>.
In principle, one could continue with the iteration procedure to higher and higher order,
although it is obvious by construction that each new right hand side driving term is smaller
by w/w. than the previous iteration. Once the higher order terms in Eq. (8.61) are neglected
it is clear that the solution for v”, is just the familiar gyro motion.

The conclusion from the analysis is that in a constant B field with a slowly varying
perpendicular electric field the combined orbit of the particle is accurately approximated
by

El x B
vi(t) = Veyro + T + Vp, (8.62)
where (with the upper sign corresponding to electrons)
V. — 1 dE; 8.63)
P :Fa)cB dr :

Observe the following properties of the solution. The velocity consists mainly of gyro
motion plus the instantaneous value of the E x B drift. This is what one might expect
from a slowly varying electric field. There is, however, a small additional drift velocity V,,
in the direction of the electric field and this is the polarization drift. It flows in opposite
direction for electrons and ions (tending to cause a charge “polarization” in the direction
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8.8 Motion in time varying E and B fields 163

Figure 8.9 Dashed curve: linearly rising electric field that levels off after a period of time. Solid curve:
step function model of the electric field evolution.

of the electric field) and is much larger for ions because of their heavier mass. In terms
of its magnitude, the polarization drift is small compared to the E x B drift. In particular,
V,o/Vi ~ o/w. < 1. One might ask if V, is small why keep it at all? The reason is that
while it is small, it is still the first non-zero perpendicular drift in the direction of E . There
is clearly no contribution in this direction from the E x B drift.

The difference in direction is important. In terms of currents flowing in the direction of
E, it makes more sense to compare the polarization drift with the displacement current
which also points in the same direction. This comparison is easily made by calculating

J vV nm; dEJ_
P ~ gn pi = VTR
B di (8.64)
J oE |
=g)—.
4= &0
The ratio of polarization to displacement currents is thus given by
2
o _ <. (8.65)
Jo vy

where vy = (B? /ponm;)'/ 2 is known as the Alfvén speed. For typical reactor parameters,

this ratio is about 3 x 10° > 1. In the comparison, the polarization current is dominant.

A physical picture
The physical origin of the polarization drift is associated with the inertia of the particles.
To understand how the drift arises consider the motion of a positively charged particle in a
constant B field and a linearly time varying E as shown in Fig. 8.9. Now, for simplicity,
approximate the time behavior of the electric field as a series of increasing steps with the
duration of each step corresponding to one gyro period.

A qualitative picture of the orbit under the action of these fields is illustrated in Fig. 8.10.
The dashed curve is a reference circular gyro orbit with no electric field. The solid curve is
the orbit during the first step of the electric field. Note that in addition to the E x B shift
of the guiding center to the right, both the top and bottom points of the trajectory (i.e., points
1 and 2), are shifted slightly upward because of the different average gyro radius size in
the upper and lower portions of the orbit. This difference in gyro radius is associated with
inertia which causes the particle motion to lag behind the changing electric field.
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Figure 8.10 Locus of the maximum, minimum, and guiding center location of the particle orbit for
the step model of the electric field.

During the second step the process repeats itself with the following modifications due
to the larger value of the electric field. The E x B shift of the guiding center to the right
is slightly larger. Similarly, the upward shifts of point 1 and point 2 are also both larger.
Figure 8.10 plots the envelopes of point 1, point 2 and r,, for consecutive steps in the electric
field. There is clearly a drift of the guiding center in the y direction as long as the electric
field is varying in time. This is the polarization drift. Once the electric field levels off the
polarization drift vanishes and all that remains is a constant E x B drift.

8.8.2 The polarization drift for E, = E (r,,t)e, + E,(r,,t)e, and B = B(t)e,

In this subsection the analysis of the polarization drift is generalized to include the effect of
a time varying magnetic field. A further result is the identification of the adiabatic invariant
W as an approximate constant of the motion.

Note that for simplicity the perpendicular spatial dependence of B is ignored as these
effects have already been investigated. Even so, a time varying magnetic field complicates
the analysis by requiring a time and spatially varying electric field because of Faraday’s law.
These effects are treated by means of a mathematical transformation of the time variable
which greatly simplifies the analysis.

Mathematical analysis

The calculation begins by assuming that the perpendicular electric field is of the form
E, = E,(x, t)e,, a simplification that helps to keep the algebra tractable but still captures
the essential physics under consideration. With some straightforward additional work the
calculation can be easily generalized to the case E| = E,(r ,t)e, + E (ry,t)e,. The
starting model corresponds to the equations of motion with the electric field expanded
about the guiding center of the particle:

dv,

ar - 8.66
dv, N @ [p o 8Ey( ) (8.66)
— + oV = — —(x —xg) |-

da B dxg £

Downloaded from Cambridge Books Online by IP 198.35.1.27 on Wed Apr 18 16:29:24 BST 2012.
http:/dx.doi.org/10.1017/CB09780511755705.010
Cambridge Books Online © Cambridge University Press, 2012




8.8 Motion in time varying E and B fields 165

Here, w.(t) = g B(t)/m and all the electric field terms are functions of (x, #). Note that even
the pure gyro motion is difficult to calculate in the present form of the equations because
of the time dependent gyro frequency. The equations are greatly simplified by introducing
a new time variable 7 defined by

T = f w(t)dt, (8.67)
0

implying that dt = w.d¢. Under this transformation the model reduces to

dv,
—v, =0,
dr
dv, n 1 |:E n 8Ey( )i|
— == |E +—x—x9) |,
dr B 0xg (8.68)
dx _Ux
dr ~ w.’
dy vy
dr ~ w.

An accurate approximate solution to these equations can be obtained by introducing the
iteration procedure of the previous subsection and rewriting vy, v, in terms of cylindrical
velocity coordinates:

vy = vy (T)cos[t + &(T)] + %
(8.69)

. d (E,
vy = —v (T)sin[t + &(7)] + w\z3)

The variables vy, v, have been replaced by new unknowns v, (), £(t). Both the amplitude
and phase of the gyro motion are assumed to be functions of time and, in fact, they turn out
to be slowing varying functions of time. The form given by Eq. (8.69) already demonstrates
the slight modification to the polarization drift in which the B field must be included in
the time derivative. The remainder of the analysis focuses on solving for v, (7) leading to
the identification of the new approximate constant of the motion. The solution for £(7) can
also be easily found but no new important information is contained therein and hence the
corresponding analysis is suppressed.

To find the solution for v, (7) one additional step is required before substituting Eq.
(8.69) into Eq. (8.68). An expression is required for x — x, in the velocity equations. Since
this expression appears only in the small, expanded term, the leading order gyro motion
contribution is all that is required. From the second two trajectory equations in Eq. (8.68)
one finds that

vi(7)

X —Xxg X o) sin[t + &(7)]. (8.70)
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166 Single-particle motion in a plasma

Equations (8.69) and (8.70) are now substituted into the velocity components of Eq.
(8.68). The resulting two equations can easily be solved simultaneously for dv, /dr and
de/dt. A short calculation yields the desired equation for v, (7).

dUL V] BEV 8Ey d2 Ey .
—_— =~ 4+ —=cos?2 =—|— ~0. (8.71
dr + 2w.B |:8xg * dxg cos2(z +e) dt2 \ B sinz +¢) ®71)
As in the previous subsection the term on the right hand side is a higher order iteration
correction and can be neglected.

The next step is to simplify Eq. (8.71) by using Faraday’s law to replace 0E,/0x, =
—dB/dt = —w.dB/dt. Equation (8.71) reduces to

ldp 1dB

= T cos?2 , 8.72
L dr Bde cos2(t +¢) ( )

where
w=mv? /2B (8.73)

is known as the magnetic moment (for reasons to be discussed shortly). This expression
can be further simplified. Upon integrating Eq. (8.72) over one gyro period (1o < 7 + ¢ <
79 + 27m), one finds that the right hand side almost exactly averages to zero, except for a
very small, negligible correction of order (w/w.)*. Thus, to a very high degree of accuracy
it follows that (dIn p/d7) = 0. The implication is that u is a constant of the motion when
averaged over one gyro period.

2
t
MU st (8.74)
2B(t)
Significance of 1

The quantity p is known as the first adiabatic invariant and is equal to the gyro-averaged
magnetic moment of the charged particle. This can be easily seen by recalling that the usual
definition of the magnetic moment is & = I A, where I is the current flowing in a circular
loop and A is the area of the loop. For a particle gyrating in a magnetic field the current
averaged over one gyro period is given by I = g /1. = qw./2m, while the area is given by
A= nrf = m(mv_ /qB)*. Since the product /A = mvi/ZB, the quantity p is indeed the
magnetic moment.

The fact that u is constant when averaged over a gyro period can be interpreted as
follows. The magnetic flux enclosed by a particle over one gyro orbit is just ¥ = 7r}B =
mm/q*)u ~ . Therefore, as the B field changes slowly in time the perpendicular velocity
and corresponding gyro radius also change slowly in time in such a way that the flux
contained within the orbit is a constant.
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8.9 Motion in fields with parallel gradients 167

Summary of generalized results

A charged particle moving in time varying electric and magnetic fields experiences an
additional guiding center drift known as the polarization drift. This drift, for B = B(¢)e,
and the general case E| = E.(r , t)e, + E(ry, t)e,, follows from Eq. (8.69) and is given

by (top sign for electrons)
1 d/E;.
Vo=F——(—+]). 8.75
P :Fa)c dr ( B ) (8.75)

The second new result is the identification of an approximate constant of the motion
known as the adiabatic invariant. It is only “approximately” a constant since the derivation
requires averaging over a gyro period assuming that the magnetic field is varying slowly
(i.e., adiabatically). The adiabatic invariant is given by

t
n= ; = const. (8.76)

In terms of fusion applications the polarization drift plays an important role in setting
the time scale for macroscopic plasma instabilities. As is shown in Chapter 12 which
describes macroscopic macroscopic equilibrium and stability, the time scale associated
with the polarization drift is very fast compared to experimental times. If a given magnetic
configuration is unstable the plasma is rapidly lost to the wall because of the fast time scale.
The conclusion is that for fusion the magnetic configurations must be designed to avoid
such instabilities.

The adiabatic invariant plays an important role in two different ways. First it is the
basis for a magnetic confinement configuration known as the “mirror machine,” which is
discussed shortly. Second, the magnetic moment plays an important role in many toroidal
magnetic geometries leading to a surprisingly enhanced collisional transport of energy and
particles across the magnetic field. This behavior is known as “neoclassical transport theory”
and is discussed in Chapter 14. While both of these applications depend on the adiabatic
invariant, they are more connected to the result that u is a constant in slow spatially varying
magnetic fields as opposed to slow time varying fields. This spatial result has not as yet
been demonstrated but is a major topic in the next section.

8.9 Motion in fields with parallel gradients: the magnetic moment and mirroring

The last topic concerning guiding center motion involves the effect of a parallel gradi-
ent in the magnetic field, which can arise in configurations such as those illustrated in
Fig. 8.11. Two important results are obtained in the limit where the gyro radius is small
compared to the spatial gradient length of the field. First, the quantity s = mv? /2B is again
shown to be an adiabatic invariant. Second, a gyro-averaged force develops parallel to the
magnetic field gradient which can have a large impact on the parallel guiding center motion.
This force gives rise to the “mirror” effect and provides the basis for one of the earliest
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Figure 8.11 Coil configuration giving rise to a parallel gradient in B.
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Figure 8.12 Slab model of a magnetic geometry with a parallel gradient.

fusion experiments. The mirror effect and the simple mirror machine are also discussed in
this section.

In terms of the mathematics, parallel magnetic field gradients complicate the analysis
because the geometry is inherently 2-D. For example, even in the simplest case where B, =
B.(z), there must be an additional transverse component of B in order to satisfy V- B = 0.
For mathematical tractability in the analysis these transverse components are chosen to
satisfy the “long-thin” approximation which assumes that the parallel gradient length is
large compared to the transverse gradient length. Although not essential, this approximation
greatly simplifies the calculation while still capturing the essential physics.

8.9.1 The mathematical formulation

Consider first the prescribed fields. The electric field is assumed to be zero: E = 0. The
magnetic field geometry, for simplicity, is taken to be a slab version of the cylindrical
configuration in Fig. 8.11. The slab model is illustrated in Fig. 8.12. The magnetic field
is static in time and has the following non-zero components: B = B, (x, z)e, + B.(x, z)e;.
For the moment no long—thin approximation is made, implying that B, ~ B,. Under these
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8.9 Motion in fields with parallel gradients 169

assumptions the equations of motion for the particle velocities become

dv, q

—~ =2y B,

dt mvy ‘

dv, q

. = __(Usz - Usz)a (877)
dr m

d

e —ivyBx.

dr m

As in earlier calculations these equations will be solved by expansion techniques. A
potential difficulty that arises is that the simple coordinate z no longer corresponds to
the parallel direction. Thus, while v, may be nearly the parallel velocity and v,, v, the
perpendicular velocities they are not exactly so and these deviations introduce a number of
small additional terms that compete with the small gyro radius corrections. These geometric
complications can be eliminated at the outset by the introduction of a set of three orthog-
onal unit vectors and corresponding velocity components that exactly distinguish between
the perpendicular and parallel directions. The new unit vectors e;, e;, b, and their inverse
relations are given by

b=1b.e, + bzezv €, = bzb —bey,
e =e,, e, =e, (8.78)
e =e xb=2>be, —b,e,, e. = b,e; + b,b,

where by, = B,/B and b, = B,/B. Observe that b points along the magnetic field while
e, e are exactly perpendicular to B. The corresponding velocity components vy, v2, v and
their inverses can now be written as

v = b.v; + b vy, v, = b.v) — byvy,
V) = vy, vy =1y, (8.79)
v = bvy — by, vy = by + by

Using these transformations, one can show after a short calculation that the equations of
motion are substantially simplified and can be rewritten as follows:

d

% — WV = KU”,

d

2 4 vy = 0. (8.80)
dr

M = —KU1

dr ’

where w. = ¢B/m, B = (B2 + B2)"/? and

db,  db,

K = K[x(1), z()] = bx@ - bzg-

(8.81)

The equations are now in the desired form.
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170 Single-particle motion in a plasma

8.9.2 Solution to the equations

The mathematical solution to the problem requires two steps. First a new time variable is
introduced, similar to the transformation used in the generalized polarization drift analysis.
Second, an explicit model is introduced for the magnetic field enabling the introduction of
the long—thin approximation.

The analysis begins with the time transformation which is given by

t
T :/ w.dt (8.82)
0

with w.(t) = w.[x(t), z(t)]. Note that this transformation is formally identical to the one
used for the polarization drift (i.e., Eq. (8.67)). However, it is inherently implicit in nature
since x(t), z(t) are unknown functions. Even so, as is shown, this does not lead to any
difficulties in the analysis. Substituting the transformation into the equations of motion
yields

dvl/dT — V) = kl}”,

dvy/dt + vy =0, (8.83)
dU”/d‘L’ = —f(l)l,
with
K = K /w. = bydb, /dt — b,db, /dx. (8.84)

The next step is to introduce an explicit model for the magnetic field. The simplest model
containing a parallel field gradient has the form B, = B,(z). Perpendicular gradients in B,
have already been discussed, are not necessary for the present calculation, and are thus
not included. The condition that V - B = 0 requires the existence of a non-zero transverse
magnetic field. For the slab geometry under consideration this implies a non-zero B, (x, z).
A simple calculation then shows that the explicit magnetic field under consideration is
given by

B, = B;(2),

B, = —xdB,/dz. (8.85)

It is now straightforward to introduce the long—thin approximation into the model. The
primary motivation for introducing the approximation is to obtain a simplified expression for
K . One assumes that the transverse scale of the configuration is characterized by x ~ a and
that the parallel gradient length is defined by B/B. ~ 1/L. The long—thin approximation
requires that a/L < 1 and implies that B, /B, ~a/L < 1.

After a short calculation one can show that substitution of the model magnetic field and
the long—thin approximation results in the following leading order contribution to K :

Ry B (0n 1any
dr “dr  B2?dr \ B, dz dr \ B, dz

vi dB; v dB;

w.B. dz v B, dr

(8.86)

&
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8.9 Motion in fields with parallel gradients 171

In the last two expressions z and 7 are used interchangeably as independent variables by
the one-to-one implicit relationship dz = (v, /w.)dt ~ (v /w.)d7. Note that there are many
more terms contributing to Eq. (8.86) but they are all smaller by at least a/L or ry /a.

It is now straightforward to solve the equations. Consider first, the adiabatic invariant.
As in the analysis of the generalized polarization drift it is useful to introduce cylindrical
velocity variables with slowly varying coefficients:

v = vy (7)cos[t + &(7)],

v, = —v, (7)sin[t + &(7)]. (8.87)

One substitutes into the perpendicular components of the equations of motion obtaining a
set of simultaneous equations for v and é. The unknown ¢ can easily be eliminated yielding
the following equation for v, :

Qvr v dBe ) s 4 o] (8.88)
— = cos 2(t + ¢)], .
dr 2B, dr
which can straightforwardly be rewritten as
1d 1 dB,
S (=222 cos2(r 4 9). (8.89)
wdr B, dt
After averaging over a gyro period one again finds that
2
mu@) oot (8.90)
2B(z)

The quantity p is an adiabatic invariant, although in this case for a slow spatially rather
than time varying magnetic field.

The second part of the mathematical solution involves the parallel component of the
equations of motion which in the long—thin approximation reduces to

% _ vl2 dB; vi dB,

dr w.B, dz B 2w.B; dz
After averaging over the gyro motion and converting back to the real time independent
variable, one can rewrite this expression as
dU” dB,

— = = —uVyB. 8.92
I Mdz JIAY] (8.92)

Observe that there is a gyro-averaged force acting on the parallel guiding center motion of
the particle. The force is driven by the parallel gradient in the magnetic field. Two forms
are given for the force. The first is the direct result of the calculation, while the second is a
generalization that does not make use of the long—thin approximation.

At this point one might think that a paradox has arisen. It has been shown in Section 8.2
that the parallel magnetic force acting on a charged particle is exactly and instantaneously
zero. How then can there be an average force parallel to the magnetic field as derived above
in Eq. (8.92)? The answer is subtle and can be understood by examining Fig. 8.13, which
shows a particle with perpendicular velocity v, gyrating around a magnetic line in a field
with a parallel gradient. The key point is that when v, # 0, the particle has a finite gyro

[1+ cos(t + ¢)]. (8.91)
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Figure 8.13 Comparison of field directions between the guiding center and the actual particle trajectory
(point 1 steeper and point 2 shallower).

radius which produces a small excursion of the orbit (i.e., gyro motion) perpendicular to the
guiding center trajectory. Observe that as the particle gyrates, the top of the orbit (point 1)
lies on a magnetic line that is slightly steeper than the magnetic line of the guiding center.
Similarly, at the bottom of the orbit (point 2) the particle lies on a shallower magnetic
line. To leading order the steepness and shallowness average out and the average parallel
motion of the particle is parallel to the guiding center. However, to first order the cancel-
lation is not perfect and there is a small correction leading to the “parallel” force given by
Eq. (8.92).

The resolution of the paradox can thus be summarized as follows. In a magnetic field
with a parallel gradient there is indeed an average parallel force acting on the guiding center
motion of the particle. It should be emphasized that the force acts at the guiding center and
not the instantaneous position of the particle. Furthermore, the direction of the field at the
guiding center is slightly different from the average direction of the actual field experienced
by the particle as it gyrates along its orbit. In other words, the field at the guiding center is
not exactly parallel to the actual average field experienced by the particle. Therefore, while
the guiding center motion feels a parallel force along the gradient, this force is actually
in the perpendicular direction when viewed in terms of the instantaneous position of the
particle.

In conclusion a parallel magnetic field gradient produces a force that acts on the parallel
guiding center motion of the particle. This force produces an important mirroring effect on
the particles which is the topic of the next subsection.

8.9.3 The mirror effect and the mirror machine

The combination of u = const. and Fj = —uV B can have a dramatic impact on the
parallel motion of the guiding center. In particular, the direction of the parallel motion can
be completely reversed so that a particle moving to the right along a given field line at a
certain instant of time can be moving to the left a short time later. In fact there is a critical
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Figure 8.14 The mirror effect (a) as a particle moves into a region of higher B, v, increases and
v decreases; (b) parallel guiding center velocity reflected at the mirror point where v, = 0; (c) the
parallel guiding center force.

point along the trajectory where the particle is reflected. Not surprisingly, this point is called
the “mirror point” and the whole reversal process, the “mirror effect.”

A qualitative picture of the mirror effect

The phenomenon of mirroring can be understood qualitatively by examining Fig. 8.14. The
trajectory of a particle moving to the right into a region of higher magnetic field is shown
in Fig. 8.14(a). The particle starts off in a region of lower field with a certain value of
v, and v. As the particle gyrates and moves parallel to B into the high-field region, the
value of B along the guiding center increases. Since p = mv}_ /2B = const. this implies
that v, must also increase. Next, recall that in a static magnetic field the kinetic energy of a
particle is an exact constant of the motion: E = m(vf_ + vﬁ)/ 2 = const. Consequently, an
increase in v; must be accompanied by a decrease in vj. If the increase in B is sufficiently
large, the particle eventually reaches a point along its trajectory where vy = 0. This is
the reflection point as shown in Fig. 8.14(b). Once reflected, the parallel velocity of the
particle reverses direction and the guiding center motion starts moving to the left. The
force causing this behavior of the parallel motion is just /|y = —uV B. As can be seen in
Fig. 8.14(c) it acts to slow down parallel guiding center motion as a particle enters a high-field
region.
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Figure 8.15 Conditions for reflecting a particle at the mirror point B = By.

The quantitative conditions for mirroring

The conditions for mirroring to occur can easily be quantified using the constants of the
motion p and E. The goal of the calculation is to determine the relation between v
and v necessary to reflect a particle at a given point along the parallel field gradient. To
begin, consider a particle moving in a mirror field as illustrated in Fig. 8.15. Assume the
particle starts initially at the midplane, where the magnetic field is weakest. At this point
B = Buin, V1. = v1j, v = v}i. The corresponding magnetic moment and energy are given
by & = mv3,/2Buin and E = m(v7; + vﬁi)/Z.

Assume now that the particle moves to the right and is reflected at the point where
B = By > By, Atthispointv; = v, rand by definition of the reflection point v = vy = 0.
The corresponding energy and magnetic moment then have the values E = mv? /2 and
= mv? /2By

The reflection condition can now be easily calculated by equating the initial and final
values of E and p. To proceed it is convenient to define a normalized energy E = mvé /2.
The initial velocity can then be expressed in terms of a pitch angle 6 as follows (see
Fig. 8.15):

v = vpsinb,

(8.93)
V)i = Vg cos .
Conservation of energy clearly implies that
vip = vl 4 vf = 5. (8.94)
Next conservation of p is applied leading to
i _ v (8.95)
Bmin Bf ' .
which simplifies to
B
) min
sin“ 6, = . 8.96
1 c B, ( )
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Figure 8.16 Geometry of the simple mirror machine.

Here, 6 = 6, is the critical pitch angle for mirror reflection at the point where B = By. A
particle with a higher initial perpendicular velocity, corresponding to a pitch angle 6 > 6.,
will be reflected sooner. Conversely, a particle with a smaller initial perpendicular velocity,
0 < 6., will pass the point where B = By and may or may not be reflected later, depending
upon how large the magnetic field becomes.

In summary, the analysis has shown that for a given parallel gradient in the magnetic
field, it is easier to reflect particles with a large pitch angle (i.e., high perpendicular and low
parallel initial velocities).

The simple mirror machine

The mirror effect just described forms the basis for one of the earliest magnetic fusion
configurations, appropriately known as the “mirror machine.” Its simplest form is illustrated
in Fig. 8.16. Two coils with current flowing in the same direction create a magnetic field
with a maximum just under each coil and a local minimum midway between. Assume now
that plasma initially fills the volume between the coils. Using the guiding center theory of
the mirror effect one wishes to determine which, if any, particles remain confined in the
prescribed magnetic geometry. Within the context of the theory, it is shown that a large
fraction of the particles remain confined, and this fact provided the motivation for the early
consideration of the mirror machine as a fusion device.

The analysis is straightforward. Particles with a sufficiently large pitch angle (i.e., large
vy /v)) at the center of the configuration where B = By, reflect off the mirror point some-
where along the gradient where B = By. The particle with the smallest initial pitch angle
that is still reflected is the one that is reflected at the mirror throat where B = Bp.x. The
corresponding critical pitch angle is given by

Bmin i
Bmax R

sin? 6, = (8.97)
Here, R = Biax/Bmin > 1 is defined as the mirror ratio. Particles with a pitch angle 0 > 6,
(i.e., a high v, ) will be reflected sooner, before reaching the mirror throat. These particles
then reverse direction and reflect off the opposite mirror. In this way, the particles remain
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Figure 8.17 Velocity phase space showing: (a) a full, isotropic Maxwellian and (b) a Maxwellian
with a loss cone.

confined indefinitely, continually bouncing between mirror reflection points. In contrast,
particles with 6 < 6. (i.e., a high v|) pass the mirror throat without being reflected. They
are quickly lost to the first wall.

This analysis shows that the subset of particles confined in a mirror machine is defined
by the range of pitch angles

0. <0 <m—6.. (8.98)

Pitch angles outside this range form a “loss cone” in velocity space in which all the particles
have been lost. The concept of the loss cone is illustrated in Fig. 8.17, which depicts the
density of particlesin v, vy, ¢ space. Figure 8.17(a) corresponds to an isotropic distribution
function such as a Maxwellian, with no loss cone. The shaded region represents a sphere
with a uniform distribution of particles. Figure 8.17(b) shows the effect of losing particles
with a small pitch angle. A cone of particles is removed from opposite poles of a sphere
and only the remaining shaded region contains mirror confined particles.

The fraction of confined particles f of an initially Maxwellian distribution function
Fyv(v) is equal to the ratio of the number of particles outside the loss cone divided by
the total number of particles. This fraction is easily calculated in terms of the mirror ratio as

T—0 2 2
f sin 6 do / do f v2 Fy(v)dv
7 0 0
T 2 2
/ sin® do / d¢ / v? Fy(v)dv
0 0

follows:

f=

7T—0
6 do
T 1— 2 . (8.99)
/ sin 6 d6
0
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8.10 Summary — putting all the pieces together 177

Observe that for a mirror ratio R = 2, about 70% of the particles are confined, quite a
substantial fraction.

In practical experiments, the simple mirror machine did not work as well as predicted.
Both macroscopic and microscopic instabilities were observed, leading to anomalously fast
losses of particles. Careful analysis and several very clever ideas ultimately were able to
mitigate these effects. However, there still remained one irreducible problem. Coulomb
collisions scattered confined particles into the loss cone, after which they were immedi-
ately lost out of the ends of the device. The rate at which particles were lost was just
too fast to achieve a favorable power balance in a mirror machine fusion reactor. This
topic will be revisited in more detail after the discussion of Coulomb collisions in the next
chapter.

8.10 Summary - putting all the pieces together

This chapter has described the motion of a charged particle in a prescribed set of smooth
magnetic and electric fields. A wide choice of fields has been investigated allowing for
perpendicular and parallel spatial gradients as well as time variation. A useful intuition has
been developed by assuming that the spatial gradient length is long compared to the gyro
radius and the characteristic frequency associated with the time variation is low compared
to the gyro frequency. This is very often the situation of practical importance.

The analysis has shown that the perpendicular particle motion can be decomposed into
two components: the fast gyro motion and the slower guiding center motion comprising
primarily the guiding center drifts. In the parallel direction, only guiding center motion is
important. Thus, the trajectory of a particle can be accurately approximated by

V(1) = Vgyro + Vg + vy b,

8.100
r(f) = rgypo + g +1b. ( )

The velocity and position are given in terms of the magnetic and electric fields, which are
assumed to be of the form

B = B(r, t)b,

E=E.(r,1)+ Ey(r, )b. (8.101)

The gyro motion, expressed in terms of a local perpendicular, rectangular coordinate
system whose axis corresponds to the guiding center of the particle, is given by

Voyro = V1 COST €, = v sinT ey,

. (8.102)
Toyro = /' SINT €, FF 1L COS T €y.

where the upper sign here and below corresponds to electrons, rp = v, /w., 0. =
lg|B(rg, 1, t)/m, and

13
T =/ we(rg, 1, t)dt. (8.103)
0
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178 Single-particle motion in a plasma

In these expressions vy, rg, [ are slowly varying functions of time determined from the
solution of the guiding center trajectories.

The guiding center motion is described by a closed set of equations for the unknowns
V1, Vg, V), Ig, [. Also, each guiding center particle is characterized by a magnetic moment
w as well as a charge ¢ and mass m, all of which are assumed to be known quantities.
Consider first the perpendicular guiding center drift velocity, which comprises the following
contributions:

Ve =Vi+Vys + V4V, (8.104)

The individual drift velocities, expressed in terms of the local rectangular coordinate system
(ry = xg€, + yge,) can be written as

EJ_ x B .
Ve = E x B drift,
B2
vJZ_ B x VB .
Vv =F ———— VB drift,
20, B?
2 (8.105)
U” RC x B X
Ve =F— curvature drift,
o. R2B
1 dv
Vo=F—bx =t polarization drift,
we dr
Here and below, all fields are evaluated at the guiding center.
The perpendicular velocity is expressed in terms of the adiabatic invariant
v =2uB/m, (8.106)
while the parallel velocity is obtained by solving the differential equation
de 0B
— =qE —n—. 8.107
Mar TR R (8.107)
Finally, the guiding center position is obtained by solving
drg/dt = vy,
8.108
dl/dt = V. ( )

Equations (8.104)—(8.108) form a closed set of coupled ordinary differential equations for
determining the guiding center motion. Often when the fields are static or possess geometric
symmetry one can solve the equations analytically. Qualitatively, the guiding center motion
represents the gyro-averaged trajectory of the particle. In the perpendicular direction the
motion consists of the combination of drifts given above. In the parallel direction the velocity
is determined by: (1) the parallel gradient in the magnetic field coupled with the fact that
is an adiabatic invariant, as well as (2) the parallel electric field if one exists. Focusing on
the guiding center motion often provides a much better intuition of plasma behavior than
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examining the details of the exact particle trajectory. This intuition, as will be shown, is of
great help in understanding the confinement of fusion plasmas.
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Problems

8.1 Consider a plasma with azimuthal symmetry: d/06 = 0. Express the fields in terms of
a scalar potential ¢(r, z, t) and vector potential A(r, z, ¢). Form the dot product of the
single-particle momentum equation with the e, vector. Show that the canonical angular
momentum py = mrvy + g is an exact constant of the motion. Here, ¢ = r Ay.

8.2 This problem investigates several points arising in connection with the derivation of
the V B drift. Specifically, the calculation in the text is generalized to a 2-D magnetic
field and the consequences of the second harmonic terms appearing in the derivation
are investigated.

(a) Consider a magnetic field of the form B = B(x, y)e,. Taylor expand about the
guiding center position in both the x and the y direction. Following the derivation
in section 8.5.1 show that the general form of the V B drift is given by

v} Bx VB
2w, B2
(b) Next, consider the contributions due to the second harmonic terms. Find the

first order corrections to both the particle velocity and position by calculating a
particular solution to the equations and then satisfying the initial conditions by an

Vvg=7F
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180 Single-particle motion in a plasma

appropriate choice of homogeneous solution. Show that the modified trajectory
remains circular but with a slightly different location for the guiding center and a
slightly modified size for the gyro radius as given by the primed quantities below:

vio-Bx VB
=il ——M—),
L L chQ
, Vip X (Vigp X VB)
Te =Te ™ 202B ’
C

Vio = vi(e,cos¢ + e, sing).

Note: The algebra involved in part (b) is straightforward but somewhat tedious.
8.3 This problem involves calculating the second order corrections to the guiding center
motion assuming a uniform magnetic field and an electric field with a perpendicular
gradient. Of particular interest is the derivation of the second order “finite gyro radius”
drift. Assume the fields are given by B = Be, with B = const. and E = —V®(x, y).
Expand the equations including all second order terms.
(a) Calculate the generalized corrections to the gyro frequency by assuming that

1 0d

vy = ———— + v cos Qf + a; sin Q2 + vy, (1),
B dy,
1 00 .

vy, =+ + ¢ sin Q1 + vy, (7).

Box,
Note the implied special choice of initial conditions to make the problem slightly

simpler. Find a; and ¢; and show that the generalized shift in gyro frequency,
correct to second order in r /a, is given by

Prg YO, L[ (e 920 (920 .
~ w We——— — _— — | — -
e T@Tp B2 [ \ 9xdy 0x2 dy?
(b) Show that the dominant contribution to the second order velocity v, () is the finite
gyro radius drift. The total drift thus can be written as

Vo — 1+r§v2 Vo x B
b 4 B>

8.4 A 1-D magnetic field with a reversal at the origin can be modeled in a slab geometry
by B = By tanh(x/a)e, with —oo < x < oo.
(a) Why are the guiding center formulas for the particle drifts derived in the text
invalid?
(b) Sketch the orbit of a proton with initial conditions x(0) = y(0) = y(0) = 0 and
x(0) =v,.
(c) Expand about x = 0 and derive an expression for the turning point of the orbit
Xmax- Show that xp.x = Cri‘a®, where ri, = mv, /eBy. Find C, «, B.
8.5 A cylindrical plasma is immersed in a longitudinal magnetic field given by B =
Bo[1 — Bo exp(—rz/a2)]ez. For By=6T, Bp=0.75,and T. = T; = 1 keV:
(a) Calculate the electron and ion gyro frequency and average thermal gyro radius at
r=a;
(b) Calculate the magnitude and sign of the electron and ion V B drifts at r = a;
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(c) Are the guiding center assumptions ri./a < 1, r/a <1, Vyp/v, <1
satisfied?

(d) Calculate the direction and sign of the macroscopic current required to produce
the dip in the B, field. Is this compatible with step (b)? Explain.

8.6 A plasma has a constant uniform magnetic field B = Bye,. Superimposed is an elec-
trostatic electric field of the form E = E( cos(wt — kz)e,, where w and k are known
constants. Assume a positively charged particle is initially located at z(0) = 0 with a
parallel velocity v.(0) = v;. Show that for a sufficiently large value of E the particle
is trapped in the wave. Calculate the critical Ej.

8.7 This problem involves a generalization of the previous electrostatic trapping prob-
lem. Consider a positively charged particle acted upon by a magnetic field B =
By cos(ky — wt)e,.

(a) Prove that the electric field is given by

E = —(wBy/k)cos(ky — wt)e;.

(b) The trajectory of the particle is defined as r(¢) = x(¢)e, + y(¢)e,. The initial
position and velocity of the particle are as follows: y(0) = vy and y(0) = x(0) =
Xx(0) = 0. Derive a pair of coupled differential equations for x(¢) and y(z). One
equation should be integrable with the result then substituted into the other equa-
tion. The final result should be a single, second order, differential equation involv-
ing only one dependent variable. The goal of this part of the problem is to derive
this equation.

(c) Derive a relationship between vy, w, k, By that defines the boundary between
trapped and un trapped particles.

8.8 The magnetic field due to an infinitely long wire carrying a current / is given by
B = (ol /27 R)e,, where ¢ is the toroidal angle.

(a) Explain why this configuration is not able to successfully confine individual elec-
trons and ions in the R, Z plane.

(b) As an extreme example calculate how long it would take for a 10 keV ion to
escape from a toroidal chamber whose minor radius is b = 0.1 m if the particle
is initially located at R = Ry = 100 m, Z = 0.

8.9 This problem has a somewhat unintuitive answer. Consider the motion of a charged
particle in combined magnetic and electric fields B = Bpe, and E = —V¢ with
¢(x,y) = Kxy. The goal is to find the exact orbit of the particle.

(a) Write down the exact equations of motion for the trajectory x(¢), y(t) of a pos-
itively charged particle. These equations should have the form of two coupled
second order ODEs. For convenience define K = eeBé /m, where ¢ is an equiv-
alent parameter representing the normalized electric field.

(b) Find the general solution to the equations. For simplicity assume ¢, is small but
finite. Describe the qualitative behavior of the orbit for large time.

8.10 A positive ion is situated in a uniform magnetic field B = Bpe,. A time varying,
spatially uniform electric field is applied of the form E = E¢(1 — e™"/?)e,.

(a) Calculate the exact perpendicular velocity of the particle for an ion with the
following initial conditions: v,(0) = 0 and v,(0) = v,.

(b) Calculate the guiding center velocity v¢(¢') in the limit ¢ = 1/w.7 <« 1 by aver-
aging over one gyro period as follows:

t'4+27 fw.

/ We

V(1) = —/ v(t)dr.
27 Jy

Are there any transient or steady state guiding center drifts in the x or y direction?
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8.11

8.12

8.13

8.14

8.15

Single-particle motion in a plasma

Draw a picture of the earth and its dipole magnetic field. Describe and calculate the

orbit of an electron starting off at the equatorial plane with v > v, . Repeat for an

electron with v; < v;.

Consider a hollow cylindrical copper tube. Along the axis is a copper wire. A current

I flows in the wire and a low-frequency AC voltage is applied across the tube and the

wire.

(a) Sketch the electric and magnetic fields as a function of r. For simplicity ignore
the AC magnetic field.

(b) Describe and calculate the orbit of a typical electron and ion placed in this com-
bined magnetic and electric field.

A positive ion is placed in a sheared magnetic field given by

B = Byle; + (x/L)ey].

(a) Write down the exact equations of motion describing the orbit of the particle.

(b) Find a relation between v,(f) and x(¢) assuming the following initial conditions:
vy(0) = v2(0) = x(0) = y(0) = z(0) = 0 and v,(0) = vo.

(c) Using this relation derive a single, second order ODE for x(¢).

(d) Calculate the x location of the turning point of the orbit.

Anion in a cylindrical plasma column moves under the action of a combined magnetic

field and electric potential given by B = Bye. and ¢ = ¢o(r/a)’. Assume thatatt = 0

the particle passes through the origin r(0) = 0 with a velocity 7(0) = (2T;/m;)"/>.

Calculate and sketch the exact trajectory of the ion as a function of time for various

positive values of the parameter o = ¢/a’Byw;. Can the radial extent of the orbit

ever be much smaller than an ion gyro radius? Explain.

In a simple, azimuthally symmetric (d/96 = 0) mirror machine, the magnitude of

the longitudinal magnetic field near the axis is approximately given by B,(r, z) ~

Bo(1 + z?/L?). Here L is a constant and z = 0 is the reflection plane of symmetry.

(a) Evaluate the magnitude and direction of the curvature vector k = b - Vb as a
function of r, z for small but finite values of r.

(b) A mirror trapped ion with total kinetic energy mv?/2 is reflected at the point
where |B| = 2By. Find the particle’s v at the point z = 0, r = ry.

(c) Calculate the magnitude and direction of the guiding center drift velocity atz = 0,
r =ry.
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