
Chapter 19 

The Rayleigh-Taylor and flute instabilities 

In Chapter 9, we learned that magnetohydrodynamic plasma equilibria must 
be determined self-consistently, i.e. the presence of currents flowing in the 
plasma modifies the magnetic configuration in which the plasma rests. A static 
magnetohydrodynamic equilibrium (plasma fluid velocity U = 0, hence electric 
field E = 0) occurs when the plasma pressure gradients are balanced by magnetic 
(j x B) forces. 

However, even if a magnetohydrodynamic equilibrium exists in some 
particular case, the lack of plasma stability can lead to the spontaneous generation 
of E fields and associated plasma velocities U. For if the plasma is disturbed 
slightly, its motion can deform the magnetic field in such a way as to produce 
magnetic forces that tend to amplify the original disturbance. This type of 
phenomenon is called a ‘magnetohydrodynamic (MHD) instability’. 

Because of the complexity of the magnetohydrodynamic equations, we are 
generally only able to treat analytically the case of linear stability, i.e. stability 
against injinitesimally small disturbances, in relatively simple geometries. For 
spatially uniform plasmas, infinitesimal perturbations will generally have a wave- 
like spatial structure. In such cases, as was discussed in Chapter 15, a plane 
wave with a single wave-vector k will generally have a single frequency w. 
Thus, for a uniform plasma, this plane wave will be a ‘normal mode’. For 
non-uniform plasmas, such as those considered in the present Chapter, it will 
be necessary to find the ‘eigenfunctions’, describing the spatial structure in the 
direction of non-uniformity, of the normal modes of perturbations, i.e. the modes 
which oscillate (or grow) with a single (possibly complex) frequency w. 

The theory of magnetohydrodynamic stability has been developed 
rigorously and applied analytically and numerically for a variety of plasmas 
using a variational principle, known as the ‘MHD energy principle’. The MHD 
energy principle was formulated by I B Bernstein, E A Fneman, M D Kruskal 
and R M Kulsrud (1958 Proc. R. Soc. (London) A 744 17). The energy principle 
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312 The Rayleigh-Taylor and flute instabilities 

lies outside the scope of this book, however. Rather, we will limit ourselves to 
a simple configuration for which the normal modes can be obtained explicitly, 
and we will then use general arguments to extend our results qualitatively to 
other configurations. 

19.1 THE GRAVITATIONAL RAY LEIGH-TAY LOR INSTABILITY 

Perhaps the most important MHD instability is the Rayleigh-Taylor (or 
‘gravitational’) instability. In ordinary hydrodynamics, a Rayleigh-Taylor 
instability arises when one attempts to support a heavy fluid on top of a light 
fluid: the interface becomes ‘rippled’, allowing the heavy fluid to fall through 
the light fluid. In plasmas, a Rayleigh-Taylor instability can occur when a dense 
plasma is supported against gravity by the pressure of a magnetic field. 

The situation would not be of much interest or relevance in its own right, 
since actual gravitational forces are rarely of much importance in plasmas. 
However, in curved magnetic fields, the centrifugal force on the plasma due 
to particle motion along the curved field-lines acts like a ‘gravitational’ force. 
(Expressed differently, as we saw in Chapters 2 and 3, the electron and ion 
drifts due to magnetic-field gradient and curvature (VI3 and curvature drifts) 
are similar to the particle drifts that arise from a gravitational field (gravitational 
drift).) For this reason, the analysis of the Rayleigh-Taylor instability provides 
useful insight as to the stability properties of plasmas in curved magnetic fields. 
Rayleigh-Taylor-like instabilities driven by actual field curvature are the most 
virulent type of MHD instability in non-uniform plasmas. 

Figure 19.1. An equilibrium in which a plasma is supported against gravity by a magnetic 
field. 

To treat the simplest case, we consider a plasma that is non-uniform in 
the y direction only and is immersed in a magnetic field in the z direction. To 
be specific, we suppose that the density gradient Vp is in the y direction and 
that the gravitational field g is opposite to it, i.e. in the negative y direction. 
This corresponds to the case of a dense plasma supported against gravity by a 
magnetic field, as shown in Figure 19.1. Although Figure 19.1 suggests that 
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The gravitational Rayleigh-Taylor instability 313 

there is a sharp boundary between the plasma and the vacuum, this is only 
one possible case and is used here primarily for illustration; the density ‘profile’ 
p o ( y )  may, in practice, be a smoothly increasing function of y .  For the purposes 
of our present analysis, we will assume that the density has an exponential shape 
in y ,  i.e. 

Po(Y> 0: exp(y/s) (19.1) 

where s denotes the density-gradient ‘scale length’. The plasma is bounded by 
conducting walls at y = 0 and y = h .  This is illustrated in Figure 19.2. 

0, / Figure 19.2. The profile of plasma 
////////////* mass density p ~ ( y )  between conduct- 

The equilibrium situation has uo = 0, and PO, Bo and po functions of 
y alone. (Here, the subscript ‘0’ denotes an equilibrium quantity.) The 
pressure-balance condition (Chapter 9), including an additional gravitational 
force, requires that 

a (PO+ 2) +peg = o  
a y  

(19.2) 

where g is the magnitude of the gravitational acceleration, i.e. g = - g f .  From 
equation (19.2) and by referring to Figures 19.1 and 19.2, we see that the field 
strength Bo must be larger in the ‘vacuum’ region than in the ‘plasma’ region, 
both to support the pressure gradient and to balance the gravitational force, 
implying that a B o / a y  -= 0. 

We now embark on a linearized small-amplitude stability analysis of this 
equilibrium. We suppose that the plasma equilibrium is perturbed in some way, 
so that all quantities (densities, fields, etc.) differ from their equilibrium values 
by infinitesimal but non-zero amounts. However, we neglect all products of two 
or more infinitesimal quantities (linearized analysis). Unlike the equilibrium, the 
perturbations will vary in time. For linearized equations, the three types of time 
dependence that can arise for a perturbation quantity pb can all be expressed in the 
form @ a exp(-iwt), where a real value of the ‘frequency’ w will correspond 
to an oscillating perturbation, an w value with a positive imaginary part will 
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314 The Rayleigh-Taylor and flute instabilities 

correspond to an exponentially growing perturbation (instability), and an w value 
with a negative imaginary part will correspond to a damped perturbation. 

For an equilibrium that is spatially uniform in some direction, say the 
x direction, the spatial eigenfunctions of the linearized system of equations will 
be sinusoidal in x ,  i.e. they can be expressed in the form I) 0: exp(ikx), where k 
is the wave-number. If the equilibrium is not only uniform but also infinitely long 
in the x direction, then all real k values are allowed. Thus, stability problems of 
this kind are generally analyzed by assuming that perturbation quantities vary, 
for example, like 

I) cx $(y)exp(ikx - iwt) (19.3) 
for some complex w to be determined. If w turns out to be imaginary (with a 
positive imaginary part), the system can be said to be ‘unstable’. 

Since the particular equilibrium under investigation here is uniform and 
infinitely long in the x direction, we adopt precisely the above form for 
all perturbation quantities. Moreover, the dynamics of the Rayleigh-Taylor 
instability is purely two-dimensional: there is no variation at all (equilibrium or 
perturbations) dong the magnetic field (z direction). Thus, while a more general 
perturbation would have the form 

+ cx $(y)exp(ik,x + ik,z - iwt) (1 9.4) 

we may take k, = 0 in this particular problem. In all cases, the eigenfunctions 
$(y) are to be determined by finding solutions that correspond to normal modes, 
i.e. perturbations that have a single (complex) frequency U.  

Accordingly, we are to investigate perturbations of the equilibrium shown 
in Figures 19.1 and 19.2, in which all quantities (densities, pressures, fields and 
so on) are of the form 

f = fo(Y) + f1(y)exp(ikx - (19.5) 

where the subscript ‘1’ denotes small perturbations, and where we have 
suppressed the suffix in k,, writing simply k for the x component of the k- 
vector. Such solutions represent wave-like perturbations of the plasma-vacuum 
interface, as illustrated in Figure 19.3. If the frequency w is real, the wave-like 
perturbation travels in the x direction. The wave-like perturbation is created by 
the periodic upward and downward (i.e. in the y direction) motion of plasma 
elements: the plasma elements themselves do not need to move significantly in 
the x direction. (The situation is exactly analogous to propagating water waves, 
which are caused mainly by the upward and downward motion of the water, 
rather than by any lateral motion of the water, so long as the wavelength is 
short compared with the water depth.) If the w value is purely imaginary, the 
wave-like perturbation grows in amplitude, but the wave pattern does not move 
in the x direction. 
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- 
Motion of wave 
pattern if Re o>O 

Figure 19.3. 
Figure 19.1. 

A wave-like perturbation of the plasma-vacuum interface shown in 

An important simplification results from noting that, for this type of 
perturbation, the field lines remain straight even in the perturbed state. This 
is intuitively obvious from our general result that plasma elements initially on 
some given field line remain on the same field line in any ‘ideal’ (i.e. infinite- 
conductivity) magnetohydrodynamic motion. For, if plasma elements simply 
move up or down in a wave-like pattern that extends uniformly to infinity in 
the z direction, then there is no way in which the field lines can become bent. 
The same result may be obtained formally by examining each component of the 
linearized version of the usual combination of Faraday’s law and the ideal MHD 
Ohm’s law, namely 

aB1 - = V x (UI x Bo) = (Bo - V ) U I  - (UI * V)Bo - Bo(V 
at UI) (19.6) 

where we have dropped a term in V . Bo from the right-hand side. (Note that, 
in this case, the plasma velocity ~0 is zero in the equilibrium and has only a 
perturbed value, denoted by UI.) If we examine the x and y components of 
equation (19.6) we see that, in each case, all three terms on the right-hand side 
vanish identically. The first term on the right-hand side always vanishes since 
Bo. V = Bo(a/az) = 0. The x and y components of the second and third terms 
vanish because Bo has only a z component. Thus, no components B, or By can 
arise, and the field lines remain straight. 

For straight field lines, the linearized perturbed fluid equation of motion is 
simply 

P o - = p l g - v  au1 at ( p 1 + -  Bz’)- (19.7) 

Here we have linearized the magnetic-pressure perturbation, i.e. (B2)1 = 2BoBZ1. 
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3 16 The Rayleigh-Taylor and flute instabilities 

Both x and y components of this linearized equation of motion provide useful 
information. However, since we do not at present have much additional 
information about either pl or B,1, it is convenient to eliminate these two 
quantities by taking the z component of the curl of the equation of motion, 
i.e. operating on both sides of equation (19.7) with the operator 2 Vx. This 
corresponds to taking alax of the y component and subtracting a / a y  of the 
x component, eliminating the entire gradient term on the right-hand side, since 
the curl of a gradient vanishes. What remains is 

= -ikplg (19.8) 

where we have dropped the subscript ‘1’ from the velocity components. 

i.e. 
Let us, for the moment, suppose that the plasma motion is incompressible, 

au, 
a y  

0 = V - ul = iku, + - 
(19.9) 

(This assumption replaces the adoption of an adiabatic or isothermal equation 
of state. Its validity is only approximate, but will be verified later after we have 
completed our calculation.) With this assumption, the density perturbation can 
be obtained from the continuity equation, as follows: 

giving 

(19.10) 

aP0 POU, 

a y  
- i q l  = -U - = -- 

S 
(19.11) 

POU, 
PI = - ius 

the latter for our particular form of p o ( y ) .  Substituting from the continuity 
equation (19.1 1 )  for P I ,  and the incompressibility relation (19.9) for U, into the 
equation of motion (19.8), we obtain 

(~0%) - k2 ( 1  + 7) g U, = 0. 
Po a y  SW 

(19.12) 

This is a second-order differential equation for a single spatial variable, 
u y ( y ) ,  as a function of an unknown scalar quantity w, which can be solved 
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once the appropriate boundary conditions are specified. Since the differential 
equation is homogeneous, it will be possible to satisfy two boundary conditions 
only for some discrete set of ‘eigenvalues’, which will determine the allowed 
set of values for w.  As we have already indicated in Figure 19.2, we suppose 
that the plasma is bounded above and below by conducting walls, taken to be 
at y = 0 and y = h .  (A conducting wall cannot have any E field parallel to its 
surface, and thus the perpendicular component of the plasma velocity must also 
vanish. In this sense, the wall is a ‘rigid’ boundary in regard to fluid motion.) 
Thus, the boundary conditions are 

u y  = O  at y = 0 , h .  (19.13) 

By design, we chose a form for p ~ ( y )  for which the differential equation can 
be solved analytically. By using an integrating factor exp( -y /2s) ,  discrete 
solutions (‘eigenfunctions’) of equation (19.12) may be found of the form 

(19.14) 

for all integer values of n .  The ‘eigenvalues’, which for equation (19.12) will 
give the allowed values for the quantity g/ (sw2) ,  are given by the relation 

(19.15) 

Problem 19.1: Verify equation (19.15) by direct substitution of 
equation (19.14) into equation (19.12). 

For the case where g and s are both positive, as they are for the configuration 
illustrated by Figures 19.1 and 19.2, we see immediately that there are no 
solutions unless w2 is negative, corresponding to w being pure imaginary. 
Solving for w, we obtain 

(: n2x2 + h2k2 + h2/4s2 
w = f i  - (19.16) 

The solution for w with a positive imaginary part represents an exponentially 
growing perturbation, i.e. an instability. The solution with a negative imaginary 
part represents a decaying perturbation that is of no interest. 

The lowest mode that satisfies our boundary conditions has n = 1. This is 
the ‘longest wavelength’ mode in the y direction and is more rapidly growing 
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than modes with n > 1. The fastest growing modes tend to be those with the 
shortest wavelengths in the x direction, however, i.e. large k values. Indeed, 
for all modes with wavelengths in the x direction that are shorter than both the 
density scale-length s and the geometric height of the plasma h ,  i.e. those with 
hk >> j7 and ks >> 1 ,  the growth rate y (the imaginary part of w for the growing 
n = 1 mode) is given by 

y = (g/s)? (19.17) 
The ‘growth time’ y-I = (s/g)’l2 is just the time for ‘free fall’ over a distance 
s due to the gravitational acceleration g. 

If the sign of either g or s is reversed, corresponding to the case of 
the plasma density increasing in the direction of the gravitational force g, 
the solutions for w are all real. This case is stable, and the eigenmodes are 
propagating wave-like disturbances. 

19.2 ROLE OF INCOMPRESSIBILITY IN THE RAYLEIGH-TAYLOR 
INSTABILITY 

In the discussion of the Rayleigh-Taylor instability given in the previous Section, 
we assumed the plasma flow to be incompressible, i.e. 

v . u = o .  (19.18) 

We will now verify the validity of this approximation. 
Physically, incompressibility is a good approximation because the potential 

energy of the plasma in the gravitational field is usually insufficient to provide 
either the increase in thermal energy that occurs in compression of the plasma, 
or the increase in magnetic-field energy that occurs as the magnetic field is 
(necessarily) compressed along with the plasma. Let us consider this latter effect, 
since it is the more important in a plasma with a low fl value (p << B 2 / 2 p 0 ) .  

The geometrical configuration is the same as in the previous Section, as 
shown in Figure 19.1. As we saw before, the magnetic field lines remain straight, 
and no B, or By components arise. The perturbation in the Bz component may 
be obtained by combining Faraday’s and Ohm’s laws in the usual manner: 

- = V x (UI x Bo) = (Bo * V)UI - (UI * V)Bo - Bo(V * U]). (19.19) 
at 

Taking the z component gives 

a BO 
at ay 
- + (u1 - V ) B o  = -iwBzl + uy- = -Bo(V ‘uI). aB1z (19.20) 

This simply tells us that the magnetic field is convected and compressed along 
with the plasma. Henceforth, we again drop the subscript ‘1’ from the velocity 
components. 
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To relate the energy needed to produce this amount of compression to the 
potential energy that is available, we consider one of the individual components 
of the equation of motion, say the x component: 

(19.21) 

This equation balances the forces arising from compression of the plasma 
and magnetic field with the accelerating or decelerating flow that drives this 
compression. Recall that, in the previous Section, we conveniently eliminated 
both p~ and B,]  by taking a / a y  of this x component of the equation of motion 
and subtracting a / a x  of the y component. The assumption of incompressibility 
allowed us to use this trick to avoid treating the effects of p~ and B,1 directly. 
Here, we must retain these two quantities and use equation (19.21) in the form 

-iwpou, x -ik(pl + BoB,I/cLo). (19.22) 

We now use the adiabatic gas law to find the perturbation in the pressure, 
p1. From dp/dt = (yp/p)dp/dt, we obtain 

ap1 apo - + (UI - V)po = -iwpl + uy- = -ypo(V. ul). 
at ay 

(19.23) 

We may now substitute equation (19.20) for B,1 and equation (19.23) for p1 
into equation (19.22). After considerable rearranging of terms, equation (19.22) 
then becomes: 

iku, = -z k2 (T +*)V.ul+ -- k 2 U y  a ( P O  + 2) . (19.24) 
w POCLO W2P0 ay 

We may simplify the second term on the right-hand side of equation (19.24) by 
using the equilibrium relation (19.2). For the eigenfunctions and eigenvalues 
described by equations (19.14) and (19.16), respectively, it will then be seen 
that the second term on the right-hand side of equation (19.24) has the same 
order-of-magnitude as the term on the left-hand side. However, the coefficient 
of the first term on the right-hand side of equation (19.24) (for po << Bi/po) 
is approximately k 2 B i / 0 2 p o p o  = k2vi/w2. Thus, from equation (19.24), we 
obtain the order-of-magnitude relationship: 

V.Ul 0 2  
- N -  

iku, k2vi  

where V A  = Bo/(p~po)'/~ is the AlfvCn speed. Noting that 

(19.25) 

V - UI = iku, + - 8% 
ay 
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we see that equation (19.25) expresses the neglected quantity (V . ul) as a 
fraction of a retained quantity, in this case iku,. This fraction clearly measures 
how good the incompressibility approximation is. If the fraction is very small, 
the two terms in V . u1 must almost cancel, i.e. to a good approximation we 
may assume that V - U] = 0. Thus, the incompressibility approximation is valid 
whenever 

lo2/ << k 2 v i .  (19.26) 

Conversely, a flow with finite compression, i.e. in which V * U] is as large as 
either of its constituent parts, e.g. iku,, would result in a higher-frequency wave, 
whose phase velocity perpendicular to the magnetic field would be comparable 
to the AlfvCn speed. In the terminology of Chapter 18, this would be the 
‘compressional’ AlfvCn wave, or the ‘magnetosonic’ wave. 

In the case of an instability, the magnitude of the growth rate will 
be a measure of the amount of potential energy available to drive the 
compression. For the Rayleigh-Taylor instability, which has a growth rate (see 
equation (19.16)) given by 

g h2k2 
I d  = IY21 = sn + h2k2 + h2/4s2 

the incompressibility condition, equation (19.26), is valid whenever 

gs << v i  (y + k2s2 + (19.27) 

Equation (19.27) is least easily satisfied for the longest wavelengths, i.e. the 
smallest values of n and ks. Even then, it is satisfied whenever 

pgs << p v i  X B 2 / p o  (19.28) 

i.e. whenever the gravitational potential energy is much less than the magnetic 
field energy. For shorter wavelengths, the approximation is even better. 

This agrees with our initial intuitive observation: incompressibility should 
be a very good approximation whenever the potential energy that is available 
from the gravitational field is inadequate to provide the energy needed for 
compression of the magnetic field. 

It must be emphasized that the approximate incompressibility of the plasma 
is the consequence, for the particularly simple geometry under consideration 
here, of the plasma’s inability to compress the magnetic field due to the smallness 
of the available gravitational potential energy. Equivalently, the compressional 
AlfvCn wave, or magnetosonic wave, cannot be excited: the instability arises, 
in effect, in the ‘shear’ AlfvCn wave in the special case where kll = 0. For 
this wave, to minimize the effect of the magnetosonic branch, the perturbation 
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quantities B,1 and p1 are relatively small (although non-zero) and are related 
to each other through the equation of motion, e.g. equation (19.21). They 
are also both described in terms of a combination of convection and a small 
amount of compression, as given in equations (19.20) and (19.23), respectively. 
Equation (19.20) expresses the conservation of magnetic flux in our assumed 
perfectly conducting plasma which is exact, in contrast to incompressibility, 
which is only approximate. We will see below that there are other geometries in 
which the Rayleigh-Taylor instability can be driven by expansion (i.e. negative 
compression) of the plasma. In these cases, the expansion is just that necessary 
to conserve magnetic flux in a plasma that is convecting into a region of reduced 
magnetic field. There is still little expansionkompression of the magnetic jield, 
i.e. still little coupling to the magnetosonic wave. 

19.3 PHYSICAL MECHANISMS OF THE RAYLEIGH-TAYLOR 
INSTABILITY 

As a complement to the fluid picture developed above, the physical mechanism 
at work in the Rayleigh-Taylor instability can also be understood in terms of 
the gravitational drips of ions and electrons. 

From Chapter 2, we recall that an external force F (such as a gravitational 
force F = Mg) perpendicular to a magnetic field B causes a charged particle (in 
particular, an ion with charge +e) to drift with a velocity 

F x B  M g x B  v d = - = -  
e B2 eB2 ’ 

(19.29) 

In our case (see Figure 19.1), this gravitational drift is in the negative-x direction, 
and has the magnitude Ud = Mg/eB. There is also an electron drift in the 
opposite direction, but this is much smaller because of the smaller electron 
mass. 

Suppose a small wave-like ripple should develop on a ‘plasma-vacuum 
interface’, as shown in Figure 19.3. The gravitational drift of ions on the plasma 
side of the interface will cause positive charge to build up on one side of the 
ripple, as illustrated in Figure 19.4; the depletion of ions causes a negative charge 
to build up on the other side of the ripple. Due to this separation of charges, a 
small electric field El develops, and this electric field changes sign going from 
crest to trough of the perturbation, again as shown in Figure 19.4. It is apparent 
that the resulting El x Bo drift is always upward in those regions where the 
interface has already moved upward, and downward in those regions where the 
interface has already moved downward. Thus the initial ripple grows larger, as 
a result of E x B drifts that are phased so as to amplify the initial perturbation. 

The Rayleigh-Taylor instability can also be understood from an energy 
viewpoint, i.e. in terms of the lowering of the plasma’s potential energy in the 
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Ion Grav. Drift 
f-------------- 

g I 
ElxBo Drift 

Figure 19.4. The mechanism of the Rayleigh-Taylor instability. The ion gravitational 
drift leads to charge separation on the plasma-vacuum interface, producing electric fields 
and E x B drifts that increase the amplitude of the perturbation. 

gravitational field due to the growth of the instability. However, the change in 
potential energy is second order in the amplitude of the perturbations. For 
the simple case illustrated in Figure 19.3, this second-order change in the 
gravitational potential energy can be calculated explicitly. Suppose the plasma 
shown in Figure 19.3 has uniform density p and extends from the plasma- 
vacuum interface at y = 0 to some fixed upper boundary at y = h.  Before 
the onset of the wave-like perturbation of the plasma’s lower surface, the 
gravitational potential energy is simply 

where the integral over y has been taken from y = 0 to y = h and the 
integral over x has been taken over some length L.  Now add a sinusoidal 
perturbation of the plasma’s lower surface, which may be assumed to take the 
shape y = (sinkx, as shown in Figure 19.3. This perturbation satisfies the 
incompressibility constraint since the area of the plasma in the ( x ,  y) plane is 
unchanged (see Figure 19.3). The plasma fills the region above this deformed 
lower boundary, still with uniform mass density, p .  The gravitational potential 
energy is still Jpgydxdy, but the integral over y must now be taken from 
y = (sinkx to y = h and the integral over x may most conveniently be taken 
over the length of a full period, L = 2n/k; the gravitational potential energy 
becomes 

pg (h2 - ~*sin2kx)dx/2 = pgL(h2 - t2/2)/2. s 
Thus the gravitational potential energy is lowered by an amount p g L t 2 / 4  
(second order in the perturbation amplitude () by the onset of the perturbation. 
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When potential energy can be lowered by such a perturbation, so that the energy 
released can go into kinetic energy of plasma motion, this can provide the energy 
necessary to drive an instability. 

19.4 FLUTE INSTABILITY DUE TO FIELD CURVATURE 

Real gravitational forces are generally totally negligible in laboratory plasma 
physics: plasmas are much too rarefied for gravity to compete with the strong 
pressure gradients and magnetic forces. The importance of the Rayleigh-Taylor 
instability lies in the close analogy between gravitational drifis and the V B and 
curvature drifts that arise in non-uniform magnetic fields. 

In Chapter 3, we obtained the following expression for the combined V B  
and curvature drifts of an ion with charge e in a vacuum magnetic field (which 
should provide an adequate approximation to the actual magnetic field in a low-/I 
plasma without strong field-aligned currents): 

(19.30) 

where R, is the vector radius-of-curvature (a vector drawn from the local center- 
of-curvature to the field line, intersecting the field line normally and pointing 
away from the center-of-curvature). By comparing equation (19.30) with the 
expression for the gravitational drift given in equation (19.29), we see that the 
gravitational drift provides a good model for the drifts in a curved magnetic field, 
provided the vectors g and R, are in the same direction, and the magnitude of 
g is defined by 

(19.31) 

If we average over a thermal distribution of particle velocities uI and V I [ ,  

we can write (U;) = (u:/2) = T / M  = p/p, which shows that the magnitude 
of g should be related to the ion pressure p of a plasma in a curved magnetic 
field bv 

2P 
P Rc 

g = - .  (19.32) 

Since the thermal velocities of electrons are much larger than those of ions, 
both particle species have comparable curvature and V B drifts, whereas the 
gravitational drift is important only for ions. The effect of this is that the total 
pressure, ions and electrons, should be used for p in equation (19.32). 

Thus a plasma in a curved magnetic field can be viewed as having analogous 
particle drifts to a plasma in a gravitational field-and therefore a potential 
for charge build-up and unstable growth of perturbations. Since the Rayleigh- 
Taylor instability arises whenever the gravitational force is directed away from 

Copyright © 1995 IOP Publishing Ltd.



324 The Rayleigh-Taylor and $Ute instabilities 

the region of maximum plasma density, the corresponding instability of a plasma 
in a curved field arises whenever the radius-ofcurvature vector is directed away 
from the region of maximum plasma pressure, i.e. whenever the plasma is confined 
by a magnetic field that is concave towards the plasma. 

The growth rate y of the instability can be estimated by replacing g by 
2 p / p R c  in the expression for y given in equation (19.17) and by equating the 
scale-length s to the pressure-gradient scale-length, i.e. s-l = I V p l / p .  We 
obtain 

Y = (21VPl lPRc)1/2 .  (19.33) 

We reiterate that this instability occurs only if the radius-of-curvature vector is 
directed away from the region of maximum plasma pressure, i.e. only if R, and 
V p  are oppositely directed. 

This pressure-driven version of the Rayleigh-Taylor instability, which in 
the next Section we will learn to call the 'flute instability', is rapidly growing. 
The growth time (i.e. y - l )  can be estimated by noting that p / p  M C:, where 
C, is the sound speed in the plasma, giving 

y - C , / ( S R , ) ' / ~ .  (19.34) 

Thus, the characteristic growth time is the time it takes a sound wave to traverse 
a distance that is the geometric mean of the pressure-gradient scale-length and 
the radius-of-curvature. 

Problem 19.2: An annular cylindrical plasma, as shown in Figure 19.5, 
is infinitely long in the z direction. It has a purely azimuthal magnetic field 
Be(r) ,  produced mainly by the current I in a central conductor at r = 0. 
The plasma pressure p ( r )  falls to zero on both the inside of the annular 
cylinder, r = r l ,  and on the outside, r = r2, peaking somewhere between 
rI and r2. Describe carefully by means of an illustration why you would 
expect this plasma to be subject to the Rayleigh-Taylor flute instability. 
For simplicity, you may suppose that p << B i / p o ,  so that the field is 
approximately the vacuum field, Be a r - ' .  Indicate in your illustration the 
particle drifts that give rise to this instability, and show the form that the 
unstable perturbations will take. 

19.5 FLUTE INSTABILITY IN MAGNETIC MIRRORS 

One configuration that is obviously susceptible to the pressure-driven version 
of the Rayleigh-Taylor instability is the magnetic mirror, in which a cylindrical 
plasma with an approximately axial magnetic field is constricted at both ends 
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Figure 19.5. Annular cylindrical plasma, infinitely long in the z direction, has a purely 
azimuthal field & ( r )  produced by the current I in a central conductor at r = 0. See 
Problem 19.2. 

by regions of higher field strength, as shown in Figure 19.6. In this case, the 
curvature of the magnetic field is clearly concave toward the plasma in the central 
region. Approximating the plasma as a long cylinder, in which the pressure is 
considered to be a function of the radius r, the growth rate of the instability will 
be given by 

(19.35) 

where the prime denotes differentiation with respect to r. 

Coil coil ’ 
Figure 19.6. Plasma equilibrium in a ‘magnetic mirror’ configuration. Note that the 
magnetic field curvature is concave toward the plasma in the central region where the 
plasma pressure is largest. 
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Figure 19.7. 
Rayleigh-Taylor instability. 

Flute-like perturbation of a magnetic-mirror plasma produced by the 

This Rayleigh-Taylor instability will produce a rippling of the plasma 
surface in the azimuthal direction, and the ripples will extend uniformly along the 
length of the cylinder. The form of the perturbation is illustrated in Figure 19.7. 
The pressure-driven version of the Rayleigh-Taylor instability is called the ‘flute 
instability’ because of the resemblance of the perturbed surface of a quasi- 
cylindrical plasma such as this to a fluted Greek column. 

Problem 19.3: Consider a cylindrical plasma with an axial field Bo that 
is made flute-unstable by constricting the ends to form a magnetic- 
mirror configuration. Consider a flute instability with azimuthal mode 
number m, i.e. a mode in which the peflurbations vary as exp(im0). 
Use the appropriate expression for the growth rate y to show that the 
incompressibility approximation is valid whenever ,!?r/ R, << m2. 

The basic energy reason for the flute instability in a curved magnetic field is 
very similar to the energy reason for the gravitational instability. Just as a fluid 
supported against gravity can lower its potential energy by perturbations that 
push downward in the direction of g ,  so the thermal energy of a flute-unstable 
plasma can be lowered by perturbations that push outward in the direction of &. 
That such perturbations produce a net expansion of the plasma, and thus release 
thermal energy, can be shown explicitly in the case of a low-@ mirror-confined 
plasma, as follows. 

We have already seen that there is not enough energy to compress the 
magnetic field, but in a low-/3 plasma an even stronger condition applies, namely 
that the magnetic field is essentially a vacuum field and remains approximately 
unchanged even when the plasma pushes outward across this field. However, 
the total magnetic flux contained within the plasma, i.e. the quantity BdS 
integrated over the plasma cross section, must remain exactly constant, and so the 
only type of perturbation permitted is that illustrated in Figure 19.7, in which the 
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surface of the plasma becomes rippled by ‘filaments’ of plasma moving outward, 
while compensating ‘filaments of vacuum’ move inward so as to conserve the 
total magnetic flux. The perturbations must be ‘flutes’, i.e. uniform along the 
entire length of the plasma, so as to avoid ‘bending’ the magnetic field, which 
would require additional energy. To the extent that special effects occur at the 
ends of the magnetic mirror which limit the allowed perturbations in this area 
(e.g. conducting plates could be placed at the ends of the mirror), then these 
effects will have a stabilizing influence; this topic is beyond the scope of the 
present discussion. Such effects are required, however, to explain the stability 
of the Earth’s magnetosphere. 

If the strength of the magnetic field decreases in the radially outward 
direction (as it does in the central region of the magnetic mirror, where the field 
gradient arises because the field is concave towards the plasma), the rippling 
perturbation of the plasma surface that conserves magnetic flux must result in 
a small (second-order) increase in the area of the plasma cross section. This is 
because the filaments of plasma which move outward are moving into a region 
of lower field, and so these cross section areas must increase, relative to the cross 
sectional areas of the ‘vacuum filaments’ of equal magnetic flux which move 
inward into a region of higher field. This increase in net cross sectional area 
results in a corresponding increase in plasma volume. The concave (towards 
the plasma) curvature of the magnetic field results in another (second-order) 
increase in the plasma volume, because the plasma filaments moving outward 
are lengthened slightly, relative to the vacuum filaments moving inward, which 
are shortened. For vacuum magnetic fields the gradient and curvature effects 
are always additive (corresponding to the VB and curvature drifts always being 
in the same direction). The increase in volume, due both to increased cross 
sectional area and increased field-line length, corresponds to expansion of the 
plasma and a lowering of its thermal energy, thereby making energy available 
for the unstable perturbation. 

From a single-particle perspective, the drop in perpendicular and parallel 
particle kinetic energy associated with moving to lower B and higher R, is 
invested in j * E work, as discussed in Section 3.5. This j - E work drives the 
instability to higher amplitudes. 

Closer examination of the mirror field configuration, however, shows that 
there are regions of favorable curvature (convex toward the plasma) near 
the ends, in addition to the main region of unfavorable (concave) curvature 
at the center. In general, however, in axisymmetric mirror configurations 
the unfavorable curvature is dominant. However, non-axisymmetric mirror 
configurations have been designed for fusion applications in which current- 
carrying rods, first used by M C Ioffe (see Y B Gott et a1 1962 Nuclear Fusion 
Suppl. p 1042), are placed outside the plasma, parallel to its axis, so as to create 
a BO field with favorable curvature, i.e. convex toward the plasma. In such 
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cases, the combined curvature can be favorable everywhere; indeed the plasma 
is located in the region of an absolute minimum in the strength of the vacuum 
magnetic field. 

The correct weighting of the favorable and unfavorable regions in a ‘simple 
mirror’ can be derived as follows. Take cylindrical coordinates (r ,  6, z ) ,  with 
z along the axis of the mirror field. Overall stability will be determined by 
the average net angular drift of particles over their complete orbits along the 
mirror field from one end to the other. If the sign of this average net angular 
drift corresponds to field curvature that is concave toward the plasma, there 
will be a build-up of charges on the edges of the flutes which will give rise to 
azimuthal E fields that produce unstable growth in the amplitude of the flute-like 
perturbations. In the simple mirror geometry, the V B  and curvature drifts are 
entirely azimuthal in direction, so that the angular drift speed of an individual 
particle is given by 

r -  = - 
dt eR,B 

(19.36) 

In one complete orbit along the mirror field, the net angular drift of this particle 
is given by 

(19.37) 

where we have written dt = dC/vll, where C is a length coordinate along the field 
line. The particle’s velocity components, V I I  and V I ,  change as the particle moves 
along the field line, i.e. are functions of C in the integral in equation (19.37), 
and these changes will be such as to conserve the particle energy W = m v 2 / 2  
and the magnetic moment p = m v l / 2 B .  

To obtain the net angular drift averaged over all particles in a filamentary 
‘flux tube’, i.e. a thin tube which follows the magnetic field and contains a 
given number of magnetic field lines, it is simplest to return to equation (19.36) 
and average dtlldt over the velocity-space distribution function, f, and over 
a flux tube containing a small amount of magnetic flux, A@. At any point 
along this flux tube, its cross sectional area is given by A A  = A @ / B .  The 
total number of particles contained in the flux tube is AN = ndAdC. Dividing 
equation (19.36) by r ,  multiplying by the distribution function, f, and integrating 
both over velocity space and over the volume of the flux tube, we obtain 

f d3 vdC 
r R,  B2 

(19.38) 

Equation (19.38) gives the average rate at which the entire population of particles 
of a given species in a given flux tube drifts azimuthally in 6 to a neighboring 
flux tube. The direction of the drift is opposite for electrons and ions, as expected 
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for gradient and curvature drifts, so the contributions from both species to the 
drift of charge are additive. Carrying out the local velocity-space integrals in 
equation (19.38) and omitting various positive multiplicative factors, we find 
that the average angular drift of charge is given by 

($) 0: / m d l .  rR,B2 (19.39) 

Adopting the convention that field lines that are concave toward the plasma 
have positive radii-of-curvature, while convex field lines have negative radii-of- 
curvature, the condition for flute instability is that the integral in equation (19.39) 
be positive, i.e. that the regions of positive R, outweigh the regions of negative 
R,. The point of inflection, which separates these two regions, has an infinite 
R, and contributes negligibly to the integral in equation (19.39). 

Unfortunately, the weighting due to l / r B 2  in the integrand of 
equation (19.39) is unfavorable, in that B is smallest where R, is positive. 
In general, therefore, the simple mirror is unstable to flutes. 

The flute instability in magnetic mirrors was analyzed first by 
M N Rosenbluth and C L Longmire (1957 Ann. Phys. 1 120). 

19.6 FLUTE INSTABILITY IN CLOSED FIELD LINE 
CONFIGURATIONS* 

An even simpler stability criterion can be obtained for the case where the plasma 
pressure is isotropic, i.e. p11 = p~ = p .  In this case, the condition for equilibrium 
demands that the pressure be uniform along the field, i.e. B - Vp = 0. For a 
mirror-confined plasma, this condition can never be satisfied, or else the plasma 
would extend infinitely far along the field lines. However, it is possible to create 
certain ‘closed field line’ configurations in which each field line closes on itself, 
so that the plasma pressure can be exactly constant along field lines. An example 
of such a configuration is the ‘toroidal quadrupole’ shown in Figure 19.8. Here 
the plasma entirely surrounds the two coils that produce the magnetic field. (In a 
practical situation, the coils must either by supported and electrically fed by leads 
that pass through the plasma, or they must be superconducting and supported 
magnetically for the duration of the plasma pulse.) From Figure 19.8, it may 
be seen that some of the plasma lies on field lines that encircle only one coil, 
whereas the rest of the plasma lies on field lines that pass around both coils. 
On the inner sides of the plasma which face each single coil, the curvature of 
the magnetic field is convex toward the plasma, and this interface is stable to 
flutes. On the outer side of the plasma there are regions of both concave and 
convex curvature, and so the stability of this interface depends on the appropriate 
averaging of the favorable and unfavorable contributions, expressed in the form 
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of a criterion that we will now derive. We will do this for isotropic pressure, and 
we will assume that the plasma (as in the simple mirror) is axisymmetric, i.e. that 
the configuration is symmetric to rotation in 8 about the z axis in Figure 19.8. In 
such cases, the pressure can be brought outside the integral in equation (19.39), 
which then becomes 

(19.40) 

with instability corresponding to the case where this integral is positive. (The 
integral is to be taken along the entire closed field line.) 

Current-carrying 

Field 
Lines 

Plasma 

Figure 19.8. The toroidal quadrupole configuration. The plasma entirely surrounds the 
two current-carrying conductors that produce the magnetic field shown. The configuration 
is axisymmetric, i.e. symmetric to rotation in 6 about the z axis. 

In order to derive an even simpler stability criterion, consider two 
neighboring field lines in the same azimuthal plane (i.e. same 8 value) of 
an axisymmetric configuration. Examine two infinitesimal elements of these 
neighboring field lines bounded by the same two radius-of-curvature vectors, as 
shown in Figure 19.9. The field strengths on these two elements are denoted B 
and B + 6 B  and the (infinitesimal) lengths of the elements are denoted d.t and 
d l  + 6(d.t). For a vacuum magnetic field, we can use Stokes’ theorem to show 
that 

{B - de = / (V x B) 0 dS = 0 (19.41) 
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r 
a 

Figure 19.9. Two neighboring field lines in a mirror-like configuration with local 
radii-of-curvature Re and Rc + S R,. The configuration is axisymmetric, i.e. symmetric to 
rotation in 0 about the z axis. 

which, when applied to the infinitesimal closed contour shown in Figure 19.9, 
tells us that 

Bdt = (B + SB)[dL + S(dt)] (19.42) 

that is, 

(19.43) 

Here, in the final step, we have used simple geometry to relate S(dt) to the 
perpendicular distance between the two field lines, SR,. Since we want to apply 
equation (19.43) at all points along the two magnetic field lines, it is more 
convenient to define their separation not by the geometrical distance between 
them, 6Rc, which varies along the field line, but by the magnetic flux between 
them, which is the same at all points along the field line. A convenient measure 
of this is the magnetic flux passing through an annular band obtained by rotating 
the element SR, shown in Figure 19.9 by one revolution in 8 about the axis. 
Specifically, this magnetic flux is 

S@ = 2nrBSR, (19.44) 

so that 
SB S@ 
B 2nr  R, B * 

- = -- ( 19.45) 
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We can now write equation (19.40) as 

(19.46) 

(omitting the factor 2n). Let us now consider the quantity $dL/B and its 
variation between neighboring field lines, such as those shown in Figure 19.9. 
We have 

(19.47) 

End-point variations do not need to be considered in this closed-loop integral. 
Using equation (19.43) to relate S(dL) to 6B, we obtain 

Thus, in the limit of vanishing differentials, equation (19.46) reduces to 

(19.48) 

(19.49) 

Thus, the condition for instability, which corresponds to a positive value of 
(deldt), is that the quantity $ dL/B be increasing outward. 

This is the simplest form of the stability condition for flute modes in closed 
field line configurations: in such configurations an isotropic-pressure plasma 
is stable or unstable depending on whether the quantity $ dL j B  decreases or 
increases away from the center of the plasma; the integral is to be taken 
completely around a closed field line. Quadrupole configurations, such as that 
shown in Figure 19.8, can be made flute-stable according to this criterion. 

The criterion for instability derived here, namely that $dL/B must be 
increasing outward (i.e. in the direction opposite to that of the pressure-gradient 
vector), has applicability to a broader class of closed field line configurations than 
the axisymmetric (i.e. rotationally symmetric about the z axis) configurations 
discussed so far. Indeed, from the fluid viewpoint, this criterion could be 
obtained intuitively by considering whether a net expansion of the plasma occurs 
(thereby releasing kinetic energy) when flux tubes containing equal amounts of 
magnetic flux are interchanged. Consider a thin flux tube containing an amount 
6 0  of magnetic flux. At different points along this flux tube, its area 6A is given 
by 6 @  = B6A, and so the volume of the entire flux tube is given by 

6V = 6A.d.t = 6 0  dL/B. I I 
Now consider a ‘rippling’ perturbation of the plasma surface in which a plasma 
flux tube moves outward, while a ‘vacuum flux tube’ containing exactly the same 
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amount of magnetic flux moves inward; we could call this the ‘interchange’ of 
these two flux tubes. If the quantity $dl /B is increasing outward, the plasma 
flux tube will expand as it moves outward, while the vacuum flux tube will 
contract as it moves inward. The overall effect will be a net expansion of the 
plasma and a reduction in its thermal energy, which then provides the energy 
needed to drive the instability. 

It is clear from this discussion that these unstable flute perturbations do not 
occur only at a plasma-vacuum interface, but can occur interior to the plasma, 
in which case a flux-tube containing high-pressure plasma is interchanged with 
a flux-tube containing lower-pressure plasma. In this case, instability will occur 
if the quantity $dl /B is increasing in the direction of lower plasma pressure 
(the equivalent of ‘outward’ in the case of a plasma-vacuum interface). As in 
the case of the gravitational Rayleigh-Taylor instability, we note that the release 
of energy is again second order in a displacement vector e, since it scales as 
-(e VP>X * VC$ dt/B>l.  

One possible method for stabilizing the flute instability would be to add 
some ‘shear’ to the magnetic field. A magnetic field is said to be ‘sheared’ if 
the direction of the field vector rotates as one moves from one constant-pressure 
surface to the next. For example, in the quadrupole configuration shown in 
Figure 19.8, the addition of a Be component (e.g. by placing a current-carrying 
conductor along the z axis) would provide magnetic shear. In a sheared magnetic 
field, the interchange of two flux tubes cannot occur without ‘twisting’ the field 
lines, thereby increasing the magnetic energy. In this case, the energy made 
available by plasma expansion must compete with the increase required in the 
magnetic energy; this will generally impose a lower limit on the plasma /l value 
for the instability to be possible. 

Even in configurations that are flute-stable according to the $ d l /  B 
criterion, e.g. the quadrupole configuration shown in Figure 19.8, there are 
generally regions along each field line where the magnetic curvature is 
unfavorable, i.e. concave towards the plasma. Although the flute instabilities 
discussed in this Chapter all extend uniformly along the entire length of the 
field lines (hence their name ‘flutes’), it is clearly possible, in principle, for 
instabilities with the same driving mechanism to arise that are localized to finite 
regions of unfavorable curvature. Such instabilities will cause the plasma to 
‘balloon’ outward along these finite portions of field lines. Conservation of 
magnetic flux then requires that the field lines ‘bend’, and this bending will 
generally increase the magnetic energy. As in the case of a sheared field, the 
energy made available by plasma expansion must compete with this increase 
in magnetic energy, and the instabilities-called ‘ballooning instabilities’-also 
arise only above some threshold ,3 value. 
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19.7 FLUTE INSTABILITY OF THE PINCH 

Another configuration that is obviously susceptible to flute instabilities is the 
cylindrical ‘self-pinched plasma’ (see Chapter 9). Here, the magnetic field is 
produced by an axial current flowing in the plasma. The magnetic field is 
azimuthal (Be) and its radius-of-curvature is simply the radial coordinate r. 
Clearly, the field-curvature is always unfavorable (concave towards the plasma). 
In this case, the flute perturbations are azimuthal, as shown in Figure 19.10. 
From the shape of the perturbed plasma, this instability is sometimes called the 
‘sausage instability’. 

1 1 1 Be 

Figure 19.10. The flute, or ‘sausage’, instability of a self-pinched plasma. 

The growth of the sausage instability is very rapid, since the radius-of- 
curvature of the field lines is effectively just the radius of the pinch column. 
From our previous formula, we estimate the growth rate to be 

(19.50) 

where a prime denotes again a derivative with respect to the radial coordinate r. 

19.8 MHD STABILITY OF THE TOKAMAK* 

Before ending this Chapter, it may be useful to discuss very briefly the stability 
of the tokamak in the ‘ideal MHD’ model which has been used here to derive 
the Rayleigh-Taylor and flute instabilities. The tokamak configuration in the 
‘cylindrical approximation’ was introduced in Chapter 9 and is illustrated in 
Figure 9.6. The actual tokamak geometry is toroidal, and the main magnetic 
field (corresponding to B, in the cylindrical approximation) is toroidally directed, 
with the smaller magnetic field (Be in the cylindrical approximation) directed 
azimuthally the short way around the torus. The ‘cylindrical tokamak’ would 
clearly be vulnerable to flute instabilities, because the helical magnetic field 
produced by the combination of the B, and Be fields has its curvature concave 
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toward the plasma. On the other hand, the field also has considerable magnetic 
shear, which we have seen to be a stabilizing effect. In the actual toroidal 
geometry, however, it turns out that the effect of the additional curvature 
introduced by ‘bending’ the cylinder into a torus generally dominates over the 
effect of the helical curvature in regard to the stability of flute modes. For a 
torus with major radius R, the toroidal curvature is favorable (convex toward 
the plasma) on the small- R side of the plasma and unfavorable (concave toward 
the plasma) on the large-R side. When a calculation is carried out for the actual 
toroidal geometry, the ‘weighting’ of the small-R side turns out to be slightly 
greater than the weighting of the large-R side, so the net effect of the toroidal 
curvature is stabilizing. For the net favorable toroidal curvature to exceed the 
unfavorable helical curvature (in the case of a tokamak of approximately circular 
plasma cross section), it is necessary only that q = rB,/RBe > 1. In practice, 
the q value in a tokamak typically rises from about unity at the center of the 
plasma (r = 0) to three or higher at the plasma edge ( r  = a). Thus, this 
condition is usually satisfied in the tokamak, so that pure flutes are stable. 

Following any helical field line around the torus, it is clear that the field line 
will alternately lie on the small-R and large-R sides of the plasma. Thus, as in 
the case of the closed field line quadrupole configuration shown in Figure 19.8, 
there are regions of favorable curvature and regions of unfavorable curvature 
on each field line; as we saw, this gives rise to the possibility of ‘ballooning’ 
instabilities. Since the field line makes exactly q transits the long way around 
the torus for each transit the short way around, these regions of favorable 
and unfavorable curvature are a distance of order qR apart along a field line. 
For a displacement 6 ,  the energy released per unit volume by a flute-like 
instability is of order p’e2/R, whereas the energy per unit volume needed to 
bend the magnetic field over a distance of order qR (field-line bending being 
unavoidable for a ballooning instability, as distinct from a pure flute) is of order 
(B;/2p0)(e~/q~R*). Thus, ballooning instabilities will arise in tokamaks only 
when p‘/R > B;/2poq2R2, i.e. only for /I > % a/q2R, where we have 
estimated p’ - p la .  This result should be taken only as a rough order-of- 
magnitude estimate: in practical cases, tokamaks tend to be stable to ballooning 
instabilities up to /3 values in the range 3 4 % .  

The tokamak can, however, exhibit an entirely different type of MHD 
instability, which is driven by the magnetic energy that is available in the 
tokamak magnetic field, rather than by the thermal energy that is available 
from plasma expansion. This instability, which can arise also in the cylindrical 
tokamak approximation, is called the ‘kink’, and it takes the form of a helical 
displacement of the plasma cylinder. The instability arises whenever such a 
perturbation lowers the magnetic energy of the Be field-the field component 
that is produced by currents in the plasma itself. In practice, kink instabilities 
tend to arise only at relatively low q values. We will not pursue them further 
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here, except to note that kinks are closely related (in regard to their source of 
energy) to a more slowly growing, but also more pervasive, instability that arises 
when resistivity is added to the MHD model. This instability, which occurs in 
many types of laboratory and naturally occurring plasmas in magnetic fields, 
is discussed in the next Chapter. For simplicity, we choose there to consider a 
simpler magnetic configuration (a plane current slab), which we find to be stable 
in the ideal MHD model. 

The reader who is interested in pursuing further the topic of MHD 
instabilities in tokamaks is referred to J Wesson (1987 Tokamaks Oxford: 
Clarendon Press), or to R B White (1989 Theory of Tokamak Plasmas 
Amsterdam: North-Holland). 

The Rayleigh-Taylor and ju te  instabilities 
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