
Chapter 20 

The resistive tearing instability* 

In the previous Chapter, we analyzed an important instability, the Rayleigh- 
Taylor (or flute) instability, which can arise in an ideal magnetohydrodynamic 
(MHD) plasma, i.e. a plasma in which the electrical resistivity is assumed to be 
zero and where the additional terms that enter in the ‘generalized’ Ohm’s law are 
also negligible. For such cases, as we have seen, the plasma and the magnetic 
field are ‘frozen’ together. We found the flute instability to be very rapidly 
growing, with a growth time comparable to the time it takes a sound wave to 
travel a distance that is the geometric mean of the size of the plasma and the 
radius-of-curvature of the magnetic field. Since sound waves travel rapidly in 
high-temperature plasmas, such times are very short. 

Even if a plasma is not subject to MHD instabilities, to be certain that it 
is completely stable we must also examine non-MHD perturbations that have 
the potential to grow at much slower rates. We have seen that the ideal MHD 
approximation breaks down for very long time-scales: eventually, the plasma 
will ‘leak’ across the magnetic field or, equivalently, the magnetic field will 
‘diffuse’ into the plasma. Thus for slow plasma phenomena, non-zero resistivity 
must be included in the stability analysis, specifically in the plasma Ohm’s law. 
Although resistivity often acts to damp out perturbations, there are important 
cases where resistivity is actually destabilizing. Indeed, there is an entirely 
new class of plasma instabilities, of which the most important is the ‘resistive 
tearing instability’ to be discussed here, that arise only in the presence of 
resistivity. The reason why resistivity can be destabilizing is that it frees the 
plasma from the constraint that it remain ‘frozen’ to the magnetic field, thereby 
allowing qualitatively different types of plasma perturbations. In particular, 
these ‘resistive’ perturbations can more effectively draw upon the magnetic 
energy generated by currents in the plasma itself, which is available to drive 
instabilities. 

Intuitively, one might expect that ‘resistive instabilities’ would grow 
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exceedingly slowly, specifically on time-scales comparable to the characteristic 
times for resistive diffusion of plasma across a magnetic field. If so, they would 
be of little interest, since most plasma equilibria are changing on such time- 
scales anyway, and the occurrence of a comparably slowly growing mode of 
instability might not make much difference in practice. However, some resistive 
instabilities, certainly including the tearing instabilities to be considered here, 
grow much faster than this. The reason is that the instability is able to take 
whatever form most efficiently releases the magnetic energy on which it feeds. 
Just as the flute instability was found to be driven by the non-uniformity of 
the plasma pressure (i.e. by the plasma thermal energy), the resistive tearing 
instability in its simplest form is driven by various types of non-uniformity of 
the magneticfield (i.e. by the ability of the magnetic energy to find a path to a 
lower energy state). It is this ‘pent up’ energy in the magnetic field, trying to 
find a way to relax to a lower energy state, that drives the tearing instability. The 
growth rate can be larger than one might intuitively expect because the resistive 
diffusion of plasma across the magnetic field occurs on a much shorter spatial 
scale-length than the plasma size and yet still can release significant amounts 
of magnetic energy; because of the shorter scale-length, the resistive diffusion 
can proceed quite quickly. The theory of resistive tearing instabilities, including 
their surprisingly large growth rates, was developed first in a paper by H P Furth, 
J Killeen and M N Rosenbluth (1963 Phys. Fluids 6 459). 

20.1 THE PLASMA CURRENT SLAB 

We will analyze the resistive tearing instability for the simplest configuration 
in which it occurs, namely a ‘plasma current slab’. Specifically, we consider 
an infinite plasma that contains a finite slab (or thick sheet) of current, directed 
parallel to the surface of the slab, namely 

(20.1) 

The plasma is uniform in the y and z directions. 
V x B = pd, i.e. dB,/dx = po jz (x ) ,  we obtain 

Solving Ampere’s law, 

BlOX - a < x < a  
B y ( x )  = -Bloa x e -a (20.2) I B;Oa x > a  

where Blo = pojZo. The functions j z ( x )  and B y ( x )  are sketched in Figure 20.1. 
The magnetic field lines in the (x, y )  plane are illustrated in Figure 20.2. 

Here, we have indicated the strength of the By field at different locations x by 
the density of field lines at x: the field is stronger where the field lines are 
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Figure 20.1. The ‘plasma current sheet’ equilibrium. 

Y 

! I 
Figure 20.2. Magnetic field lines for the ‘plasma current sheet’ equilibrium. There is 
also a strong approximately uniform field B,. 

more crowded together. This plasma could possibly be subject to ideal MHD 
perturbations (although we will in fact find it to be ideal-MHD stable), but these 
would not change the basic configuration, since the magnetic flux through any 
plasma surface element in the ( x ,  2 )  plane (i.e. the number of magnetic field lines 
of the By field crossing such a surface element) must remain fixed. However, 
the inclusion of plasma resistivity will allow the negative By field on the left 
of x = 0 to diffuse into the region of positive By field on the right of x = 0, 
thereby annihilating it. This ‘annihilation’ (or ‘cancelling out’) of the magnetic 
field will clearly occur most effectively in the vicinity of x = 0, which is where 
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340 The resistive tearing instability * 
we will find the largest plasma flows in the resistive tearing instability. 

It is easy to see that this annihilation of magnetic field is energetically 
favored. For example, if we consider the modification of B y ( x )  that would 
result from cancellation of the positive and negative By components in some 
small region 1x1 < 6 ,  it is clear that the magnetic energy, s(B:/2)dV, would 
be reduced. The actual resistive tearing instability cannot annihilate magnetic 
field in such a neat and simple way: rather it involves wave-like perturbations 
of the entire plasma, well to the left and right of x = 0, which cause a wave-like 
‘break-up’ of the magnetic topology near x = 0. Overall, however, the magnetic 
energy is lowered by this type of perturbation. 

The current-slab configuration illustrated in Figure 20.2 may have an 
additional magnetic field in the z direction. If such a field is not present, the 
plasma can be in equilibrium only if it has a pressure p ( x )  that varies in x 
in such a way as to balance the variation in magnetic pressure, i.e. to satisfy 
p + B , 2 / 2 ~ 0  = constant. On the other hand, if a large B, field is introduced, 
small variations of it will easily be sufficient to balance the pressure variations 
(assuming p << B:/2po), and the functions p ( x )  and B y ( x )  become essentially 
independent of each other. A strong B, field will also play another role: as in 
the case of the Rayleigh-Taylor instability, it will constrain the plasma flow in 
the ( x ,  y) plane to be incompressible, satisfying V - UI = 0. In the particular 
example analyzed in this Chapter, we will assume that a strong B, field is in fact 
present. It should be emphasized that these assumptions are made largely for 
analytic simplicity. Resistive tearing instabilities can occur at a surface where 
B y @ )  = 0, if energetically favored, even with finite pressure in the equilibrium 
and a weak (or zero) B, field, so that the flow becomes compressible. 

Once the B, field is introduced, it becomes clear that the configuration we 
are considering is simply one particular example of more general ‘plane slab’ 
configurations with field components B y ( x )  and B , ( x ) .  Due to the variation of 
By and/or B, with x ,  the direction of the magnetic-field vector rotates as we 
move in the x direction. Such fields are said to be ‘sheared’. For sheared fields, 
the directions of the y and z axes can be chosen so that the field points exactly 
in the z direction at some selected point, say x = 0. The configuration then 
looks exactly like the one illustrated in Figures 20.1 and 20.2 (with a B, field 
added). Thus, in regard to tearing instabilities, our particular example is, in fact, 
representative of a wider class of sheared-field configurations. 

Since these plane slab equilibria are stationary in time and uniform in the 
y and z directions, linearized perturbations of the equilibria may be Fourier 
analyzed into normal modes of the form 

+I (x, t )  = $1 (x)exp(ik,y + ik,z - iwt) 

where + I  (x, t )  is any first-order perturbation quantity. For the particular 
equilibrium defined by equations (20.1) and (20.2), which has B , ( x )  = 0 on 
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the surface x = 0, the resistive tearing instabilities have k ,  = 0, i.e. the k-vector 
is exactly perpendicular to B at x = 0, i.e. k 0 B = 0 at the location of the 
tearing instability. When a B, field is introduced, so that we have a sheared- 
field configuration with both B y ( x )  and B , ( x ) ,  it is clear that all surfaces x = 
constant are potential locations for tearing instabilities, for we can orient the 
y and z axes so that the magnetic field lies in the z direction on any particular 
surface, and we can then choose a k-vector in the y direction, subject of course 
to this being allowed by the boundary conditions. For a plane slab that extends 
infinitely far in the y and z directions, all k,  and k, values are allowed: for a slab 
of finite extent, the allowed values are determined by the boundary conditions, 
which will then generally limit the surfaces on which tearing instabilities may 
be located. For the present analysis, we will limit ourselves to the equilibrium 
of equations (20.1) and (20.2) and perturbations with k,  only, i.e. k, = 0. This 
simply puts the ‘resonant surface’ where k .  B = 0 at the location x = 0. At this 
resonant surface, a zeroth-order magnetic field line lies along a line of constant 
phase in the wave-like perturbation, making it very susceptible to the first-order 
magnetic perturbation. We will further simplify the notation by dropping the 
suffix ‘y’ from k,, since this is the only non-zero component of the k-vector. 
Thus, for the remainder of this Chapter, the perturbations are assumed to vary 
as exp(iky). 

20.2 IDEAL MHD STABILITY OF THE CURRENT SLAB 

As we saw in our treatment of the Rayleigh-Taylor instability in Chapter 19, 
some general properties of the magnetic field perturbations can be obtained from 
the linearized version of the combination of Faraday’s law and Ohm’s law. First, 
we consider a perfectly conducting plasma, in which case we obtain 

- -V x El = V x (U, x Bo) aB1 
a t  
-- 

noting that the plasma velocity U is zero in the equilibrium and has only a 
perturbed value, denoted by ul. Unlike the geometry for the Rayleigh-Taylor 
instability, in the case considered here the field lines become bent, i.e. both 
a first-order B, component and a first-order perturbed By component arise. 
Accordingly, the x and y components of equation (20.3) provide some non- 
trivial information, namely 

aBX1 - = ikBy,p,l  
at 

(20.4) 
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and 

a BYo 
at ax 
- = ikB,ouyl - uxl - - Byo(V. ut) 
aBy1 

(20.5) 

(Equation (20.5) could also have been derived by combining equation (20.4) 
with the requirement that V B1 = 0.) For a normal mode with frequency w, 
i.e. with perturbation quantities varying as exp(-iwt) such as we are seeking, 
equation (20.4) can be written simply 

wB, = -kByOUx (20.6) 

in which, here and henceforth, we drop the suffix '1' from the velocity and field 
components U, and B,, respectively, since these components are zero in the 
equilibrium. We note, in passing, that equation (20.6) requires that B, vanish at 
any point where BYo = 0, in particular at x = 0 in our example: otherwise, the 
velocity component U, would be infinite. 

Let us now turn to the linearized first-order perturbed equation of motion, 
namely 

=-v  PI+- Bo B1  +  BO - V)B1+ (B1 V)Bo]. (20.7) ( Po ) Po 

We have used j = (V x B)/FO and the vector identity for ( V  x B) x B (see 
Appendix D). We have also linearized the magnetic pressure perturbation, writing 
(B2)1 = 2Bo.BI. Both x and y components of this linearized equation of motion 
provide useful information, namely 

BZOBZI + ByoByl) + -ikByoB, 1 
PO PO 

(20.8) 

(20.9) 

In the second-to-last term on the right-hand side in equation (20.9), we have 
used V B1 = 0 to express B,1 in terms of B,. Just as in our treatment of the 
Rayleigh-Taylor instability we take note of the fact that, beyond equations (20.8) 
and (20.9) themselves, we do not have any additional information on either 
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PI or B,I. In principle, we could obtain PI ,  for example from an adiabatic 
equation of state. Normally, we would obtain B,1 from the z component of 
equation (20.3), but this will involve the compressible, i.e. non-divergence-free, 
part of the plasma fluid velocity, which we expect to be very small. In the 
approximately incompressible case, B, 1 is determined from either equation (20.8) 
or equation (20.9); when the value so determined is substituted into the 
z component of equation (20.3), this will yield a value for the compressible part 
of the fluid velocity, i.e. for V SUI, but this is a small quantity that does not enter 
anywhere else. Physically, the very small B,1 produces whatever modification 
of the almost-uniform magnetic pressure B: is needed to maintain force balance 
against small changes in pressure, in approximately incompressible flow. Both 
the Rayleigh-Taylor (gravitational) instability and the tearing instability are thus 
essentially independent of plasma pressure. The Rayleigh-Taylor instability is 
driven by the energy available from the inverted density gradient (relative to 
the gravitational force), and the tearing instability can be driven purely by the 
energy available from the sheared magnetic field. We will see, however, that 
this magnetic energy will become available to the plasma motion only through 
resistivity. 

Just as we did in the case of the Rayleigh-Taylor instability, we can 
eliminate the two quantities p1 and B,I by forming the z component of the 
curl of the equation of motion. Specifically, we take a/ax of the y component, 
equation (20.9), and subtract ik times the x component, equation (20.8). This 
produces 

a 
-iw ( z ( p 0 u y )  - ikpou, 

ax 

- - -L [a [B:o: (2-1 - k2ByoB,] 
Po ax 

(20.1 0) 

At this point, our analysis is still valid for a general equilibrium B,o(x) and is 
not limited to the equilibrium defined by equation (20.2). 

Let us, for the moment, suppose that the plasma motion is exactly 
incompressible, i.e. 

(20.1 1) au, 
ax 

0 = V - u1 = - + iku,. 

As in the case of the Rayleigh-Taylor instability, this assumption is only 
approximately valid. Its validity could be verified after we have completed our 
calculation, in exactly the same way as was done in Chapter 19. Specifically, 
we could relate V * u1 to the perturbation B,I produced by compressing the 
strong magnetic field BzO (see equation (19.20)). We could then relate the force 
arising from the gradient of the perturbed magnetic pressure B,oB,l to either U, 
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or u y  (see, for example, equation (19.22)). Comparing the magnitude of V - u1 
with either of its constituent terms (in this case, au , /ax  or iku,), we would 
find that V u1 is smaller by a factor w2/k2ui, where UA is the AlfvCn speed, 
Bo/ (popo) ' /2 .  As in the case of the Rayleigh-Taylor instability, the frequencies 
(or growth rates) of even the fastest modes that will be found here are much 
less than kuA. Hence, again, the compressibility is negligible, and we may to a 
very good approximation write V ul = 0. 

Using equation (20.11) to substitute for U, in terms of U,, the left-hand 
side of equation (20.10) can be expressed entirely in terms of u x ,  so that this 
equation becomes 

-% k [ (PO$) - k2pau,] = & [B:o& ($)I - k2B,oB,. (20.12) 

For perfect conductivity, equation (20.6) is valid and can now be used in the 
form 

B,/B,o = - k u , / w  (20.13) 

to express the right-hand side of equation (20.12) also in terms of U,. Multiplying 
through by -wk and rearranging terms slightly, equation (20.12) can now be 
written 

- k2(popow2 - k2B:o)u, = 0. (20.14) 

Equation (20.14) is a homogeneous second-order differential equation for 
U,. It describes ideal MHD waves in the configuration being considered. 
With proper boundary conditions, eigenmode solutions to the equation could 
be found. However, certain general properties of such waves can be 
determined by examining the quadratic (in U,) expression formed by multiplying 
equation (20.14) by the complex conjugate U: and integrating over all x ,  i.e. from 
--oo to +CO. The result, after integrating by parts and noting that U, must vanish 
as x --+ f m ,  is 

00 

(popow2 - k2B:o) ( 1  2 /i + k2 dx = 0. (20.15) 

By examining equation (20.15), it is evident first that w2 must be real, so that w 
must be either real or pure imaginary. It is further evident that our plasma must 
be completely stable (under this assumption of perfect conductivity), since an 
instability must correspond to a pure imaginary value of w, i.e. w = iy for y > 0, 
which would render the left-hand side of equation (20.15) negative-definite, so 
that it certainly could not be equal to zero. 
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The stable oscillatory waves that are described by equation (20.14) are the 
‘shear AlfvCn waves’ in the low-frequency limit introduced in Chapter 18. We 
note that their frequencies are typically w - kll UA, where kll = k b = k, B,o/B, 
is the component of the wave vector in the direction of the equilibrium magnetic 
field. The particular configuration under discussion here, however, has a special 
property, namely that B,o depends on x .  If the value of w ( p ~ p o ) ] / ~  falls into the 
range of values assumed by kB,o(x) ,  then equation (20.14) becomes singular, 
in that the coefficient of the second derivative can vanish. Since our main 
interest here is in instabilities, not stable oscillations, we need not explore this 
matter further. It is sufficient to note that the spectrum of possible solutions of 
equation (20.14) contains discrete modes with w > k l B , ~ l ~ / ( p o p o ) ’ / ~  and a 
continuum of modes with smaller w values that are generally subject to strong 
damping at the location of the singularity due to effects not included in the ideal 
MHD analysis. 

20.3 INCLUSION OF RESISTIVITY: THE TEARING INSTABILITY 

Let us now introduce resistivity into the plasma Ohm’s law, i.e. 

E + U x B = qj .  (20.1 6) 

Combining this with Faraday’s law and linearizing, the magnetic field 
perturbation is now given by 

- -V x El = V x (ul x Bo) - qV x j, (20.17) 

where we have taken the resistivity to be uniform. Invoking Ampere’s law for 
j1, i.e. pojl = (V x B]) ,  and making use of the identity V x (V x B1) = 
V(V - B1) - V 2 B ~  = -V2B1 (see Appendix D), we obtain 

aB1 
at 
-- 

(20.18) 

Using the expansion of the first term on the right-hand side of equation (20.3), 
the x component of equation (20.18) becomes 

(20.19) 

Here we have approximated V2 x a 2 / a x 2  in anticipation of finding that 
resistivity is important only in a narrow region of x ,  within which B, is relatively 
sharply varying. Equation (20.19) replaces equation (20.6) in the resistive case. 
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Several important conclusions follow from examination of equation (20.19). 

First, it is clear that our previous ideal MHD treatment corresponds to the case 

(20.20) 

For the shear Alfvtn waves we have been studying, which generally have 
quite high frequencies o compared to resistive diffusion rates, this relation is 
valid in all but the most resistive plasmas. However, we might legitimately 
inquire whether other modes of perturbation are possible, which have much 
lower frequencies or much shorter scale-lengths, such that the two terms in 
equation (20.20) are comparable. 

For such modes, the resistive term in equation (20.19) must be retained. 
A second important conclusion now follows from equation (20.19): namely, 
it is no longer necessary for the first-order perturbation B, to vanish at points 
where By,-, = 0, i.e. at x = 0 in the particular example shown in Figures 20.1 
and 20.2. Physically, relaxing the constraint that B, = 0 wherever B,o = 0 
allows the plasma much more freedom in finding ways to lower its magnetic 
energy, corresponding to more possibilities for unstable perturbations. A third 
conclusion that follows from examination of equation (20.19) is that the resistive 
term is likely to be most important in a narrow region around the point where 
B,o = 0, i.e. around x = 0 in our particular example. We call this the ‘resistive 
layer’. Since k - B = 0 at x = 0, the perturbation can be considered to be 
‘resonant’ at x = 0, such that the unperturbed magnetic field lies parallel to 
wave-fronts on this surface. The non-zero q in the resistive layer then allows 
the magnetic field lines to connect across the resonance, via a finite value of B,. 

Well away from the resistive layer, both to the left and to the right 
of x = 0 in the particular case illustrated in Figure 20.1, we expect the 
ideal MHD approximation to remain valid. Since the frequencies w (or, more 
appropriately, the growth rates y ) are much less than Alfvtn-wave frequencies, 
the perturbations in these ideal MHD regions will be given by equation (20.14) 
(or, equivalently, equation (20.12)) but with the inertia terms omitted. Since it is 
more convenient to describe the perturbations in the ideal MHD regions in terms 
of B, rather than U,, we prefer to work from equation (20.12), obtaining 

(20.21) 

This equation describes the perturbations in the ‘outer-regions’ well to the left 
and well to the right of the resistive layer around x = 0. As x +- 0 (either 
from the left or from the right), taking B,(x) FZ B;,x, the possible forms for the 
solution B, as x +- 0 are twofold: either B, a x or B, x constant. 
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Problem 20.1: Prove the last statement by searching for solutions of 
equation (20.21) with B, 0: x p  as x + 0. You will find that the first term 
on the left-hand side of equation (20.21) tends to dominate as x + 0, 
allowing only solutions with ,!? = 0 or ,!? = 1. Why is it safe to assume that 
there are only these two solutions as x + O? 

It is possible to see, however, that the case B, a x as x + 0, is excluded for 
solutions that are well behaved as x + *c% for, if B,/B,o were finite as x + 0, 
it would be permissible to multiply equation (20.21) by B,*/B,o and integrate 
from x = -co to x = 0. If we then integrate the first term by parts, noting that 
B,o = 0 at x = 0, we obtain 

(20.22) 
Since we want a localized solution in which B, + 0 as x + CO (otherwise there 
would be infinite magnetic energy I B, 1 2 ,  which is not a physically interesting 
case), the first term on the left-hand side vanishes in the x + -c% limit. We 
then cannot allow B, 0: x as x + 0, for this would make the first term on 
the left-hand side vanish in the x + 0 limit also, and we would then have a 
negative-definite expression on the left, which is required to be zero. 

Thus, we conclude that the only allowed solutions of equation (20.21) are 
such that B, approaches some non-zero constant as x + 0, either from the 
left or from the right. Such solutions would not be allowed by the ideal MHD 
constraint, i.e. equation (20.6), applied exactly at the point x = 0, for this 
constraint requires B, to be Zero. Such solutions are allowed in the resistive 
case, in which equation (20.19) replaces equation (20.6) in the vicinity of x = 0. 
It is just this non-vanishing of B, at the point where By0 = 0 that characterizes 
the ‘resistive tearing’ instability. 

It is useful to think of the region around x = 0 as forming a ‘boundary 
layer’ between the two ideal MHD regions to the left and right of it. Moreover, 
it is possible to obtain some useful and revealing ‘boundary conditions’ by 
integrating various plasma equations over a thin box placed in this boundary 
layer, as illustrated in Figure 20.3. The box is supposed to have an infinitesimal 
width in x (but wider than the resistive layer) and a height in y that is finite 
but much less than the characteristic wavelength of the perturbation; its extent 
in z is arbitrary, since there are no variations in the z direction. Integrating the 
equation V - B1 = 0 over the volume of the box and applying Gauss’ theorem, 
we find that B, must be continuous across the boundary, i.e. 

B,(x + 0+) = B,(x + o-). (20.23) 
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A Y  

jx 
Figure 20.3. Thin box used for obtaining boundary conditions across the resistive layer. 

From this we deduce that the value of B, at each y-value may be taken to 
be constant throughout the resistive layer around x = 0. Similarly, integrating 
V xB = poj over the surface of the box in the ( x ,  y)-plane and applying Stokes’s 
theorem for the surface integral of a curl, we find that any discontinuity in B,1 
must be associated with a first-order ‘surface current’ J,1 flowing in the boundary 
layer, i.e. 

B,~(x + 0+) - B , ~ ( x  + 0-) = poJzl. (20.24) 

(By a ‘surface current’, we mean here a very large current density j,l 
concentrated in a very narrow layer of thickness Ax,  such that J,1 = j z lAx  
= finite. A highly conducting plasma has the capability to carry such currents; 
in the limit of resistivity decreasing toward zero, the thickness of the current 
layer approaches zero, and a true surface current arises.) Equation (20.24) thus 
indicates that the y component of the field perturbation can be discontinuous 
across the boundary layer. From the divergence-free property of BI ,  i.e. 

(20.25) 

we note that a discontinuity in B,l implies a discontinuity in aB,,lax. Thus, 
although B, itself is continuous across the boundary layer, its gradient in x is 
not. Indeed, the quantity 

where the notation [ I x ~  is seen to denote the discontinuous jump across the 
boundary layer at x = 0; this is an important quantity, which will turn out to 
determine the stability of resistive tearing modes. 

It is clear that the ‘outer-region’ solutions will completely determine the 
quantity A‘. We could imagine integrating equation (20.21) for B, in the region 
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well to the left of x = 0, applying the appropriate boundary condition (usually 
B, + 0) at x -+ -00 (or at some intervening boundary, e.g. a conducting 
wall). Indeed, we could carry out a numerical integration of equation (20.21), 
beginning at a conducting wall far to the left, where we would set B, = 0 and 
would choose some arbitrary non-zero value for a B , / a x ,  which simply measures 
the amplitude of our solution for B, in this region. This solution will give some 
finite value of B, at x = 0, approaching from the left, and this value provides 
an alternative measure of the amplitude of our solution. Thus, choosing some 
arbitrary value for the amplitude B, at x = 0 (noting that the amplitude of a 
linear perturbation will always be arbitrary, within the confines of the linearized 
theory), the outer-region solution for B, is then completely determined for x c 0, 
as is the value of a B , / a x  at x = 0-. Similarly, the outer-region solution for 
x > 0, including the value of a B , / a x  at x = 0+, is completely determined 
from the boundary condition at x -+ 00 (or at an intervening conducting wall) 
and the requirement that it have the same amplitude, B,, at x = 0 as has the 
solution for the left outer-region. It follows that the quantity A’ is completely 
determined by the outer-region solutions. Indeed, later in this Chapter, we will 
calculate A’ explicitly for our ‘plasma current slab’ configuration, but first we 
will analyze the resistive layer in more detail, to determine how it can provide 
the localized, concentrated currents j ,  needed to produce the sharp ‘jump’ in 
B y l  and in a B , / a x .  

Problem 20.2: Show that the first-order ‘surface current density’ Jzl,  
i.e. the perturbed volume current density integrated in x across the 
resistive layer at any point y, is related to the value of B, at this point 
y by poJzl = iA’B,/k. For the particular choice of phase in which 
Bx = i,sin(ky), show that p0Jzl = (A’&/k)cos(ky). 

20.4 THE RESISTIVE LAYER 

It is not sufficient merely to obtain ‘boundary conditions’ that apply across the 
resistive layer: it is necessary to resolve the fine-scale structure of this layer in 
order to determine the growth rate of the resistive tearing mode. Within the layer, 
we may certainly take BYo = Blox,  and we may also make use of our finding 
that the perturbed field component B, is approximately constant throughout the 
layer; this constant part of B, will be denoted &. 

Equation (20.19) then becomes 

(20.27) 
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where the term on the right-hand side evidently involves the non-constant part 
of B,. Plasma inertia must also be included in the resistive layer, since we will 
see that the plasma flow velocities tend to peak in this region, implying that 
the full form of equation (20.12) must be used. However equation (20.12) may 
be simplified by noting that the x derivatives will tend to dominate over the 
y derivatives (i.e. the k-factors) in the thin resistive layer. Thus, an approximate 
form of equation (20.12) will suffice, namely 

a2B, 

yo ax2 
= kB’ X--. 

Substituting for a2 B,/ax2 from equation (20.27), this becomes 

(20.28) 

(20.29) 

where we have also written w = iy in anticipation of finding the result that the 
tearing instability is purely growing. 

Figure 20.4. Qpical form of the function U,@) in the resistive layer. 

Since B, is constant, equation (20.29) can be solved to find an explicit 
solution for the x dependence of U,. Unfortunately, the solution cannot be 
given in terms of analytic functions but must be evaluated partially numerically. 
However, it is apparent from equation (20.29) that U, will decrease steadily 
away from the resistive layer. Specifically, U, - -iy&/kB$ox - l /x  as 
x + 00 and the term on the left-hand side of equation (20.29) becomes 
negligible. It is also apparent that the solution U, will be odd in x; its actual 
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form is sketched in Figure 20.4. This implicitly assumes that the solution of the 
inhomogeneous equation (20.29) is unique, i.e. that the homogeneous equation 
obtained by omitting the term including x B ,  has no permitted solutions. This 
latter result can be established easily, by multiplying the homogeneous equation 
by U; and integrating from -cm to +oo, thereby obtaining a negative-definite 
expression that must equal zero for any solution with U, -+ 0 as x + 00. The 
characteristic width of the resistive layer can be determined simply by inspection 
of equation (20.29). Balancing the term on the left-hand side against the second 
term on the right-hand side gives a characteristic width 

x - 8  = (Yt lPo) ' /4 /( kB' yo ) ' /2 .  (20.30) 

As we might have expected, the resistive layer becomes thinner as the resistivity 
q decreases. 

To complete the solution and find the growth rate y ,  it is necessary to 
obtain an explicit solution of equation (20.29) in some form. For this purpose, 
it is convenient to transform to scaled variables X and U ,  which are defined by 

In terms of these variables, equation (20.29) becomes 

a2u 
- = X(1+ XU). a x2 

(20.3 1) 

(20.32) 

The solution U(X) will be an odd function of X and, as long as a2U/aX2 is 
well-behaved as X + foo ,  U + -X-' as X + foo .  An explicit solution is 
obtainable in an integral form, namely 

(20.33) 
X2 

U(X) = -5 2 lni2 exp ( -TcosB) sin'/2Bdf3. 

That this is the desired solution can be verified by direct substitution into 
equation (20.32), after first differentiating equation (20.33) twice to obtain 

-- - - 6""exp (-$osB) ~in'/~f3(3cosB - X2cos2B)df3. (20.34) 
ax2 2 

Using equations (20.33) and (20.34), we then obtain 

- a2u - x2u = - lH'2 exp (+osB) ~ in '~~B(3cose  + X2sin2e)de 
ax2 

"12 d 
= X [ sin3/'f3exp (- fCosB)] df3 

= x  (20.35) 
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which establishes that equation (20.33) is indeed a solution of equation (20.32). 
Examination of the asymptotic form of equation (20.33) for large X, where the 
dominant contribution to the integral arises from values of 8 near n/2, shows 
that equation (20.33) also has the correct asymptotic form, namely U + -X-'. 
This may be seen by changing the integration variable in equation (20.33) from 
8 to (o = n/2  - 8, so that the asymptotic form for large X is obtained by 
approximating the integrand as exp(-X2 sin(o/2) % exp(-X2(o/2). 

The purpose of analyzing the resistive layer in such detail is to obtain the 
correct boundary conditions to be applied to the solutions to the left and right of 
the resistive layer. We have seen in the previous Section that these outer-region 
solutions are completely defined when the surface current Jzl or, equivalently, 
the jump in By' or in aB,/ax, is specified. From our equations for the resistive 
layer, the jump in aBX,lax can easily be obtained, for example by integrating 
equation (20.27) across the layer: 

(20.36) 

Reverting to our scaled variables X and U, and noting that the limits of 
integration in equation (20.36) may be taken as f c o  on the scale of the resistive- 
layer width, i.e. the scale of X, we obtain 

514 114 
(1 + XU)dX. (20.37) Y Po Po -CO 

v ~ / ~ ( ~ B '  YO [, 
The integral on the right-hand side of equation (20.37) can be evaluated 
numerically, using equation (20.33) for U(X>. It is also possible to reduce 
the integral to a particularly simple form using both equation (20.32) and its 
solution, equation (20.33). To do this, we proceed as follows: 

-CO 1 a2udX 
--CO x ax2 

i W ( l  + XU)dX = 1 -- 
-! 
2 -aJ 

dX ln/2 exp(-~X2cos8)sin1/28(3cos0 - X2cos28)d8 

ln" sin'/28d0 [, exp(- iX2cos8)(3cos0 - X2cos28)dX 
00 

(;)I/* g., ~in ' /~e (3cos ' /~0  - cos'/2e)de 

(20.3 8) 

where the final integral in equation (20.38) has been evaluated numerically. 
The left-hand side of equation (20.37) is equated to the quantity A' which was 
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introduced in the previous Section and was defined in terms of the outer-region 
solutions. Equation (20.37) then gives an expression for the growth rate y ,  
namely 

(20.39) 

Once the quantity A’ has been calculated from the properties of the outer 
solutions, equation (20.39) gives the growth rate of the resistive tearing 
instability. 

Examination of equation (20.39) reveals some important information about 
the magnitude of the growth rate y .  In many cases of interest, it is appropriate 
to think of the resistivity q as a small quantity, i.e. the plasma obeys ‘ideal 
magnetohydrodynamics’ to a good approximation. The introduction of non-zero 
resistivity into the equilibrium will produce diffusion of plasma relative to the 
magnetic field, but only at a very slow rate, proportional to q. The introduction of 
non-zero resistivity into the stability calculation has, however, produced unstable 
modes that grow at a much faster rate, proportional to q3l5. 

This argument can be made more quantitative by defining various 
characteristic times. Let us first introduce a characteristic macroscopic length 
scale a, e.g. the half-width of the current slab shown in Figure 20.1. One 
characteristic time is the inverse of the frequency W A  of a shear AlfvCn wave 
with wave-number k propagating in the y direction, i.e. almost perpendicular 
to the assumed very strong magnetic field B,. This shear Alfvtn wave has 
w = k l l ~ ~  = (k,B,o/B,)uA; evaluating B,o at the edge of the current slab, this 
time t A  is defined by 

y = 0.55A’4/5q3/5(kBi0)215/p0 115 po 415 . 

ti‘ = W A  X (k,B;,oa/B,o)uA 

zz k ,  B;oal(PoPo)’ /2 .  (20.40) 

A second characteristic time describes the diffusion of the field B,o into the 
plasma due to non-zero resistivity; since the ‘diffusion coefficient’ for this 
process is q/po (see, for example, equation (20.18)), this time tR is defined 

rR a 2 1 0 / q .  (20.41) 
by 

Equation (20.39) may be rewritten in terms of t A  and tR, giving 

(20.42) 

Equation (20.42) shows that resistive tearing instabilities grow on time-scales 
that are intermediate between the very short MHD time-scale, t A ,  and the very 
long resistive time-scale, t ~ .  Indeed the relevant time-scale is close to the 
geometric mean of TA and tR. Thus, resistive tearing instabilities grow much 
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more slowly than ideal MHD instabilities (e.g. the flute instability, which has 
characteristic growth time a/C, - B - ’ / 2 t ~ ,  i.e. approaching TA for finite B 
values), but much more rapidly than resistive diffusion of the equilibrium 
configuration. In this discussion, we have implicitly assumed that A’a is a 
quantity of order unity, which is generally valid, since A’ is a characteristic of 
the macroscopic configuration. We will find that this assumption is confirmed, 
for example, in the case of the current slab analyzed in detail in the next Section. 

20.5 THE OUTER MHD REGIONS 

Until this point, we have not made use of any specific form for B,o(x) in the 
outer MHD regions, only that Byo(x)  X Blox in the narrow resistive layer around 
x = 0. Let us now find an explicit solution for the form of the perturbation in 
the outer-regions for the particular case of the plasma current slab illustrated in 
Figure 20.1 and specified in equations (20.1) and (20.2). To do this, we must 
solve equation (20.21) for the particular B,o(x) given in equation (20.2). 

First consider the region x > a, where B y  = Bios = constant. Here, 
equation (20.2 1) becomes simply 

a2B, 
ax2 
- - k2B, = 0 (20.43) 

whose only solution, vanishing as x + CO, is 

B, = Cexp(-kx) (20.44) 

where C is an arbitrary constant that measures the amplitude of the perturbation. 
Here, 

equation (20.21) takes the form 
Next, consider the region 0 < x < a, where B,o = Blox.  

a [ x 2 -  a (-)I Bx - k 2 x B ,  = O  
ax ax x 

but the derivative term can be expanded, i.e. 

so that equation (20.45) also becomes simply 

(20.45) 

(20.46) 

a2B, 
ax2 
- - k2Bx = 0 (20.47) 
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whose general solution is 

BX = A exp(kx) + B exp(-kx) (20.48) 

where A and B are arbitrary constants. 
The 

correct matching conditions are obtained from equation (20.21), which applies 
throughout the outer region, including both x e a and x > a, and they are 

The solutions in the two regions must be matched at x = a. 

(20.49) 

the latter following from integrating equation (20.2 1 )  across an infinitesimal 
boundary layer at x = a. For the solutions given in equations (20.44) 
and (20.48), the two conditions expressed in equation (20.49) give 

A exp(ka) + B exp(-ka) = C exp(-ka) 
(20.50) 

A(ka - 1) exp(ka) - B(ka + 1) exp(-ka) = -Cka exp(-ka). 

C C 
2ka 2ka 

A = - exp(-2ka) B = -(2ka - 1 ) .  

From these relations, the constants A and B can easily be obtained in terms of 
C: 

(20.5 1)  

This completes the solution for x > 0. One arbitrary constant, in this case 
C, must remain, since the amplitude of a perturbation in linear theory is 
indeterminate. 

Since the form of the equilibrium to the left of x = 0 is exactly the same 
as that to the right of x = 0, the solution for x < 0 can be obtained by simply 
substituting -x for x in the solution which we have already found. Specifically, 
for -a < x < 0. the solution is 

and, for x e -a, it is 
B, = Cexp(kx) (20.53) 

with the same values of the constants A,  B and C. 

Specifically, 
It is now possible to calculate the quantity A' defined in equation (20.26). 

2k(A - B )  
(20.54) 
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Substituting for A and B in terms of C using equation (20.51), we obtain 

The resistive tearing instability * 

2ka[exp(-2ka) - 2ka + 11 
exp(-2ka) + 2ka - 1 

A’a = (20.55) ‘ 

In Figure 20.5, we plot the function A’a versus ka. We see that A’ is positive 
for small k (long wavelengths in the y direction) and negative for large k (short 
wavelengths in the y direction). 

0 

-2 

-A 

I I l 

- 

- 

Figure 20.5. The function A‘a describing tearing-mode stability plotted against k a ,  

Since A’ > 0 is the condition for the resistive tearing mode to be unstable, 
we have now shown that the ‘plasma current slab’ equilibrium is, in fact, unstable 
to all perturbations that are wave-like in the y direction and have sufficiently 
long wavelength. 

As we saw at the beginning of this Chapter, the annihilation of magnetic 
field, by means of the cancellation of positive and negative By components in a 
small region 1x1 < 6, is energetically favored, i.e. it lowers the magnetic energy. 
However, as we have now seen, a magnetic perturbation that is wave-like in 
the y direction is required to produce the B, component at x = 0 needed for 
the negative By field to connect to, and thereby annihilate, the positive By field. 
This wave-like perturbation necessarily involves bending of the field lines, which 
requires energy in an amount that increases as the wavelength decreases. Thus 
it should not be surprising that the resistive tearing mode is unstable only for 
sufficiently long wavelengths, i.e. wavelengths for which the energy released by 
field annihilation exceeds that needed for field bending. 

We also saw earlier in this Chapter that a general sheared-field plasma slab 
configuration with both B , ( x )  and B , ( x )  could be susceptible to resistive tearing 
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instabilities at many locations x ,  depending on which modes of perturbation 
are allowed by the boundary conditions. This has an important application 
to the ‘cylindrical tokamak’, which is a model configuration with a strong, 
approximately uniform axial field B, and a weaker azimuthal field Be(r) .  The 
normal modes of perturbation of an infinitely long cylindrical plasma are of 
the form exp(im0 + ik,z), where m must be an integer but k, can have any 
value. However, in the tokamak case, the cylinder is an approximation to a 
‘straightened out’ torus and should therefore be considered to have finite length 
2 n R ,  where R is the major (larger) radius of the torus. Moreover, ‘periodic 
boundary conditions’ should be applied at the ends of the now-finite-length 
cylinder, so that we must take k, = - n / R  where n is an integer (the choice 
of a negative sign being simply for convenience, as we will soon see, since 
both positive and negative integers are allowed). Such a perturbation can be 
‘resonant’, in the sense that k . B m B e / r  - n B , / R  will vanish at a radius 
r where q ( r )  r B , / [ R B e ( r ) ]  = m/n. This is the equivalent of the resonant 
surface in our ‘slab’ calculation at x = 0, where k - B = k,B,o = 0. For a 
tokamak with a current distribution j , ( r )  that peaks at r = 0 and decreases to 
zero at the plasma edge, r = a ,  the function q ( r )  will increase monotonically 
from a minimum value at r = 0 to a maximum value at r = a .  Clearly, infinitely 
many rational numbers m / n  can be ‘fitted in’ between 4 (0) and 4 (a) .  However, 
since we have seen that only large wavelengths tend to be unstable to resistive 
tearing modes, only ‘low-order’ rationals, i.e. those for which m and n are small 
integers, are of interest. By far the most unstable mode in a tokamak is that with 
m = n = 1, and the nonlinear evolution of this mode tends to strongly flatten 
the plasma profiles inside of the resonant surface; however, this mode can arise 
only when q(0) e 1. The mode with m = 2 ,  n = 1 is also dangerous, since 
it can occur whenever q(0) % 1 and q ( a )  > 2 .  However, the stability of any 
particular mode is determined not just by the presence of the associated resonant 
surface, but also by the form of the plasma current distribution; in many cases, 
all modes can be stable. 

Problem 20.3 Suppose that rigid conducting walls are introduced into our 
plasma current slab at x = fb (with b > a ) .  Find the generalization of 
equation (20.55) for Ala in this case. Do you expect the plasma to be 
more, or less, stable? Is this expectation confirmed by your expression 
for Ala? 

20.6 MAGNETIC ISLANDS 

The resistive tearing instability produces a change in the topology of the magnetic 
field. The magnetic configuration of the plasma current slab before onset of the 
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instability is illustrated in Figure 20.2. The field lines are straight and, assuming 
that a strong approximately uniform B, component is added to the By component 
shown in Figure 20.2, lie in flat surfaces parallel to the (y, z )  plane. The direction 
of the By component reverses across x = 0. After onset of the instability, the 
magnetic configuration is deformed, and the field lines now lie on modified 
surfaces, which are still uniform in the z direction (since there is no variation of 
the perturbation in the z direction) but which intersect the ( x ,  y) plane in curved 
lines determined by the relations dxldl = B , / B  and dyldl = B y / B .  In effect, 
all of the deformed field lines project in the z direction onto the ( x ,  y) plane to 
curved lines given by 

(20.56) 

In essence, the configuration illustrated in Figure 20.2 is modified to that given 
by the solution of equation (20.56). 

For small-amplitude perturbations, the By component can be approximated 
by its equilibrium value, By Bl,x.  For a particular choice of phase (in order 
to deal with real quantities, rather than complex ones such as exp(iky)), the 
B, component at some particular time t can be written 

B, = B,eY'sin(ky) (20.57) 

where, as we have seen, the quantity B, can be taken as approximately 
independent of x within the resistive layer around x = 0. Equation (20.56) 
can then be integrated to give 

- 

(20.58) 4 B ; , X ~  + -eY'cos(ky) = constant 

where different values of the constant give the projections of different field lines 
onto the ( x ,  y) plane. 

The solutions of equation (20.58) can easily be plotted in the ( x ,  y) plane, 
and a typical example is illustrated in Figure 20.6. At relatively large values 
of 1x1, corresponding to large values of the constant in equation (20.58), 
the field lines are only slightly distorted from the unperturbed configuration 
shown in Figure 20.2. However, the distortion increases for smaller values 
of 1x1, corresponding to smaller values of the constant in equation (20.58), 
and eventually the field lines become 'closed on themselves'. Inspection of 
equation (20.58) shows that these 'closed' field lines arise from values of the 
constant less than ( B x / k )  exp(yt), for which only a limited range of y values 
are possible, since for these values of the constant equation (20.58) does not 
allow cos(ky) to reach unity for any real value of x .  

The closed field line regions shown in Figure 20.6 are called 'magnetic 
islands'. When the strong approximately uniform B, field is taken into account, 

BX 
k 
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A Y  

Figure 20.6. Perturbed field line configuration of magnetic islands of half-width w 
produced by a resistive tearing instability. The pattem is repeated with period 2n/k in 
the y direction. 

the individual field lines will not actually close on themselves, but will traverse 
surfaces whose shapes will approximate elliptical cylinders, which are infinitely 
long in the z direction. In this case, Figure 20.6 depicts the intersections of 
these surfaces with the ( x ,  y) plane at z = 0 or, equivalently, the projection 
of the field lines onto this plane. A given field line will always remain on the 
same surface, and its projection onto the ( x ,  y)  plane at z = 0 will traverse the 
closed curves shown in Figure 20.6 over and over again as it proceeds further 
and further in the z direction. 

The surface that separates the closed field line surfaces from the open 
field line surfaces is usually called the 'magnetic separatrix'. The separatrix 
corresponds to a value of the constant in equation (20.58) exactly equal to 
(&/k)exp(yr). The half-width w of the magnetic island formed by the 
separatrix, which is of course the largest magnetic island (see Figure 20.6), 
is simply the value of x given by equation (20.58) for this value of the constant 
and at ky = 17, namely 

w = 2( B, / k B$'/2exp( yt/2). (20.59) 

The half-width of the magnetic island is proportional to the square-root of 
the field perturbation f ix ,  so it increases exponentially in time, as indicated in 
equation (20.59). In practice, nonlinear effects will limit the growth of magnetic 
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islands when significant modifications are produced in the underlying magnetic 
configuration on which our stability analysis was based. Such effects begin to 
appear as soon as the island width becomes comparable to the width of the 
resistive layer given by equation (20.30) ,  as was shown in a paper by one of the 
authors of this present book (P H Rutherford 1973 Phys. Fluids 16 1903). When 
the island grows to a significant fraction of the size of the overall configuration, 
it can affect the gross current profile, usually acting to reduce the value of A’u 
and thereby tending to stabilize the tearing mode. 

There is clearly a close connection between the magnetic islands and 
magnetic separatrix obtained here and the islands and separatrices found in the 
numerical analysis of area-preserving maps presented in connection with particle 
orbits in Chapter 5. Indeed, the field line equation of motion, equation (20.56) ,  
can be represented as a map, where a point is laid down each time a distance 
21rR is traversed in the z direction. The shear in the magnetic field is then 
equivalent to the sheared particle flow for the problem in Chapter 5, and many 
of the previous results carry through. The island width at the rational surface, for 
example, scales in both cases with the square-root of the perturbation strength. 
Were we to attempt a numerical treatment of the effects of resistive tearing 
instabilities, we would expect to find, at least in some cases, not only a primary 
island chain, but also secondary chains of smaller islands, as in Figure 5.2. 
When the mode amplitude grows so large that secondary islands begin to overlap 
with the primary island or, in cases where several different modes are unstable, 
primary island chains begin to overlap with each other, then the magnetic field 
structure becomes ‘stochastic’. When this occurs, an individual field line can find 
its way completely across the plasma (i.e. in the x direction for the plasma slab 
configuration considered in this Chapter), if followed a sufficient distance. As a 
practical consequence, this will generally mean that electron thermal conduction 
parallel to the magnetic field will rapidly flatten the electron temperature across 
the stochastic region. 

The origin of the name ‘tearing mode’ is now apparent. The magnetic 
configuration illustrated in Figure 20.2 ‘tears’ at its weakest points, i.e. along 
the plane x = 0. Provided the conditions for instability are satisfied (i.e. positive 
A’), the plasma current slab will then have a tendency to break up into discrete 
current ‘filaments’. 

Problem 20.4 The result of Problem 20.2 implies that the first-order 
perturbed current density in the z direction is negative at the O-point of 
the magnetic island, i.e. the point (0, x / k )  in Figure 20.6, for an unstable 
mode (A’ > 0), and positive at the X-point of the island, i.e. the point (0,O) 
in Figure 20.6. (It should be noted that this is a special property of our 
choice of geometry; the signs are reversed, for example, in a cylindrical 
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tokamak configuration with dq/dr > 0.) Verify this for the slab geometry 
by a different method, as follows. Consider the magnetic flux ‘trapped’ 
within the magnetic island. Referring to Figure 20.6, we may view this 
flux as that of the Bx field crossing the y axis between the X-point and 
the 0-point; per unit length in the z direction, this flux is 

nlk 
Q = Bx(O9 Y N Y .  

By employing the usual combination of Faraday’s law and Ohm’s law, 
show that 

(Hint: Note that the magnetic field is exact/y in the z direction at both 
the 0-point and the X-point, which precludes convection of flux across 
the boundaries of the surface under consideration.) The trapped flux Y 
must increase as the instability and island-width grow. What does this tell 
us about the magnitude of the perturbed current density j ,  at the island 
0-point, versus that at the X-point? 
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