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CHAPTER 2

The Variational Principle

2.1 The Magnetostatic Equations

In magnetohydrodynamics, the equilibrium and stability of a toroidal plasma
with density p, pressure p = p* and internal energy ¢ = p/(y — 1), confined by
a strong magnetic field B, can be analyzed by means of a variational principle
[4] for the potential energy

BJ.
E = Iff(? + ;—f—l)dxl de dxa,

subject to appropriate constraints. Stationary points correspond to equilibrium
solutions; and if the energy has a local minimum, the equilibrium is considered
to be stable by definition.

We present a new nonlinear formulation [7] of the standard variational
principle of magnetohydrodynamics which is related to that of Kruskal and
Kulsrud [28]. Our main objective is to recast the variational principle so that
it can more easily be implemented as a computer code. This is to be achieved
by using a simple domain for the independent variables in three dimensions, a
simple way of introducing constraints, and a minimization procedure that
leads to a well-posed problem for a system of partial differential equations
involving an artificial time parameter. '

ssconst.

free boundary

Fig. 2.1 Torcidal geometry.
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Let the plasma be contained in a toroidal region £}, of space that is separated
by a sharp boundary I' from an outer vacuum region £2, bounded by a con-
ducting wall C (see Fig. 2:1). We assume that a nested toroidal family of flux
surfaces 5 = const. exists in the plasma region such that s = 0 corresponds to
the magnetic axis and s = 1 corresponds to the free boundary. We denote by
u and v variables such as angles with unit periods in the poloidal and toroidal
directions, respectively.

Let us minimize the potential energy E subject to the following five con-
straints:

1. It is required that V- B = 0 everywhere.
2. The toroidal and poloidal fluxes within each flux surface in the plasma
region are fixed, so that

[[3-as=Fitr  [[Bds = Futso)
s5<s0 <50
where the first integral is e¢valuated over a disk v = const, and the

second integral is ¢valiated over an annular surface 4 = const,
3. The mass within each flux tube has a fixed value

J'Hp 4V = M(s).

S< 50

4. The total toroidal and poloidal fluxes in the vacuum are fixed. These
two conditions can be expressed in the form

f B-dS = FY, ﬂ B-dS =FL.

v =const. u=gconst.
5. The free surface I and the outer wall € are flux surfaces on which the
normal component of B vanishes, i.e.,
B-v=0.

Note the difference between the fiux constraints in the plasma and vacuum
regions. In the plasma region the distributions of flux are fixed as functions of s,
while in the vacuum region only the two total fluxes are preserved.

The Euler equations for this variational principle are the equations of
magnetostatics. In the plasma region we have

Vp=J x B, J=V x B,
where J is the current. On the other hand, in the vacuum region
VxB=0

The sum 4B? + p of the magnetic and fluid pressures remains continuous
across the free boundary I'. The plasma and vacuum regions must be treated
by different methods because the constraints are different in each of them.
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The assumption of a nested toroidal family of flux surfaces is justified by the
fact that in the time evolution.of a magnetohydrodynamic system, the mag-
netic lines are carried by the fluid and, therefore, the topology is preserved.
This leads to a sufficiently simple model, so that the fully three-dimensional
problem can be analyzed numerically by solution on a large-scale computer.
A more general case allowing for the creation of so-called “islands™ has been
treated for two-dimensional or axially symmetric geometry by Grad et al. [21].

2.2 Flux Constraints in the Plasma

The first practical difficulty in dealing with the three-dimensional problem is
how to prescribe the constraints in a way appropriate for numerical computa-
tion. The equation V- B = 0 can be integrated by representing the magnetic
field B as the cross product [22],

B =Vs x Vi,

of the gradients of two scalar.flux functions s and v. Assuming that the loci
s = const. are a nested family of toroidal flux surfaces, we can use 5 as a
Lagrangian coordinate. That is, we switch the role of dependent and in-
dependent variables, and s becomes one of our coordinates. Then we prescribe
the flux constraints by prescribing the periods of the multiple-valued flux
function .

Since B must be single-valued, the most general expression for i is

¥ = filshu + fr(shv + As, u, v),

where A is periodic in # and v. We have for the toroidal flux

Friso) = J'fB-ds= - ﬂv X (Y Vs)-dS = §dfds,

s<3p 5550
where the line integral is taken along a curve which bounds the slit disk v =
const., s < 5¢. A cut must be introduced along the ray u = 0 to make y single
valued, and the sign is chosen so that the flux is positive in the direction of
increasing v. Evaluation of the line integral yields

Frlso) = — :’fl(s)ds,

where the only nontrivial contribution comes from the cut. Finally, differentia-
tion gives Fi{s) = — f,(s).
A similar calculation for the poloidal flux yields Fp(s) = f3(s}and, therefore,

= —Fy{s)u + Fp(s)v + Als, u, v).
The ratio dF p/dF r, which we denote by u(s), is called the rotational transform.

A
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Clearly, only one function of s need be prescribed to define the fluxes. In the
simplest case, where we take s to be the toroidal flux itself so that Fr(s) = s, ¥
assumes the special form

V= —u+ pir + As, u, v).

However, for practical purposes it is convenient to retain the more general
form because it allows us more freedom in the choice of a computational mesh
and helps in treating cases where there is a reversal of sign for the main
toroidal field.

2.3 The Ergodic Constraint

The relation
B-Vp=20

implies that the magnetic lines are real characteristics of the magnetostatic
equations. In order to formulate a well-posed problem, we want to eliminate
these real characteristics from our system of equations. If we assume that the
magnetic lines on each flux surface are ergodic, then p must be a function of s
alone. It is, therefore, natural to introduce this ergodic constraint on every
toroidal flux surface. However, if we wish to drrive at a valid stability analysis
we must show that the corresponding relation p = p(s) yields a minimum
of the total internal energy for all choices of p(s, u, v) satisfying the basic mass
constraint 3 of Section 2.1.
Let

0(x;, X2, X3)
De=—xFrpe— -
(s, u, )

be the Jacobian of the transformation to the coordinate system s, u, and v
An application of Hélder’s inequality asserts that for any fixed sand y > 1,

M'(s) = m(s) = ”pD du dv < (ﬂp’n du du)m(ﬂ D du dv)“_lw

and equality holds if and only if p = const. Hence for fixed m{s) and D, the
internal energy

E = y_:l—_l J.pr’D ds du dv
becomgs a minimum when

_ _ mls)
p=ps)= [IDdudy
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A similar proof of the admissibility of the ergodic constraint can be carried out
for0 <y < 1, too.

In summary, through the substitutions that have been described we have
integrated analytically two of the four magnetostatic equations, while pre-
serving our stability criteria. Moreover, we have eliminated the real character-
istics of the system, and that will lead to the formulation of a well-posed
problem. The flux and mass constraints have been incorporated explicitly
in the formulation, so that an unconstrained minimization problem for the
plasma region results.

Observe that the relationship between the magnetic field B and the flux
functions s and  can be written in the invariant form

a(S, ’J” xj)

B, = .
y a(xl’ x21x3)

Thus the expression for the energy E, in the plasma region reduces to

D} + D D3 1 m(s) ds
k= J]f ds du dv + ¥ — LJ([ D dudvy=?*’

where D; = d(s, ¥, xj)/a(s, u, v).

@

2.4 Coordinate Sy.stem in the Plasma

We introduce modified cylindrical coordinates r, #, and z defined by the
formulas

x; =+ r)cosb,

x3 =(l + r)sin g,

X3 =2z,

where [ may be interpreted as the large radius of a torus which becomes a
cylinder in the limit as ! — c0. Because we have already integrated the equation
B Vp = 0, we are free to impose on the transformation from the coordinates
s, u, and v to r, 6, and z the important restriction

@ = 2nv

specifying the toroidal angle. Under this hypothesis, the energy E, takes the
same form as it does in rectangular coordinates, except that we now have

- _n - W2
Dl = o, 1)’ = —I{l + er)y,, D, = m,
D=L{ + )22

s, u)’

P SRS SRy S SR,
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where L = 2nf and & = 1/I. The ratios D;/D represent the components of the
magnetic field B in the r, 8, and z directions, respectively. We can set ¢ = 0,
keeping L fixed, to obtain a cylinder of length L with periodic boundary
conditions. Note also that with the special prescription for v only two-di-
mensional Jacobians are needed.

We could consider l,b as a Lagrangian coordinate, i.e., as a fixed function of
5, u, and v, and minimize E, over all periodic mappings r(s, u, v), z(s, u, v) of
the cube

Q:0<s<1; Osu<l; 0<vxl

onto a specified plasma region. Variation of the independent variables r and
z and the fact that p is a function of s alone would show that the Euler equations
of the new extremal problem reduce to the magnetostatic equations. However,
there are several difficulties with such a formulation. The solution for ¥ is not
unique, since we can add any function of s alone to  without changing the
values of B. This is reflected in the fact that the solution for the mapping is
not unique, and corresponding compatibility conditions due to the toroidal
geometry must be satisfied. Moreover, the magnetic axis is a singular curve
in our coordinate system, which makes it difficult to write equatlons for r and
zats = 0. Finally, the boundary condmop forrand z ats = 1is nonlinear.

It is more effective to replace the physical coordinates r and z as dependent
variables by a combination of the flux function = ¥(s, u, v) and a dimension-
less radius R = R(s, u, v) related to r and z by the formulas

r = ro(v) + R(s, u, v)[r,(u, v) — ro(v)],
z = zo(v) + R(s, w, V)[z,(u, v) — zo(v)],

where r = ry(t), z = zo(v) are the equations of the magnetic axis and
r = ry(u, v), z = z,(u, v) are the equations of the free boundary I'. The function
R serves to define the geometry of the flux surfaces 5 = const. The boundary
conditions on R require that it be periodicinuand vand that R = 0ats =0,
and R = 1 at s = 1. There are no boundary conditions on y other than the
poloidal and toroidal periodicity requirements already indicated. The
functions r, and z, must be periodic and they must be found as part of the
answer to the minimum problem. In terms of R, the Jacobian D reduces to the
simple expression

D = LH(1 + «)RR,,

where

H(u, v) = (21 —zo) e - (r, ro)
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2.5 First Variation of the Potential Energy

Making perturbations d¢, R, dr,, and éz, of the dependent variables ¥, R,
ry,and z,, we obtain, after integration by parts, an expression of the form

SE, = — ﬂ (L (D)3Y + Lo(RYR)s du dv

- f (La(ro)oro + La(zo)d20)dv

for the first variation of the energy E, in the plasma region. A calculation shows
that the operators L, (), L,(R), Li(ro) and L,(z,) occurring here are defined
by the relations

2 [?'3 + LK? + z&]d’u - [rurv + zuzv]'//v
ou D

+ i [rf + Z:]{/JU — [rﬂrv + Zuzv]')bu
dv D ’
a ‘!’u[d’vru - u'lurn] +£ lpm[‘flluru - wuru]'

Ly(R) = (r; — "o){a D 3o D

DP  LKy?
L - H
+ E(LK D )Jl

+ (Zl _ 20){6% 'J’v['f”vzuD'_ l»[’uzv] + ai; '\Ilu[wuzajo_ !llvzu]}

L) =

— LHR E (PK),
ds

0 'ﬁu[lf/.,ru B l)[lurv] 0 \bu[wurv B %Tﬂ
Li(ro} = fj[(l Bl R){a ' +E

D D

+ L

DP  LKy?
\tk ~ D

_ _ i lllv[':{,vzu - WMZUJ i I!Iu[lpuzv - '»bvzu]
Lu(zo) = ﬂ[(l R){ LT e }

)} — PLKRR, %:lds du,
ou

* du

where P = jB* + pand K =1 + er.
The Euler equations L,(J) = 00 and L,(R) = 0, asserting that E, is a
stationary functional of ¢ and R, imply that for magnetostatics,

Vs-J =0, Vi - J = p'(s).

a
+ PLKRR l]ds du,
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The first of these can be viewed as an elliptic equation for y in its dependence
on the two variables u and v within the flux surfaces s = const. Similarly, the
second is an elliptic equation for s embedded in the two-dimensional flux
surfaces iy = const. These two equations, together with the ergodic constraint
p = p(s), imply Vp=J x B. They are of nonstandard type in three-di-
mensional space.

The corresponding Euler equations L,{r,) = 0 and L,(z,) = 0 for ry, and
2z, can be written as

Ly(ro) = ﬂ(l —R)Vp—J x B)-2.Ddsdu=0
and
La(zo) = f (1 - RY(Vp ~ J x B)-&,Ddsdu =0,

where ¢, and &, are unit vectors in the r and z directions. They represent a
weighted average of the magnetostatic forces on the cross section v = const.

For the case in which there is no vacuum region, the functions r, and z,
represent the equations of the outer conducting wall C, and the problem
reduces to minimizing the expression for the potential energy E, in the plasma
region alone as a functional of ¥, R, r,, and z,. When a vacuum region is
present, the location of the free boundary I must be found by considering the
contribution of the vacuum region to the potential energy. This is the subject
of the next section.

2.6 Vacuum Region and Force-Free Fields

Consider the total potential energy, which we write as
| p 1
= = —B* 4 — B2 4V,
E=E, +E, jjf(z +?__1)dV+szBd
') 0, .

where dV is the volume element and Q; and Q, are the plasma and vacuum
regions, respectively (see Fig. 2.1). The variation of E with respect to the
magnetic field B and pressure p in the plasma region has already been discussed.
Now we consider the problem of minimizing E with respect to variations of the
vacuum magnetic field B and the free boundary I' subject to the vacuum flux
constraints 4 and 5 of Section 2.1. Again we emphasize that in this case it is
not the flux distribution u(s} but just the total poloidal and toroidal fluxes
in the vacuum region that are fixed.

At first glance, one might think that we could proceed in the same manner
as before and express the vacuum magnetic field as B = Vs x Vi to satisfy
V- B = 0. However, there are several reasons why that is not the right way to
proceed.
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First of all, the flux surfaces in the vacuum region will not, in general, be
nested tori for genuinely three-dimensional geometry [32]. While in the plasma
region the topology of the magnetic lines has an invariant structure, no such
requirement holds for the vacuum magnetic field, and topological assumptions
arc not natural,

Second, even if we were to accept the constraint of nested torcidal surfaces,
we would have to minimize the energy E, with respect to the function

F(s) = fsp(a)da

]
over the vacuum region. Making a variation éu shows that the corresponding
Euler equation has the form

Is) = Fﬁ B - dx = const.

where [ is the net current through the toroidal flux tube s = const. It is only
when sufficient regularity is assumed that this equation, together with the
force-free field condition J x B = 0, implies J = 0. In more general cases,
F might be continuous but not differentiable and the answer to the minimum
problem might be a weak solution with surface current sheets through the
peints where u is discontinuous. On such surfaces, the magnetic lines need not
be ergodic and there could be surface currents with alternating signs.

Because of these considerations, we introduce a- reciprocal variational
problem [5,6]. It is well known that if we minimize E, with respect to B subject
to V-B =0, the corresponding Euler equation is V x B =0. We now
consider the reciprocal problem, which is to find the stationary point for E,
subject to V x B = 0 and subject to a suitable formulation of the flux con-
straints 4. The corresponding Euler equation is V - B = 0, and both problems
have the same solution. However, in the reciprocal case the vacuum energy
is a maximum with respect to variations of B, as we shall prove in the next
section. The advantage of the constraint V x B = 0O is that it is easily imposed
by means of a scalar potential, but its disadvantage is that we have to deal with
aminimax problem rather than a straight minimum problem for E. In principle,
one should determine the vacuum field for each position of the free boundary I’
and then minimize with respect to the other dependent variables. In practice,
though, it suffices to iterate the vacuum field equation more often than the rest
of the dependent variables.

2.7 Variation of the Vacuum Field

We integrate the constraint V x B = 0 by setting
B=V¢=c V¢, +c,V¢,,
where the potentials ¢, and ¢, are associated with unit currents | d¢; in the

s
e

i
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A

peloidal and toroidal directions, respectively, but have zero pertods in the

conjugate directions. The Euler equation stating that ¢ is a stationary point
of E, implies that A¢; = 0in Q;, and that a¢¢av = OonT and C. Note that
we have here a natural boundary condition in the sense of the calculus of
variations, which means that the boundary condition is a consequence of the
extremal property.

Since it is the fluxes F} and FY that must be fixed, we require

— ¥

a;1¢, + aa¢; = Fp,
vV -

ai€y + azacy = Fr,

where the matrix A with elements

@y = H Vo, -Vo;dV, ij=1,2,
131

is called the inductance matrix. Let ¢ denote the vector with components
¢, and ¢;, and f the vector with components F} and Fy. We have

fﬂ (Vo) dV = ic'Ae,

where ¢’ is the transpose of ¢. The matrix A is symmetric and positive deﬁmte,
and using the flux constraints we obtain

By = A7

We intend to prove that E, is a maximum with respect to variations of ¢

for Ac = f fixed. Let A, be the matrix corresponding to the stationary
solutions with A¢; = 0, d¢b;/dv = 0. Since 4 and A, are symmetric and positive
definite, we can find an orthogonal basis such that

C’AOC = Alé} + ’12 t%s C'AC = {% + é%:

where ¢, and £, are the components of ¢ in the new basis, and 4, and 4, are the
roots of the equation |4y — 14| = 0. Correspondingly, we can write

FAGY =umi +pni, A7 =n} +4i,

where u, and u, aretherootsof | A5 * — A ~'| = 0.This implies thaty, = 1/).;
Now by Dirichlet’s prmc1p]e we have

c'Apc < ¢'Ac
for all ¢ and, therefore, 4; < 1. As a consequence, g; > 1, so that
fASY > A7

for any ¢;, which completes the proof.

Tme
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2.8 Variation of the Free Boundary

Next we consider the variation of the energy E as a functional of the position
of the free boundary I". Let év be an arbitrary perturbation of T along its
outer normal. A direct calculation shows that [6]

5E2 = - %CléAC,

and Hadamard's variational formula for harmonic functions [17] implies that
(Sa” = - J‘J-V(bi . V¢j5v__d3,
r

where dS is the surface area element on I'. A similar calculation for the plasma
region shows that

8E, = — J](&Bf +povas, |
r

+

which, together with the above equations, leads to

SE = — f GB? + p — $B2)ov ds,
r

where B, and B, stand for the limiting values of the magnetic field coming
from the plasma and the vacuum, respectively. This means that $B? + p must
be continuous across I for a solution of the variational problem.

2.9 Coordinate System in the Vacuum

The basic difficulty in developing a numerical scheme for a free boundary
problem is to handle the changing shape and location of the free boundary.
If the problem involves only two independent variables, conformal mapping
techniques can be used to solve it in a fixed auxiliary domain [10]. Then the
region of the solution is determined as the conformal image of that domain.
In the general case of three independent variables no such conformal
mapping exists, but the basic idea of mapping the physical region onto a fixed
auxiliary domain € can still be used. Since the mapping is not conformal, the
resulting equations in £ will be more complicated, which in turn means that
finding the solution will require a greater amount of computation. However,
the advantage of having a fixed domain in which to solve difference equations
far outweighs the disadvantage of the extra computation. This also provides
an ideal framework in which to use fast, direct methods for solving the re-
sulting difference equations. We shall have more to say about that later.

L
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We choose to formulate the vacuum energy problern as a minimum problem
for Dirichlet’s integral [[f(V¢$)? dV rather than to start from Laplace’s
equation, This approach has several advantages, one of them being that the
boundary condition d¢/6v = 0 is a consequence of the minimization and
need not be imposed as a special requirement. Another advantage is that the
resulting Euler equation will be in conservation form and, therefore, the
compatibility condition for a solution of the Neumann problem will be
satisfied. These properties can easily be extended to difference equations by
using a discrete variational principle in a fashion suggested by the finite
element method.

We start with the cylindrical coordinate system of Section 2.4 and put
@ = 2nv again. Consider the mapping of the cube

Ql0<s< 1, 0<u<l, O<v<l1
onto the vacuum region €}, given by

r=ru, v) + sfry(u, v) — r (u, v)],

z=z,(u,v) + s[z,(u, v) — z,(u, v)],

where r = r,(u, v) and z = z,(u, v) are the equations of the outer conducting
wall C and r = ry(u, v), z = z,(u, v) are, as before, the equations of the free
boundary T'. The Dirichlet integral can be written as

[[[werav= [[[@sz + bz + coz + 22,9,
117)

+ 2e¢p 0, + 2f . b,)ds du dv,

where
2n ar, z)
. L=—, K=1 , A=—"—
+er 26, w)
and
LK(r? + z2 + &%) LK(r? + 22 + f?)
= . h = .
A A
A - -
=t 4 = LK = rity = 5,2)
LK A
FuZp = Fy2y _FeZg — K2y
*TT LK J=—Ig
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The periodicity conditions on ¢, and ¢, now become
¢i(3, u -+ 1: U) = ¢|-(S, i, U) + 5(1’
¢E(S! u, v+ 1) = ¢i(s! u, IJ) + 5!2

for i = 1, 2, where §;; is the Kronecker delta. In the new coordinates s, u, v
over Q, the Euler equation, equivalent to Laplace’s equation, appears in the
conservation form

(a¢., +dg, +ep) + o (b¢u +do, + f¢.)

]
+5- (e + by + [0 =0,

with boundary conditions at s = 0, 1 given by
ad, + dd, + e, = 0.

To specify the free boundary variation, we write the equations of I in
terms of a dimensionless radius g = g(u, v) as

i, v) = ra(v) + glu, v)[r204, v} — r5(v)],
zy(u, v) = 23(¢) + gy, v)[z2(4, ) — z;3(v)],

where ra(v), z 3(‘0) are the equations of a curve defining a new origin of co-
ordinates in each meridian plane ¢ = const, This closed curve can be chosen to
follow the shape of the outer wall, so that g becomes a slowly varying function of
uand v.

Making a perturbation dg, we obtain after integration by parts the variation
of the energy due to a shift of the free boundary in the form

O0E = — j M(g)ég du dv.

Here M{g) is defined, following Section 2.8, by the formula
M(g) = LK[(r; — r3)z, — (22 — z2)r,J[3B} + p — 1B3).
From Section 2.4 we obtain the expression for the plasma magnetic pressure

g2 ( [r2 + 22092 + (LKY + 1] + 22392 — 2[r,r, + z.z.,]w"wv)
1= (LK)*(HRR,)?

On the other hand, using the boundary conditions for ¢; on I', we have for the
vacuum magnetic pressure there

([r.% + 22192 + [(LKY + r + 22002 — 2[rur, + 2.2,10. ¢.,)

B =

((LKYP[r? + 2] + [roza — ruz.)?)

st cimam it

v o
W s B
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The free boundary condition is, of course, just the first-order partial differential
equation M(g) = O for g.

This completes our formulation of the variational principle. The formulas
that we have derived will be the main tool to set up a minimization procedure
to be described in the next section.

2.10 Accelerated Paths of Steepest Descent

We propose to solve the magnetostatic boundary value problem for , R, ro,
z9, and g by considering paths of steepest descent associated with the minimum
energy principle for E. We assume that for any g we have solved the vacuum
equations for the potentials ¢, exactly, so that the vacuum energy is a functional
of g alone.

Letting the unknown functions depend on an artificial time parameter ¢,
we define an accelerated path of steepest descent by means of the system of
partial differential equations

as¥, + ey, = Ly(¥),
@R, + 2R, = Ly(R),

a3(ro)y + es(ro) = Li(ro),

as(zo)u + €3(20) = La(zo),
eqg, = M(g),

where the operators on the right come from the Euler equations found in
Sections 2.5 and 2.9, The form of the equations is motivated by the method of
steepest descent, the conjugate gradient method, and the second-order
Richardson method. The coefficients a; are to be determined so that the
artificially time-dependent system becomes hyperbolic, while the e, are
supposed to be large enough to maintain descent.

The first thing to be noticed is that the system is chosen so that the energy
E becomes a decreasing function of ¢. If a; = 0, we have the method of steepest
descent and E, is negative, as can be seen from our formuias for the first
variation. Furthermore, the path is chosen in the direction of maximum
descent. However, for a; = 0 the system is not adequate because the type of the
differential operators on the right, which, with the exception of M(y), are
second order in the space variables, is nonstandard. Thus we have added
second-order time derivatives so as to obtain a hyperbolic system. The con-
vergence to a steady-state solution would be prohibitively slow without such
acceleration terms, This explains our use of the second-order Richardson
method, which is more or less equivalent to the conjugate gradient method in
the present case.
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The idea is to compute solutions of the artificially time-dependent system
in the limit as t — oo, If the associated plasma equilibrium is stable, the energy
has a relative minimum and the answer will converge to a steady-state solution
of the magnetostatic equations. If, on the other hand, the equilibrium is
unstable, the energy has a saddle point, and the artificially time-dependent
solution will diverge from equilibrium following essentially the most unstable
eigenfunction. If only quadratic terms are kept in an expansion of E about
equilibrium, this procedure reduces to the standard variational principle of
magnetohydrodynamics [4].

By choosing the coefficients a; and e; appropriately, we are able to study
questions of both equilibrium and stability with far less computational effort
than would be necessary if we examined dependence on the physical time
instead {cf. (11]). In some sense, our artificially time-dependent system of
partial differential equations may be interpreted as a primitive model of
magnetohydrodynamics. A similar approach has been proposed by Chodura
and Schhiter [12].

Since our formulation is nonlinear, we can study problems that are beyond
the scope of the usual linearized stability analysis. For example, we can
consider the case of a solution which is linearly stable but becomes unstable
under large perturbations. Conversely, we can investigate the problem of
bifurcation by perturbing an unstable equilibrium and seeing if the result
converges to a different stable solution. This is sometimes referred to as
saturation.

The same method could be used to do linearized stability analysis for
problems with axial or helical symmetry. If we impose the symmetry con-
dition on the formula for the energy, then the variational principle leads to a
two-dimensional problem for the equilibrium solution. One equation can be
integrated explicitly, and we are led to a single equation for a scalar potential.
If we linearize about this solution, a Fourier analysis can be done with respect
to the ignorable coordinate. Here our method has the advantage that the
coordinate system used for the equilibrinm problem is also convenient for
solving the stability problem (cf. [23]). We hope to work on implementing this
approach in a future publication.

A major contribution is the great generality allowed by our coordinate
system. Since this follows the motion of the plasma, we can compute solutions
with large deviations from axial symmetry but still use unknown functions
that are slowly varying, Thus it is relatively easy to study the effect of wall
shape or compression ratio on the stability properties of the solution.

2.11 Determination of the Acceleration Coeflicients

The role of the coefficients g; is to bring the system of partial differential
equations of Section 2.10 into the hyperbolic type and provide it with
appropriate characteristics. The a; will later be selected to meet the Courant-
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2.11 Determination of the Acceleration Coefficients 19

Friedrichs-Lewy criterion for stability of analogous difference equations on a
given mesh (cf. [17]). Assuming them to be fixed, the rate of convergence in ¢ is
governed by the first-order coefficients e;. To look for the best device to acceler-
ate the convergence, let us consider the example of a simple scalar equation.
It will be obvious how our conclusions are to be generalized to handle the
plasma physics problem.

Suppose that L(y) is a linear second-order differential operator in the
space variables and that we are minimizing a functional E whose first variation
is

OE = — fﬂ L)Y dv.

The associated paths of steepest descent are defined by

ay, + elﬁl = L(y).

Let ¥ be an eigenfunction corresponding to a negative eigenvalue —w? of L
and set ¢ = e*¥, where 1 satisfies the dispersion relation

al’ + el = —w®. ~

In order to maintain descent, we need

E,=—H (@l + W2 dv <0,

which requires e/a > | |.If we choose e independent of ¢, we are forced to have
e/a greater than the largest value of | 4| that occurs in a given distribution of
initial data. For ¢ >> g, we have the asymptotic relation
ix -2
e

If w is small, which is the case we are primarily interested in, the resulting
convergence rate is much too slow. This can be interpreted to mean that the
artificial time ¢ scales like the square root of real time. Similar considerations
apply to any positive eigenvalue of L.

To accelerate the method, we choose ¢ to be proportional to the dominant
growth rate 4, which may be either positive or negative and may vary with
time. Then, according to the dispersion relation, we obtain

A = o const.,

so the artificial time scales like real time rather than like its square root.
To implement this idea, consider the least-squares error

F(t) = f J' LOp)? dv.



20 2 The Variational Principle

N [

In terms of the eigenfunctions ¥, of L, this can be expanded as

FO =3 Avexp 02 [[[ Loy av,

where for the sake of simplicity we have assumed orthegonality. The values of
|F/F| averaged over a number of time cycles provide a good measure of the
dominant growth rate 1. By setting

Fe
F

for a suitable value of the constant T > 1, the best rate of convergence is
achieved and simultaneously an estimate is obtained of the growth rate w
of the least favorable mode for an unstable equilibrium. To ascribe a physical
meaning to'this growth rate in practice, however, comparison must be made
with some example in which an Alfven transit time is known from other
considerations.

The procedure we have described for acceleration by means of a variable
convergence factor ¢ = e(r) significantly enhances the method of steepest
descent, which is prohibitively slow in its usual formulation. The same
procedute is applicable to the problem of estimating the relaxation factor
for the method of successive over-relaxation in a more general context. This
will be described in the next chapter in connection with the solution of Laplacé’s
equation for the vacuum region. In practice no extra computational work
is required, since the operator L(ys) must be computed in any case. Rates of
convergerice can bé improved by as much as a factor of ten in typical cases.

For the partial differential equation of the free surface, an exception has to
be made because it is only of the first order. However, no acceleration is called
for in that case anyway, so the coefficient of the time derivative can be assigned
in a more obvious fashion, It then turns out that the previous assertions about
growth rates remain valid even with a free surface included in the model
However, for the free surface model the convergence of the solution is markedly
improved if we allow the origin of the coordinate system for the free boundary
to move with thie plasma. This is accomplished by writing differential equations
defining paths of steepest descent for r5(v) and z5(v) which only involve averages
with respeEfﬁ to u of the free boundary equation. These are given by

e(t) = 1a

es(rs) = f (1 — KB + p — 4821z, du,
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Such a rezoning minimizes mesh distortion because the origin of the co-
ordinate system follows the plasma shape. For example, helical excursion or
translation of the plasma column is described primarily by the moving origin
itself rather than by large distortions of the function g. Thus truncation errors
are minimized, too.
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CHAPTER 1

Introduction

1.1 Formulation of the Problem

In magnetic fusion energy research, a central role is played by toroidal devices
for the confinement of a plasma. These devices are essentially of two different
types, called the Tokamak and the stellarator. In a Tokamak, which is an
axially symmetric configuration having a plane magnetic axis, the toroidal
outward drift of the plasma is counterbalanced by the poloidal magnetic
field due to a strong toroidal plasma current. In a stellarator, which is a
toroidal configuration with a helically deformed magnetic axis, the toroidal
drift is offset by a restoring force associated with helical windings, and the
net toreoidal current is negligible compared to the poloidal current producing
the main theta pinch field. Extensive experimental investigations of both
types of devices have been conducted. So far the Tokamak work has been more
successful and at present dominates the scene.

The partial differential equations of magnetohydrodynamics define a
valid isotropic continuum model for mathematical analysis of the toroidal
equilibrium of a plasma. When resistivity is neglected, there is a variational
principle for the combined magnetic and fluid potential energy that leads to a
relatively simple theory of equilibrium and stability [4,22,28]. Even that theory
is too complicated, however, to permit exact solutions of many of the problems
that arise in the applications. The purpose of this book is to develop a numerical
method for the solution of the magnetostatic equations and to present a
computer code based on that method for the study of practical questions of
equilibrium and stability in plasma physics.

Our intension is to solve problems involving genuinely three-dimensional
geometry, such as those associated with the helical windings of a stellarator
having no symmetry. Instead of treating the full magnetohydrodynamic
equations directly, we calculate equilibria by applying the method of steepest
descent to the- variational principle for the plasma and vacuum potential
energy in a fashion that provides significant information about stability
[7.8,12,28]. Therefore, we are able to confine our attention to a reduced
system of partial differential equations related to magnetostatics. This
simplification does, however, raise some subtle mathematical guestions about
the formulation of the steady-state problem and the existence of weak solutions
[7,20].




2 1 Introduction

Paths of steepest descent are defined by solving an initial value problem for a
system of partial differential equations that is expressed in terms of an artificial
time parameter. For stable equilibria, the solution approaches a steady state
as the artificial time becomes infinite. We introduce an accelerated scheme for
which the partial differential equations are of the hyperbolic type. They are
more primitive than the ful} system of magnetohydrodynamic equations, but
have many similar properties. In particular, the stability properties of equilib-
rium solutions are the same,

A computer code has been written to implement our method of finding
toroidal equilibrium. Questions of stability can be answered by examining the
asymptotic behavior of solutions for large artificial time. A run with adequate
resolution can be made in two hours on the CDC 6600 computer. The code is
sufficiently fast and accurate to handle three space variables and time with
limited computer capacity. For both equilibrium and stability calculations, it
is preferable to codes requiring the solution of the full magnetohydrodynamic
equations.

1.2 Discussion of Results

The computer code we have developed is most effective for the study of
equilibria with medium or high values of the plasma parameter

B = 2p/(2p + B%)

measuring the ratio of the fluid pressure p to the sum of the flnid pressure and
the magnetic pressure B2/2. It is most appropriate for examples where three-
dimensional geometry and nonlinear effects play a significant role. Because
the code takes into account three space variables as well as the artificial time,
there is a severe limitation on how small the mesh sizes can be taken. The
resulting truncation errors are not always easy to assess. In general, they take
the form of artificial viscosity terms whose effect is in some sense comparable
to that of a finite Larmor radius in plasma physics. Both effects tend to reduce
growth rates of physically unstable modes.

We have made extensive computer studies of high £ stellarators such as the
Isar T1-B at Garching and the Scyllac at the Los Alamos Scientific Laboratory.
The calculations enable one to assess the effects of nonlinearity and of a diffuse
pressure profile as well as of a vacuum field surrounding the plasma. Unstable
equilibria can be determined by examining streak plots of the motion of the
plasma corresponding to various helical distortions of the outer conducting
coils. Comparable computations have been performed by Barnes and Brackbill
[1] at Los Alamos using a three-dimensional code of the Harlow variety for the
full magnetohydrodynamic equations. When these computations were used to
redesign a set of coils for the final Scyllac experiment, they resulted in a
doubling of the containment time, raising it to 50 usec.
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1.2 Discussion of Results 3

A principal difficulty with high 8 stellarators has been the instability of the
gross m = 1, k = 0 mode, which shifts the whole plasma to the outer wall.
Here m and k indicate the wave numbers in the poloidal and toroidal di-
rections, respectively. Our calculations show that this mode can be stabilized
by introducing coils with triangular cross sections [8]. The stabilization
depends on the magnetic structure and flux constraints inside the plasma. It
enhances the more usual wall stabilization that occurs for low compression
ratios. A straight helically symmetric experiment to test this contention is in
the construction stage at the Max Planck Institute for Plasma Physics in
Garching,

The code is applicable to high § Tokamaks and to Tokamaks with super-
imposed helical windings. For axially symmetric geometry, it has been used to
show that values of § as high as 18 percent can be achieved stable tom = 1 by
introducing appropriate cross sections. To exhibit the nonlinear and three-
dimensional features of the method, we have calculated bifurcated equilibria
that are associated with nonlinear saturation of linearly unstable modes.



