
GTS User Manual For Finite Element Solver

gts team
Princeton Plasma Physics Lab

P.O. Box 451, Princeton, NJ 08543

January 29, 2018

Contents

1 First Of All: How To Get The Code . 1
2 Second Of All: How To Run The Code . 2
3 GTS Parameters . 4
4 GTS Mesh Grids and Safety Factor . 4
5 Poisson Equation and new gk solver . 5
6 Poisson Equation and new fem solver . 6
7 Finite Elements Method . 7

7.1 C0 linear elements . 10
7.2 C0 2nd order elements . 11
7.3 C1 5th order elements . 12
7.4 Find Derivatives and Laplacian . 14
7.5 New: Finding Derivatives in (R,Z) Coordinates 15
7.6 New: Finite Element In (R,Z) Coordinates . 15
7.7 Boundary Conditon . 17
7.8 Numerical Difficulty: periodic domain . 21

Appendices 23
1 Flux Coordiante Basics . 23
2 Numerical integration . 24

1 First Of All: How To Get The Code

GTS is under svn version control at

svn+ssh://svnsrv.pppl.gov/svn/gts

It has a trunk/GTS version and a branches/GTS-BRANCH-FROM-R77 version. The latter one brached
off from trunk at rel77 on June 30, 2017. A working copy can be checked out from both PPPL and
NERSC. But all need you to do

module load subverison

to get access. Here is a list of most often used commands:

1) svn list -R svn+ssh://svnsrv.pppl.gov/svn/gts

allows you to check what are in the svn repo.

2) svn co svn+ssh://svnsrv.pppl.gov/svn/gts/trunk/GTS
svn co svn+ssh://svnsrv.pppl.gov/svn/gts/branches/GTS-BRANCH-FROM-R77

allows you to check out a working copy from PPPL, and

svn co svn+ssh://username@svnsrv.pppl.gov/svn/gts/trunk/GTS
svn co svn+ssh://username@svnsrv.pppl.gov/svn/gts/branches/GTS-BRANCH-FROM-R77

allows you to do so from NERSC.

1

4) svn status -u

allows you to check your working copy status.

5) svn log

allows you to check commit history.

6) svn diff

allows you to compare the difference of your working copy against the repo.

7) svn update

allows you to update your working copy from repo’s newest changes.

8) svn ci GTS -m "your message"

allows you to commit your changes back into the repo (ex: from GTS parent directory).

Note: Before a commit, you must do "svn update".
After a commit, you must do "svn update" again
to avoid any future conflicts.

9) svn update
svn add filename/dirname
svn ci GTS -m "your message"
svn update

allows you to add a new file or directory back into GTS repo.

2 Second Of All: How To Run The Code

GTS runs on both EDISON and CORI HASWELL & KNL at NERSC. The first input parameter is

order

given in the input file with default name

INPUT.d

and sets the order of linear solver

solverobject%order=order
order = 0 original new_gk_solver solver
order = 1 new solver with linear finite element
order = 2 new solver with 2nd order finite element

where the solverobject represents globally declared solver0, solver1, solver dphi dt, or masssolver in

main.F90

When

order >= 1

the solverobject is created through

new_fem_solver

Otherwise,

2

new_gk_solver

is to be called as the default solver. order is also assigned to

solverobject%fem%oder=order

to define the order of corresponding finite elements. For masssolver, which finds the partial derivative
and Laplacian in (a, θ) flux coordinates, we always have

masssolver%oder=0
masssolver%fem%oder=1

Imposing boundary condition for masssolver is not necessary.
Each solverobject has its own set of mesh and elements so that different set or order of elements can

be built from solver to solver to give us great flexibility.
In new fem solver, a triangular mesh is generated through utility triangle, then finite elements are

created on this mesh, the solver matrix and multiply matrix are created accordingly, and finally the solve
matrix is modified by the type of matrix and boundary conditions. The code returns the successfully
created solverobject with its content stored in

solverobject%ksp

if there is no error. Not untill the linear system is actually to be solved, will the right hand side vector b
be modified according to section 7.7 in subroutine

petsc_solve

depending on the type of boundary condition. From

INPUT.d

the boundaries are given at

a0 : a_min is the flux surface closest to magnetic axis
a1 : a_max, the outmost flux surface

and can be prescribed with the following 4 types of boundary conditons

bc_type = 0 neumann boundary conditions at both a=a0 and a=a1
bc_type = 1 dirichlet boundary condition at a=a0,

neumann boundary conditions at a=a1
bc_type = 2 dirichlet boundary conditions at both a=a0 and a=a1
bc_type = 3 neumann boundary condition at a=a0,

dirichlet boundary conditions at a=a1

being passed as an argument to new fem solver. In the case of solver dphi dt, only homogeneous Dirichlet
boundary conditions will be imposed on boundaries at a = a0 and a = a1.

The last important parameter is

mat_type

and is passed to new fem solver in the same way as that bc type is argumented.

mat_type == 2: alpha=0
mat_type != 2: alpha!=0

where α(alpha) is the coefficients in equations eq (8) and eq (14)

3

3 GTS Parameters

tstep=0.020, tstep=0.010,
micell=60, micell=60,
mpsi=160, mpsi=160,
ipsi=85, ipsi=85,
mthetamax=1, mthetamax=1,
mzetamax=32, mzetamax=64,

on edison: npartdom=24, or multiple of 24 on cori: npartdom=32, or multiple of 32
ipsi=mpsi/2 ipsi=mpsi/2

4 GTS Mesh Grids and Safety Factor

GTS mesh setup has been described in reference [1]. Here we only record the part important to understand
finite element mesh. The GTS mesh is constructed using modified safety factor q̄(a), which is used
everywhere in the code. In the magnetic flux coordinates (a, θ, ζ), the field lines are straight and the
radial coordinate labels magnetic surface

a =

√
ψ

ψe

where ψ and ψe are the toroidal flux and its value on the plasma boundary, repectively. Therefore,

a0 ≤ a ≤ a1, 0 < a0 < a1 ≤ 1

a0 and a1 are input parameters explained in section (2).
In the poloidal direction, the total number of radial grids, each one representing one flux surface, is

given by the global parameter

mpsi

in

INPUT.d

and the θ grid with grid size ∆θ(a) is computed and saved in array

mtheta(0:mpsi)

which is uniform on each flux surface, while varying from surface to surface. It is determined so as to
make poloidal arc length ∆lθ near the midplane correlated with ρi in the loop

do i=0,mpsi
tdum= ...
mtheta(i)= ... tdum ...

enddo

in code

setup_v2.F90

and the total number of grid on each poloidal plane is evaluated and saved in parameter

mgrid=sum(mtheta+1)

Note that the mesh points are doubly counted when θ = 2π meets θ = 0 in mgrid caused by polidal 2π
periodicity. By excluding this repeated redundancy, the total number of grids on each poloidal plane is
computed by

neq=sum(mtheta)

4

where [1 : mtheta(0)] corresponds to boundary at a = a0, and [neq −mtheta(mpsi− 1) + 1 : neq] corre-
sponds to boundary at a = a1.

Once the 2D mesh is constructed on the ζ = 0 plane, a 3D mesh is constructed by starting from a
grid point, following each (approximate) field line which satisfies

q̄(a)θ − ζ = const

q̄(a) is slightly different from the usual safety factor q(a) and makes approximate come back to one of
the grid points on the ζ = 0 plane.

The number of toroidal grids, i.e., the number of poloidal planes,

mzetamax

is chosen as input parameter to give adequate resolution for the parallel structure of the modes.

5 Poisson Equation and new gk solver

new gk solver uses four-point averaging scheme to solve GK poisson eq.
Generally, with distribution function defined as a 7D function f(x,v, t) of real space x, velocity space

v, and time t, the density can be given as a 3D function of real space x

n(x, t) ≡
∫
f(x,v, t)d3v (1)

Similarly, we can defined the perturbed ion density and electron density

δni(x, t) =
∫
δfi(x,v, t)d3v

δne(x, t) =
∫
δfe(x,v, t)d3v

(2)

in real space. The quasi-neutrality becomes

δni(x, t) ' δne(x, t)

But in gyro-kinetic studies, the distribution function is defined at guiding center R, as a 6D function
fgc(R, µ, v‖, t) of guiding center position R, magnetic moment µ, the parallel velocity v‖, and time t.
Thus, the transformation between the particle position x and the guiding center position R should be
applied.
Briefly, we have the guiding center density

ngc(R, t) ≡
∫
fgc(R, µ,v‖, t)J dµdv‖

the potential φ

φ̄(R, µ) =
1

2π

∫
φ(x)δ(x−R− ρ)dxdΘ

φ̃(x) =
1

2π

∫
φ̄(R, µ)f0i(R, µ, v‖)δ(R− x + ρ)dRdµdv‖dΘ

the ion density δni
δn̄i(x) =

1
2π

∫
δfi(R, µ, v‖)δ(R− x + ρ)dRdµdv‖dΘ

the electron density δne

δne(x) =
1

2π

∫
δfe(R, µ, v‖)δ(R− x + ρ)dRdµdv‖dΘ =

1
2π

∫
δfe(x, µ, v‖)dµdv‖

where ρ is the gyro-radius vector, Θ is the gyro-phase, f0i is assumed to be Maxwellian for ions, and δfi
is the perturbed ion distribution function. Using

δni(x, t) = δn̄i(x, t) + δnpolarizationi = δn̄i(x, t)− n0
qi
Ti

(φ− φ̃)

5

and the quasi-neutrality condition, we obtain the most used poission equation

qi
Ti

(φ− φ̃) =
δn̄i(x, t)
n0

− δne(x, t)
n0

− (3)

Instead of solving total potential, one may solve for the turbulence contribution δφ and zonal flow
contribution 〈φ〉 given by

δφ = φ− 〈φ〉

The equation for δφ is derived by taking flux surface average of the total potential equation (3) and
subtracting this average from (3)

qi
Ti

(δφ− δφ̃) =
δn̄i − 〈δn̄i〉

n0
− δne − 〈δne〉

n0
(4)

An alternate method to solve for electorns is the so called δh method. In summary, one way is to
solve the total potential. (

1 +
Ti
Te

)
qi
Ti
φ− qi

Ti
φ̃ =

δn̄i
n0
− δnhe

n0
+
qi
Te
〈φ〉 (5)

and the other way is to solve equation for the turbulence potential(
1 +

Ti
Te

)
qi
Ti
δφ− qi

Ti
δφ̃ =

δn̄i − 〈δn̄i〉
n0

− δnhe − 〈δnhe 〉
n0

(6)

6 Poisson Equation and new fem solver

new fem solver uses finite elements to solve partial differential GK equation.
Instead of solving integral equation, we can derive and solve the elliptic pde for the total potential φ.

From the total potential eq (3), we obtain

−∇⊥ ·
(
qin0

BΩi
∇⊥Φ

)
= 〈δn̄i〉 − δne (7)

More generally, the following GK poisson equation is implemented in the code

αΦ + β∇⊥ ·
(∑

s

gs∇⊥Φ

)
= b (8)

where
α(a) =

(
e
e0

)(
mo

me

)
1
Te
, β(a) = − 1

neo(a) , gs(a) = Zs

B2nso

(
eo

es

)(
ms

mo

)
b =

∑
s
δn̄s

nso

(
nso

neo

)
− δnna

e

neo
+
(
e
eo

)(
mo

me

)
〈Φ〉
T̄e
, 〈Φ〉 =

H
ΦJ dϕdθH
J dϕdθ

δnnae is the non-adiabatic electron fluctuation density

s specifies the ion species. From now on we assume single ion specie s = 1 for simplicity. In flux coordinate
(a, θ, ζ), the second term in eq (8) becomes

∇⊥ · (gs∇⊥Φ)
= ∇ · (gs∇⊥Φ)
= 1
J

∂
∂a [J gs∇⊥Φ ·∇a] + 1

J
∂
∂θ [J gs∇⊥Φ ·∇θ] + 1

J
∂
∂ϕ [J gs∇⊥Φ ·∇ϕ]

(9)

where J represents the flux coordinate Jacobian [∇a×∇θ ·∇ϕ]−1. Please refer the Appendix for a
summary of formulae in curved coordinate systems. The first term in (9) can be written as

∇⊥Φ ·∇a =
[
∇Φ− (b̂ ·∇Φ)b̂

]
·∇a

' ∇Φ ·∇a
=

(
∂Φ
∂a∇a+ ∂Φ

∂θ ∇θ
)
·∇a = ∂Φ

∂a g
aa + ∂Φ

∂θ g
aθ

(10)

6

in an axis-symmetry system. Similarly, the second term in (9) can be written as

∇⊥Φ ·∇θ =
[
∇Φ− (b̂ ·∇Φ)b̂

]
·∇θ

' ∇Φ ·∇θ
=

(
∂Φ
∂a∇a+ ∂Φ

∂θ ∇θ
)
·∇θ = ∂Φ

∂a g
aθ + ∂Φ

∂θ g
θθ

(11)

and the third term in (9) becomes

1
J

∂
∂ϕ [J gs∇⊥Φ ·∇ϕ] = gs

∂
∂ϕ [∇⊥Φ ·∇ϕ] = gs

∂
∂ϕ

[
∇Φ− (b̂ ·∇ϕ)b̂

]
·∇ϕ

' gs
∂
∂ϕ [∇Φ ·∇ϕ] = gs

∂
∂ϕ

[
∂Φ
∂ϕ |∇ϕ|2

]
= gs|∇ϕ|2 ∂

∂ϕ
∂Φ
∂ϕ

= gs|∇ϕ|2 ∂
∂ϕ

[
− 1
q
∂Φ
∂θ

]
= − gs

q |∇ϕ|2 ∂
∂ϕ

∂Φ
∂θ

' gs

q2 |∇ϕ|2 ∂
2Φ
∂θ2 = gs

q2
∂2Φ
∂θ2 g

ϕϕ

(12)

Subtituting (10) (11) (12) into (8), the partial differential equation to be solved becomes

αΦ+
β
[

1
J

∂
∂aJ gs

(
∂Φ
∂a g

aa + ∂Φ
∂θ g

aθ
)

+ 1
J

∂
∂θJ gs

(
∂Φ
∂a g

aθ + ∂Φ
∂θ g

θθ
)

+ gs

q2
∂2Φ
∂θ2 g

ϕϕ
]

= b

(13)

Here gaa, gaθ, gθθ represent the coordinate metrics. This equation is solved in solver1.
If we decompose Φ into 2 parts

Φ = 〈Φ〉+ δΦ

Similarly to eq (8) the equation for δΦ will be

αδΦ + β∇⊥ ·
∑
s

gs∇⊥δΦ = b− β∇⊥ ·
∑
s

gs
d〈Φ〉
da

∇a (14)

with an additional term on the rhs. This addtional term can be extended as follows

−β∇⊥ ·
∑
s gs

d〈Φ〉
da ∇a = −β 1

J
∂
∂a

(
J gs d〈Φ〉da ∇a ·∇a

)
− β 1

J
∂
∂θ

(
J gs d〈Φ〉da ∇θ ·∇a

)
= −β 1

J
∂
∂a

(
J gs d〈Φ〉da g

aa
)
− β 1

J
∂
∂θ

(
J gs d〈Φ〉da g

aθ
)

Thus eq (14) has a similar form as eq (13) with above additional writing on the right hand side and is
solved in solver0.

solver dphi dt solves the following eq, which is similar to eq (8). The only differences come from
setting α = 0, the unknows ∂Φ

∂t to be solved, and rhs vector b.

β(a)∇⊥ ·
∑
s

gs∇⊥
∂Φ
∂t

= b, b =
∑
i

Zi
neo

∂δn̄i
∂t
− 1
neo

∂δnhe
∂t
− ∂

∂t

(
eδΦ
Te

)
(15)

The only boundary condition is Dirichlet type ∂Φ
∂t = 0 at a = a0 and a = a1.

7 Finite Elements Method

Finite elements are built upon the reference triangle:

(ξ1(0, 0), ξ2(1, 0), ξ3(0, 1))

which is mapped from real triangle:

(x1(a1, θ1),x2(a2, θ2),x3(a3, θ3))

using transformation Jacobian J

J =

∣∣∣∣∣ ∂a
∂ξ

∂θ
∂ξ

∂a
∂η

∂θ
∂η

∣∣∣∣∣ =
∂a

∂ξ

∂θ

∂η
− ∂a

∂η

∂θ

∂ξ
(16)

7

from real space x(a, θ) to reference space ξ(ξ, η)

ξ =⇒ x = x(ξ)

The reverse transformation J−1 is written as

J−1 =
∣∣∣∣ ∂ξ
∂a

∂η
∂a

∂ξ
∂θ

∂η
∂θ

∣∣∣∣ (17)

from reference space ξ(ξ, η) to real space x(a, θ)

x =⇒ ξ = ξ(x)

Three types of elements are available in the current version of GTS and are represented by Ni for the ith
base function.

Now we introuduce the variational formulation by multiplying quation (13) with base function Ni(i =
1, 2, · · ·) on its both side, integrating over each triangle, and then assembling them together

α
∫ ∫

ΦNidσ + β
∫ ∫ [

1
J

∂
∂aJ gs

(
∂Φ
∂a g

aa + ∂Φ
∂θ g

aθ
)]
Nidσ

+ β
∫ ∫ [

1
J

∂
∂θJ gs

(
∂Φ
∂a g

aθ + ∂Φ
∂θ g

θθ
)]
Nidσ

+ β
∫ ∫ [

gs

q2
∂2Φ
∂θ2 g

ϕϕ
]
Nidσ

=
∫ ∫

bNidσ, i = 1, 2, · · · .

(18)

dσ is the 2D differential area in real space. Using the approximated variable Φ and rhs vector b

Φ =
∑
j

ΦjNj , b =
∑
j

bjNj

the first term in the eq (18) is converted to

α
∫ ∫

ΦNidσ = α
∫ ∫ ∑

j ΦjNjNiJ dadθ
= α

∑
j

(∫ ∫
NjNiJ dadθ

)
Φj

= α
∑
j JjmijΦj

(19)

Similarly, we have for the right-hand-side b term∫ ∫
bNidσ =

∫ ∫ ∑
j bjNjNiJ dadθ

=
∑
j

(∫ ∫
NjNiJ dadθ

)
bj

=
∑
j Jjmijbj

(20)

Where J is the flux coordiante Jacobian evaluated at node j, and mij is the mass matrix relted to Ni

8

and Nj . Taking partial integration, the 2nd part on the left of eq (18) becomes

β
∫ ∫

1
J

∂
∂a

[
J gs

(
∂Φ
∂a g

aa + ∂Φ
∂θ g

aθ
)]
Nidσ+

β
∫ ∫

1
J

∂
∂θ

[
J gs

(
∂Φ
∂a g

aθ + ∂Φ
∂θ g

θθ
)]
Nidσ+

β
∫ ∫ [

gs

q2
∂2Φ
∂θ2 g

ϕϕ
]
Nidσ

= β
∫ ∫

1
J

∂
∂a

[
J gs

(
∂Φ
∂a g

aa + ∂Φ
∂θ g

aθ
)]
NiJ dadθ+

β
∫ ∫

1
J

∂
∂θ

[
J gs

(
∂Φ
∂a g

aθ + ∂Φ
∂θ g

θθ
)]
NiJ dadθ+

β
∫ ∫ [

gs

q2
∂2Φ
∂θ2 g

ϕϕ
]
NiJ dadθ

= −β
∫ ∫

∂Ni

∂a J gs
(
∂Φ
∂a g

aa + ∂Φ
∂θ g

aθ
)
dadθ

−β
∫ ∫

∂Ni

∂θ J gs
(
∂Φ
∂a g

aθ + ∂Φ
∂θ g

θθ
)
dadθ

−β
∫ ∫

∂
∂θ

(
J gs

q2 g
ϕϕNi

)
∂Φ
∂θ dadθ

' −β
∫ ∫

(J gsgaa) ∂Ni

∂a
∂Φ
∂a dadθ − β

∫ ∫ (
J gsgaθ

)
∂Ni

∂a
∂Φ
∂θ dadθ

−β
∫ ∫ (

J gsgaθ
)
∂Ni

∂θ
∂Φ
∂a dadθ − β

∫ ∫ (
J gsgθθ

)
∂Ni

∂θ
∂Φ
∂θ dadθ

−β
∫ ∫ (

J gs

q2 g
ϕϕ
)
∂Ni

∂θ
∂Φ
∂θ dadθ

= −β
∑
j Φj

∫ ∫
(J gsgaa) ∂Ni

∂a
∂Nj

∂a dadθ − β
∑
j Φj

∫ ∫ (
J gsgaθ

)
∂Ni

∂a
∂Nj

∂θ dadθ

−β
∑
j Φj

∫ ∫ (
J gsgaθ

)
∂Ni

∂θ
∂Nj

∂a dadθ − β
∑
j Φj

∫ ∫ (
J gsgθθ

)
∂Ni

∂θ
∂Nj

∂θ dadθ

−β
∑
j Φj

∫ ∫ (
J gs

q2 g
ϕϕ
)
∂Ni

∂θ
∂Nj

∂θ dadθ

= −β
∑
j (J gsgaa)ij srrijΦj − β

∑
j

(
J gsgaθ

)
ij
srzijΦj

−β
∑
j

(
J gsgaθ

)
ij
szrijΦj − β

∑
j

(
J gsgθθ

)
ij
szzijΦj

−β
∑
j

(
J gs

q2 g
ϕϕ
)
ij
szzijΦj

(21)

Here srrij , srzij , szrij , and szzij are the stiffness matrices corresponding to operators ∂Ni

∂a , ∂Ni

∂θ , and
∂Nj

∂a , ∂Nj

∂θ . Summing together, we obtain the following linear systems∑
j {αJjmij

−β (J gsgaa)ij srrij − 2β
(
J gsgaθ

)
ij
srzij − β

(
J gsgθθ

)
ij
szzij

−β
(
J gs

q2 g
ϕϕ
)
ij
szzij}Φj

=
∑
j Jjmijbj , i = 1, 2, · · ·

(22)

which is implemented in solver1.
A similar form for equation (14) in section 6 can be given easily. First the additional term on the rhs

is

−β
∫ ∫

1
J

∂
∂a

(
J gs d〈Φ〉da g

aa
)
Nidσ − β

∫ ∫
1
J

∂
∂θ

(
J gs d〈Φ〉da g

aθ
)
Nidσ

= −β
∫ ∫

1
J

∂
∂a

(
J gsgaa d〈Φ〉da

)
NiJ dadθ − β

∫ ∫
1
J

∂
∂θ

(
J gsgaθ d〈Φ〉da

)
NiJ dadθ

' −β
∑
j

∫ ∫ (
J gsgaa d〈Φ〉da

)
j

∂Nj

∂a Nidadθ − β
∑
j

∫ ∫ (
J gsgaθ d〈Φ〉da

)
j

∂Nj

∂θ Nidadθ[
= −β

∑
j srij

(
J gsgaa d〈Φ〉da

)
j
− β

∑
j szij

(
J gsgaθ d〈Φ〉da

)
j

]
(= Rmat

(
−βgsgaa d〈Φ〉da

)
+ Zmat

(
−βgsgaθ d〈Φ〉da

)
in (a, θ) coordinate, J is included in Rmat, Zmat

=
∑
j

(
−βgsgaa d〈Φ〉da

)
j

∫ ∫
1
J

∑
k EjkθkNiJ Jdξdη +

∑
j

(
−βgsgaθ d〈Φ〉da

)
j

∫ ∫ (
− 1
J

)∑
k EjkakNiJ Jdξdη

(= Rmat

(
−βgsgaa d〈Φ〉da

)
+ Zmat

(
−βgsgaθ d〈Φ〉da

)
=
∑
j

(
−βgsgaa d〈Φ〉da

)
j

∑
k θk

∫ ∫
EjkNiJ dξdη +

∑
j

(
−βgsgaθ d〈Φ〉da

)
j

∑
k ak

∫ ∫
EjkNiJ dξdη

=
∑
j

[(
−βgsgaa d〈Φ〉da

)
j

+
(
−βgsgaθ d〈Φ〉da

)
j

]∑
k (θk − ak)Pijk(i, j, k)

where srij and szij are the partial stiffness matrices corresponding to operators ∂Nj

∂a Ni and ∂Nj

∂θ Ni,
repspectively. The code can be found in subroutine add hh2bb. Thus we have the second type of linear

9

systems to be solved∑
j {αJjmij

−β (J gsgaa)ij srrij − 2β
(
J gsgaθ

)
ij
srzij − β

(
J gsgθθ

)
ij
szzij

−β
(
J gs

q2 g
ϕϕ
)
ij
szzij}Φj

[=
∑
j{mijJjbj − βsrij

(
J gsgaa d〈Φ〉da

)
j
− βszij

(
J gsgaθ d〈Φ〉da

)
j
}
]

=
∑
j{mijJjbj −

[(
−βgsgaa d〈Φ〉da

)
j

+
(
−βgsgaθ d〈Φ〉da

)
j

]∑
k (θk − ak)Pijk(i, j, k)}

(23)

which is implemented in solver0. This is the first option to evaluate this second term each time the solver
is called.

The second option, which is currently implemented in add hh2bb, follows from finding derivation
directly from subroutin find dxdadxdt in section (7.4). So the above equation becomes∑

j {αJjmij

−β (J gsgaa)ij srrij − 2β
(
J gsgaθ

)
ij
srzij − β

(
J gsgθθ

)
ij
szzij

−β
(
J gs

q2 g
ϕϕ
)
ij
szzij}Φj

=
∑
jmijJj

(
bj − β 1

J
∂
∂a

(
J gs d〈Φ〉da g

aa
)
j
− β 1

J
∂
∂θ

(
J gs d〈Φ〉da g

aθ
)
j

) (24)

7.1 C0 linear elements

This set of simplest elements is built upon the three nodes of reference triangle and has continuity across
the element edges:

N1 = 1− ξ − η
N2 = ξ
N3 = η

(25)

variable u(x) to be found in real space can be represent by

u(x) =
∑
j

Njuj (26)

where uj is the variable u(x) evaluated at triangle node j. With iso-parameter mapping from real triangle
to reference triangle, the coordinates can be written as

a =
∑
j Njaj

θ =
∑
j Njθj

(27)

Here j refers to the jth node of each triangle. Obvisously, the first order derivative of the base functions
are found to be

∂N1
∂ξ = −1 ∂N1

∂η = −1
∂N2
∂ξ = 1 ∂N2

∂η = 0
∂N3
∂ξ = 0 ∂N3

∂η = 1
(28)

So the Jacobian can be easily computed as

J =
∑
i ai

∂Ni

∂ξ

∑
j θj

∂Nj

∂η −
∑
i ai

∂Ni

∂η

∑
j θj

∂Nj

∂ξ

=
∑
i

∑
j aiθj

(
∂Ni

∂ξ
∂Nj

∂η −
∂Ni

∂η
∂Nj

∂ξ

)
=
∑
i

∑
j aiθjEij

The inverse Jacobian J−1 is computed below. We start from the following fact

J · J−1 =

[
∂a
∂ξ

∂θ
∂ξ

∂a
∂η

∂θ
∂η

]
·
[

∂ξ
∂a

∂η
∂a

∂ξ
∂θ

∂η
∂θ

]
=
[

1 0
0 1

]
= I

10

which gives the following two linear sysems. The first one is

J

[
∂ξ
∂x
∂ξ
∂y

]
=
[

1
0

]
and the second one is

J

[
∂η
∂x
∂η
∂y

]
=
[

0
1

]
Their solution gives us the four entries in the inverse Jacobian J

∂ξ
∂a = 1

J

[
1 ∂θ

∂ξ

0 ∂θ
∂η

]
= 1

J
∂θ
∂η ;

∂ξ
∂θ = 1

J

[
∂a
∂ξ 1
∂a
∂η 0

]
= − 1

J
∂a
∂η ;

∂η
∂a = 1

J

[
0 ∂θ

∂ξ

1 ∂θ
∂η

]
= − 1

J
∂θ
∂ξ ;

∂η
∂θ = 1

J

[
∂a
∂ξ 0
∂a
∂η 1

]
= 1

J
∂a
∂ξ ;

Thus the differentition of base functions in real space x(a, θ) can be obtained in the following way.
∂Ni

∂a = ∂Ni

∂ξ
∂ξ
∂a + ∂Ni

∂η
∂η
∂a = ∂Ni

∂ξ
1
J
∂θ
∂η + ∂Ni

∂η (− 1
J)∂θ∂ξ = 1

J (∂Ni

∂ξ
∂θ
∂η −

∂Ni

∂η
∂θ
∂ξ) = 1

JEi,jθj
∂Ni

∂θ = ∂Ni

∂ξ
∂ξ
∂θ + ∂Ni

∂η
∂η
∂θ = ∂Ni

∂ξ (− 1
J)∂a∂η + ∂Ni

∂η
1
J
∂a
∂ξ = − 1

J (∂Ni

∂ξ
∂a
∂η −

∂Ni

∂η
∂a
∂ξ) = − 1

JEi,jaj

Introducing nw GLL points and weights w(nw) on these points, all the elemental matrices on each triangle
can be written using numerical integration:

mij =
∫ ∫

NiNjdadθ =
∫ ∫

NiNjJdξdη =
n=nw∑
n=1

Ni(n)Nj(n)J(n)w(n)

srrij =
∫ ∫

∂Ni
∂a

∂Nj
∂a

dadθ =
∫ ∫

∂Ni
∂a

∂Nj
∂a

Jdξdη =
n=nw∑
n=1

∂Ni
∂a

(n)
∂Nj
∂a

(n)J(n)w(n)

srzij =
∫ ∫

∂Ni
∂a

∂Nj
∂θ

dadθ =
∫ ∫

∂Ni
∂a

∂Nj
∂θ

Jdξdη =
n=nw∑
n=1

∂Ni
∂a

(n)
∂Nj
∂θ

(n)J(n)w(n)

szzij =
∫ ∫

∂Ni
∂θ

∂Nj
∂θ

dadθ =
∫ ∫

∂Ni
∂θ

∂Nj
∂θ

Jdξdη =
n=nw∑
n=1

∂Ni
∂θ

(n)
∂Nj
∂θ

(n)J(n)w(n)

srij =
∫ ∫

Ni
∂Nj
∂a

dadθ =
∫ ∫

Ni
∂Nj
∂a

Jdξdη =
n=nw∑
n=1

Ni(n)
∂Nj
∂a

(n)J(n)w(n)

szij =
∫ ∫

Ni
∂Nj
∂θ

dadθ =
∫ ∫

Ni
∂Nj
∂θ

Jdξdη =
n=nw∑
n=1

Ni(n)
∂Nj
∂θ

(n)J(n)w(n)

7.2 C0 2nd order elements

This set of elements is built upon the linear elements given in the last section on 6 nodes (3 nodes and 3
edge nodes) of each triangle. All the formation of operators and matrices for the 2nd order elements are
exactly the same as section in 7.1. So we’ll just give the base functions and the corresponding first order
derivatives in the reference space here.

N1 = −λ(1− 2λ)
N2 = 4λξ
N3 = −ξ(1− 2ξ)
N4 = 4ξη
N5 = −η(1− 2η)
N6 = 4ηλ

(29)

11

where λ = 1 − ξ − η is the N1, ξ is the N2, and η is the N3 base functions in section 7.1, respectively.
The derivative corresponding to ξ and η are

∂N1
∂ξ = 1− 4λ ∂N1

∂η = 1− 4λ
∂N2
∂ξ = 4(λ− ξ) ∂N2

∂η = −4ξ
∂N3
∂ξ = −1 + 4ξ ∂N3

∂η = 0
∂N4
∂ξ = 4η ∂N4

∂η = 4ξ
∂N5
∂ξ = 0 ∂N5

∂η = −1 + 4η
∂N6
∂ξ = −4η ∂N6

∂η = 4(λ− η)

(30)

The iso-parameter mapping is used in tranforming from reference space to real space this set of elements.

7.3 C1 5th order elements

This set of elements is much more complicated than the two sets of elements introuduced in the previous
2 subsections. Here we have 18 base functions built upon the three nodes of each reference triangle, and
each node is related to 6 of them involving φ, ∂φ

∂a , ∂φ
∂θ , ∂2φ

∂a2 , ∂2φ
∂a∂θ , and ∂2φ

∂θ2 . These 18 base functions are

N1 = λ2(10λ− 15λ2 + 6λ3 + 30ξη(ξ + η))
N2 = ξλ2(3− 2λ− 3ξ2 + 6ξη)
N3 = ηλ2(3− 2λ− 3η2 + 6ξη)
N4 = 1

2ξ
2λ2(1− λ+ 2η)

N5 = ξ2ηλ2

N6 = 1
2η

2λ2(1 + 2ξ − η)

N7 = ξ2(10ξ−15ξ2 + 6ξ3 + 15η2λ)
N8 = 1

2ξ
2(−8ξ+14ξ2 − 6ξ3 − 15η2λ)

N9 = 1
2ξ

2η(6− 4ξ − 3η − 3η2 + 3ξη)
N10 = 1

4ξ
2(2ξ(1− ξ)2 + 5η2λ)

N11 = 1
2ξ

2η(−2 + 2ξ + η + η2 − ξλ)
N12 = 1

4ξ
2η2λ+ 1

2ξ
3η2

N13 = η2(10η − 15η2 + 6η3 + 15ξ2λ)
N14 = 1

2ξη
2(6− 3ξ − 4η − 3ξ3 + 3ξη)

N15 = 1
2η

2(−8η + 14η2 − 6η3 − 15ξ2λ)
N16 = 1

4ξ
2η2λ+ 1

2ξ
2η3)

N17 = 1
2ξη

2(−2 + ξ + 2η + ξ2 − ξη)
N18 = 1

4η
2(2η(1− η)2 + 5ξ2λ)

(31)

which preseve first order derivative continuity across the element edges. Their derivatives in the reference
space

∂Ni
∂ξ

,
∂Ni
∂η

, i = 1, 2, · · · , 18

are simple algebra and will be omitted here. Check the code for those who are interested in. The most
important numerical issue here is coordinate mapping. Instead of using iso-parameter mapping as we
did in section 7.1 and section 7.2, we use sub-parameter mapping given by C0 linear element in the
section 7.1, i.e.,

a =
∑
j N̄jaj

θ =
∑
j N̄jθj

(32)

to save cost and reduce complexity. Here the base function N̄i represents the set of elements given in
section 7.1 and we renam as N̄j to differentiate it from the C1 elements Ni given in this subsection. If
the precision needs to be increased, the N̄i can be replaced by the second order elements in secton 7.2.
Thus the transformation Jacobian won’t change from the previous subsections, i.e.,

J = ∂a
∂ξ

∂θ
∂η −

∂a
∂η

∂θ
∂ξ

=
∑
i ai

∂N̄i

∂ξ

∑
j θj

∂N̄j

∂η −
∑
i ai

∂N̄i

∂η

∑
j θj

∂N̄j

∂ξ

=
∑
i,j(

∂N̄i

∂ξ
∂N̄j

∂η −
∂N̄i

∂η
∂N̄j

∂ξ)aiθj
=

∑
i,j Ēi,jaiθj

12

Note the bar sign over the above opetator Ēij. We need to differentiate the base functions in real space
x(a, θ) as we did previously:

∂Ni

∂a = ∂Ni

∂ξ
∂ξ
∂a + ∂Ni

∂η
∂η
∂a = ∂Ni

∂ξ
1
J
∂y
∂η + ∂Ni

∂η (− 1
J)∂y∂ξ = 1

J (∂Ni

∂ξ

∑
j yj

∂N̄j

∂η −
∂Ni

∂η

∑
j yj

∂N̄j

∂ξ)
= 1

JEijθj
∂Ni

∂θ = ∂Ni

∂ξ
∂ξ
∂θ + ∂Ni

∂η
∂η
∂θ = ∂Ni

∂ξ (− 1
J)∂a∂η + ∂Ni

∂η
1
J
∂a
∂ξ = − 1

J (∂Ni

∂ξ

∑
j xj

∂N̄j

∂η −
∂Ni

∂η

∑
j xj

∂N̄j

∂ξ)
= − 1

JEijaj

Apparently, Eij here is a mixed product of derivatives of Ni and N̄j , thus is different from the Eij in
sections 7.1 and 7.2. However, the mass and stiffness matrices are computed in the same way as we did
in 7.1 with i, j = 1, · · · , 18. We rename them with a bar sign over each matrix just as we did for the Ēij
operator:

m̄ij , ¯srrij , ¯srzij , ¯szzij , s̄rij , s̄zij

Besides this, the follwoing transformation matrix is needed to convert the higher order derivative from
reference space to real space before the matrices are assembled. This is not needed in C0 elements when
only φ(x) itself is solved. If you insist to have one, then the transformation matrix in such case would
be a matrix with one entry T = [1].

First of all, a new variable U(x) in real space is formed as

U(x) =
18∑
j=1

NjUj , (33)

where

U(x) = (φ(x1),
∂φ

∂a
(x1),

∂φ

∂θ
(x1),

∂2φ

∂a2
(x1),

∂2φ

∂a∂θ
(x1),

∂2φ

∂θ2
(x1)︸ ︷︷ ︸

node1

,

φ(x2),
∂φ

∂a
(x2),

∂φ

∂θ
(x2),

∂2φ

∂a2
(x2),

∂2φ

∂a∂θ
(x2),

∂2φ

∂θ2
(x2)︸ ︷︷ ︸

node2

,

φ(x3),
∂φ

∂a
(x3),

∂φ

∂θ
(x3),

∂2φ

∂a2
(x3),

∂2φ

∂a∂θ
(x3),

∂2φ

∂θ2
(x3)︸ ︷︷ ︸

node3

)T

(34)

and Uj is U(x) evaluated at x = (a, θ) on each node. Our problem is converted to solve for U(x).
Once U(x) is solved, we not only have φ(x) but also we have its first order derivatives and second order
derivatives. In the reference space U(ξ) has a similar form

U(ξ) = (φ(ξ1),
∂φ

∂ξ
(ξ1),

∂φ

∂η
(ξ1),

∂2φ

∂ξ2
(ξ1),

∂2φ

∂ξ∂η
(ξ1),

∂2φ

∂η2
(ξ1)︸ ︷︷ ︸

node1

,

φ(ξ2),
∂φ

∂ξ
(ξ2),

∂φ

∂η
(ξ2),

∂2φ

∂ξ2
(ξ2),

∂2φ

∂ξ∂η
(ξ2),

∂2φ

∂η2
(ξ2)︸ ︷︷ ︸

node2

,

φ(ξ3),
∂φ

∂ξ
(ξ3),

∂φ

∂η
(ξ3),

∂2φ

∂ξ2
(ξ3),

∂2φ

∂ξ∂η
(ξ3),

∂2φ

∂η2
(ξ)3︸ ︷︷ ︸

node3

,)T

(35)

From U(x) to U(ξ), the transformation matrix at each node i is given as:

Ti =

∣∣∣∣∣∣∣∣∣∣∣∣

1
J11 J12

J21 J22

J2
11 2J11J12 J2

12

J11J21 J12J21 + J11J22 J12J22

J2
21 2J21J22 J2

22

∣∣∣∣∣∣∣∣∣∣∣∣

13

It is derived in the following steps.

∂u
∂ξ = ∂u

∂a
∂a
∂ξ + ∂u

∂θ
∂θ
∂ξ = ∂u

∂aJ11 + ∂u
∂θ J12

∂u
∂η = ∂u

∂a
∂a
∂η + ∂u

∂θ
∂θ
∂η = ∂u

∂aJ21 + ∂u
∂θ J22

∂2u
∂ξ2 = ∂

∂ξ (∂u∂aJ11 + ∂u
∂θ J12) = ∂

∂ξJ11
∂u
∂a + J11

∂
∂ξ

∂u
∂a + ∂

∂ξJ12
∂u
∂θ + J12

∂
∂ξ

∂u
∂θ

= ∂
∂ξJ11

∂u
∂a + ∂

∂ξJ12
∂u
∂θ + J11(∂∂a

∂u
∂a

∂a
∂ξ + ∂

∂θ
∂u
∂a

∂θ
∂ξ) + J12(∂∂a

∂u
∂θ

∂a
∂ξ + ∂

∂θ
∂u
∂θ

∂θ
∂ξ)

= ∂
∂ξJ11

∂u
∂a + ∂

∂ξJ12
∂u
∂θ + J2

11
∂2u
∂a2 + J11J12

∂2u
∂θ∂a + J12J11

∂2u
∂a∂θ + J2

12
∂2u
∂θ2

∂2u
∂ξ∂η = ∂

∂η (∂u∂aJ11 + ∂u
∂θ J12) = ∂

∂ηJ11
∂u
∂a + J11

∂
∂η

∂u
∂a + ∂

∂ηJ12
∂u
∂θ + J12

∂
∂η

∂u
∂θ

= ∂
∂ηJ11

∂u
∂a + ∂

∂ηJ12
∂u
∂θ + J11(∂∂a

∂u
∂a

∂a
∂η + ∂

∂θ
∂u
∂a

∂θ
∂η) + J12(∂∂a

∂u
∂θ

∂a
∂η + ∂

∂θ
∂u
∂θ

∂θ
∂η)

= ∂
∂ηJ11

∂u
∂a + ∂

∂ηJ12
∂u
∂θ + J11J21

∂2u
∂a2 + J11J22

∂2u
∂a∂θ + J12J21

∂2u
∂θ∂a + J12J22

∂2u
∂θ2

∂2u
∂η∂ξ = ∂

∂ξ (∂u∂aJ21 + ∂u
∂θ J22) = ∂

∂ξJ21
∂u
∂a + J21

∂
∂ξ

∂u
∂a + ∂

∂ξJ22
∂u
∂θ + J22

∂
∂ξ

∂u
∂θ

= ∂
∂ξJ21

∂u
∂a + ∂

∂ξJ22
∂u
∂θ + J21(∂∂a

∂u
∂a

∂a
∂ξ + ∂

∂θ
∂u
∂a

∂θ
∂ξ) + J22(∂∂a

∂u
∂θ

∂a
∂ξ + ∂

∂θ
∂u
∂θ

∂θ
∂ξ)

= ∂
∂ξJ21

∂u
∂a + ∂

∂ξJ22
∂u
∂θ + J21J11

∂2u
∂a2 + J21J12

∂2u
∂a∂θ + J22J11

∂2u
∂θ∂a + J22J12

∂2u
∂θ2

∂2u
∂η2 = ∂

∂η (∂u∂aJ21 + ∂u
∂θ J22) = ∂

∂ηJ21
∂u
∂a + J21

∂
∂η

∂u
∂a + ∂

∂ηJ22
∂u
∂θ + J22

∂
∂η

∂u
∂θ

= ∂
∂ηJ21

∂u
∂a + ∂

∂ηJ22
∂u
∂θ + J21(∂∂a

∂u
∂a

∂a
∂η + ∂

∂θ
∂u
∂a

∂θ
∂η) + J22(∂∂a

∂u
∂θ

∂a
∂η + ∂

∂θ
∂u
∂θ

∂θ
∂η)

= ∂
∂ηJ21

∂u
∂a + ∂

∂ηJ22
∂u
∂θ + J2

21
∂2u
∂a2 + J21J22

∂2u
∂a∂θ + J22J21

∂2u
∂θ∂a + J2

22
∂2u
∂θ2

(36)

Thus on each triangle

U(ξ) = TU(x), T =

 T1

T2

T3

T

mij = T T · m̄ij · T

srrij = T T · ¯srrij · T , srzij = T T · ¯srzij · T , szzij = T T · ¯szzij · T

srij = T T · s̄rij · T , szij = T T · s̄zij · T

7.4 Find Derivatives and Laplacian

Given a function f , we find derivatives in real space ∂f
∂a and ∂f

∂θ using the fact

∂f

∂a
=
∂f

∂a

Multipying it with base function Ni on both side of the above equaiton and integrating it over each
triangle element ∫ ∫

∂f

∂a
Nidσ =

∫ ∫
∂f

∂a
Nidσ

i.e., ∫ ∫
∂f

∂a
NiJ dadθ =

∫ ∫
∂f

∂a
NiJ dadθ,

in flux coordinate, we have∫ ∫ ∑
j

(
∂f

∂a

)
j

NjNiJ Jdξdη =
∫ ∫ ∑

j

fj
∂Nj
∂a

NiJ Jdξdη (37)

where

f =
∑
j

fjNj ,
∂f

∂a
=
∑
j

(
∂f

∂a

)
j

Nj

The derivative ∂f
∂a is found by solving the linear system∑

j

Jjmij

(
∂f

∂a

)
j

=
∑
j

Jjsrijfj

14

with the use of mij and srij matrices. Or in compact form

M

(
∂f

∂a

)
= Rmatf

The other way to compute the rhs vector of eq (37) makes use of operator Pijk∫ ∫ ∑
j fj

∂Nj

∂a NiJ Jdξdη =
∑
j fj

∫ ∫
1
J

∑
k EjkθkNiJ dadθ

=
∑
j fj

∑
k θk

∫ ∫
1
JEjkNiJ Jdaξdη

=
∑
j

∑
k fjθkPijkJ

(38)

In the same way, we can find its θ derivative by solving the linear system∫ ∫ ∑
j

(
∂f

∂θ

)
j

NjNiJ Jdξdη =
∫ ∫ ∑

j

fj
∂Nj
∂θ

NiJ Jdξdη (39)

i.e., ∑
j

Jjmij

(
∂f

∂θ

)
j

=
∑
j

Jjszijfj

In compact form

M

(
∂f

∂a

)
= Zmatf

or compute the rhs vetor using Pijk∫ ∫ ∑
j fj

∂Nj

∂θ NiJ Jdξdη = −
∑
j fj

∫ ∫
1
J

∑
k EjkakNiJ dadθ

= −
∑
j fj

∑
k ak

∫ ∫
1
JEjkNiJ Jdaξη

= −
∑
j

∑
k fjakPijkJ

(40)

The computing of (38) and (40) are implemented in subroutine find dxdadxdt. If you just need (38)
call subroutine find dxda; If you just need (40) call subroutine find dxdt. find dxdt calculates the
derivative along θ direction.

According to the term in the square braket right after β in eq (13):[
1
J

∂

∂a
J gs

(
∂Φ
∂a

gaa +
∂Φ
∂θ

gaθ
)

+
1
J

∂

∂θ
J gs

(
∂Φ
∂a

gaθ +
∂Φ
∂θ

gθθ
)

+
gs
q2

∂2Φ
∂θ2

gϕϕ
]

the Lapacian is implemented in subroutine find laplacian using find dxdadxdt.

7.5 New: Finding Derivatives in (R, Z) Coordinates

Considering the accuray, the drivatives found in last section 7.4 can be improved in the following ways.
This time the masssolver is construced in (R,Z) coordinate systems and find dxdadxdt, find dxda, and
find dxdt are called to calculate the derivative in (R,Z) coordinate. The the corresponding derivatives
in (a, θ) coordinate systems can be recovered by{

∂Φ
∂a = ∂Φ

∂R
∂R
∂a + ∂Φ

∂Z
∂Z
∂a

∂Φ
∂θ = ∂Φ

∂R
∂R
∂θ + ∂Φ

∂Z
∂Z
∂θ

(41)

7.6 New: Finite Element In (R, Z) Coordinates

Use transformation (41), eq (13) can be transformed into

term #1 = 1
J

∂
∂aJ gs

(
∂Φ
∂a g

aa + ∂Φ
∂θ g

aθ
)

= 1
J

∂
∂RJ gs

(
∂Φ
∂a g

aa + ∂Φ
∂θ g

aθ
)
∂R
∂a + 1

J
∂
∂ZJ gs

(
∂Φ
∂a g

aa + ∂Φ
∂θ g

aθ
)
∂Z
∂a

= 1
J

∂
∂RJ gs

[
(∂Φ
∂R

∂R
∂a + ∂Φ

∂Z
∂Z
∂a)gaa + (∂Φ

∂R
∂R
∂θ + ∂Φ

∂Z
∂Z
∂θ)gaθ

]
∂R
∂a +

1
J

∂
∂ZJ gs

[
(∂Φ
∂R

∂R
∂a + ∂Φ

∂Z
∂Z
∂a)gaa + (∂Φ

∂R
∂R
∂θ + ∂Φ

∂Z
∂Z
∂θ)gaθ

]
∂Z
∂a

(42)

15

term #2 = 1
J

∂
∂θJ gs

(
∂Φ
∂a g

aθ + ∂Φ
∂θ g

θθ
)

= 1
J

∂
∂RJ gs

(
∂Φ
∂a g

aθ + ∂Φ
∂θ g

θθ
)
∂R
∂θ + 1

J
∂
∂ZJ gs

(
∂Φ
∂a g

aθ + ∂Φ
∂θ g

θθ
)
∂Z
∂θ

= 1
J

∂
∂RJ gs

[
(∂Φ
∂R

∂R
∂a + ∂Φ

∂Z
∂Z
∂a)gaθ + (∂Φ

∂R
∂R
∂θ + ∂Φ

∂Z
∂Z
∂θ)gθθ)

]
∂R
∂θ +

1
J

∂
∂ZJ gs

[
(∂Φ
∂R

∂R
∂a + ∂Φ

∂Z
∂Z
∂a)gaθ + (∂Φ

∂R
∂R
∂θ + ∂Φ

∂Z
∂Z
∂θ)gθθ)

]
∂Z
∂θ

(43)

term #3 = gs

q2
∂2Φ
∂θ2 g

ϕϕ = gs

q2 g
ϕϕ ∂

∂θ
∂Φ
∂θ

= gs

q2 g
ϕϕ(∂

∂R
∂Φ
∂θ)∂R∂θ + gs

q2 g
ϕϕ(∂

∂Z
∂Φ
∂θ)∂Z∂θ

= gs

q2 g
ϕϕ[∂∂R (∂Φ

∂R
∂R
∂θ + ∂Φ

∂Z
∂Z
∂θ)]∂R∂θ + gs

q2 g
ϕϕ[∂∂Z (∂Φ

∂R
∂R
∂θ + ∂Φ

∂Z
∂Z
∂θ)]∂Z∂θ

(44)

With finite elements Ni, they become

term #1 = (1
J
∂R
∂aNi)

∂
∂RJ gs

[
(∂Nj

∂R
∂R
∂a + ∂Nj

∂Z
∂Z
∂a)gaa + (∂Nj

∂R
∂R
∂θ + ∂Nj

∂Z
∂Z
∂θ)gaθ

]
j+

(1
J
∂Z
∂aNi)

∂
∂ZJ gs

[
(∂Nj

∂R
∂R
∂a + ∂Nj

∂Z
∂Z
∂a)gaa + (∂Nj

∂R
∂R
∂θ + ∂Nj

∂Z
∂Z
∂θ)gaθ

]
j

= − ∂
∂R (1

J
∂R
∂aNi)J gs

[
(∂Nj

∂R
∂R
∂a + ∂Nj

∂Z
∂Z
∂a)gaa + (∂Nj

∂R
∂R
∂θ + ∂Nj

∂Z
∂Z
∂θ)gaθ

]
j+

− ∂
∂Z (1

J
∂Z
∂aNi)J gs

[
(∂Nj

∂R
∂R
∂a + ∂Nj

∂Z
∂Z
∂a)gaa + (∂Nj

∂R
∂R
∂θ + ∂Nj

∂Z
∂Z
∂θ)gaθ

]
j

∼ −∂Ni

∂R
∂Nj

∂R (gs ∂R∂a
∂R
∂a g

aa)j − ∂Ni

∂R
∂Nj

∂Z (gs ∂R∂a
∂Z
∂a g

aa)j − ∂Ni

∂R
∂Nj

∂R (gs ∂R∂a
∂R
∂θ g

aθ)j − ∂Ni

∂R
∂Nj

∂Z (gs ∂R∂a
∂Z
∂θ g

aθ)j

−∂Ni

∂Z
∂Nj

∂R (gs ∂Z∂a
∂R
∂a g

aa)j − ∂Ni

∂Z
∂Nj

∂Z (gs ∂Z∂a
∂Z
∂a g

aa)j − ∂Ni

∂Z
∂Nj

∂R (gs ∂Z∂a
∂R
∂θ g

aθ)j − ∂Ni

∂Z
∂Nj

∂Z (gs ∂Z∂a
∂Z
∂θ g

aθ)j

= −∂Ni

∂R
∂Nj

∂R

[
gs
∂R
∂a (∂R∂a g

aa + ∂R
∂θ g

aθ)j
]
− ∂Ni

∂R
∂Nj

∂Z

[
gs
∂R
∂a (∂Z∂a g

aa + ∂Z
∂θ g

aθ)j
]

−∂Ni

∂Z
∂Nj

∂R

[
gs
∂Z
∂a (∂R∂a g

aa + ∂R
∂θ g

aθ)j
]
− ∂Ni

∂Z
∂Nj

∂Z

[
gs
∂Z
∂a (∂Z∂a g

aa + ∂Z
∂θ g

aθ)j
]

≡ −∂Ni

∂R
∂Nj

∂R (coef rr)− ∂Ni

∂R
∂Nj

∂Z (coef rz)− ∂Ni

∂Z
∂Nj

∂R (coef zr)− ∂Ni

∂Z
∂Nj

∂Z (coef zz)
(45)

16

term #2 = (1
J
∂R
∂θ Ni)

∂
∂RJ gs

[
(∂Nj

∂R
∂R
∂a + ∂Nj

∂Z
∂Z
∂a)gaθ + (∂Nj

∂R
∂R
∂θ + ∂Nj

∂Z
∂Z
∂θ)gθθ)

]
+

(1
J
∂Z
∂θNi)

∂
∂ZJ gs

[
(∂Nj

∂R
∂R
∂a + ∂Nj

∂Z
∂Z
∂a)gaθ + (∂Nj

∂R
∂R
∂θ + ∂Nj

∂Z
∂Z
∂θ)gθθ)

]
= − ∂

∂R (1
J
∂R
∂θ Ni)J gs

[
(∂Nj

∂R
∂R
∂a + ∂Nj

∂Z
∂Z
∂a)gaθ + (∂Nj

∂R
∂R
∂θ + ∂Nj

∂Z
∂Z
∂θ)gθθ)

]
+

− ∂
∂Z (1

J
∂Z
∂θNi)J gs

[
(∂Nj

∂R
∂R
∂a + ∂Nj

∂Z
∂Z
∂a)gaθ + (∂Nj

∂R
∂R
∂θ + ∂Nj

∂Z
∂Z
∂θ)gθθ)

]
∼ −∂Ni

∂R
∂Nj

∂R (gs ∂R∂θ
∂R
∂a g

aθ)− ∂Ni

∂R
∂Nj

∂Z (gs ∂R∂θ
∂Z
∂a g

aθ)− ∂Ni

∂R
∂Nj

∂R (gs ∂R∂θ
∂R
∂θ g

θθ)− ∂Ni

∂R
∂Nj

∂Z (gs ∂R∂θ
∂Z
∂θ g

θθ)

−∂Ni

∂Z
∂Nj

∂R (gs ∂Z∂θ
∂R
∂a g

aθ)− ∂Ni

∂Z
∂Nj

∂Z (gs ∂Z∂θ
∂Z
∂a g

aθ)− ∂Ni

∂Z
∂Nj

∂R (gs ∂Z∂θ
∂R
∂θ g

θθ)− ∂Ni

∂Z
∂Nj

∂Z (gs ∂Z∂θ
∂Z
∂θ g

θθ)

= −∂Ni

∂R
∂Nj

∂R

[
gs
∂R
∂θ (∂R∂a g

aθ + ∂R
∂θ g

θθ)
]
− ∂Ni

∂R
∂Nj

∂Z

[
gs
∂R
∂θ (∂Z∂a g

aθ + ∂Z
∂θ g

θθ)
]

−∂Ni

∂Z
∂Nj

∂R

[
gs
∂Z
∂θ (∂R∂a g

aθ + ∂R
∂θ g

θθ)
]
− ∂Ni

∂Z
∂Nj

∂Z

[
gs
∂Z
∂θ (∂Z∂a)gaθ + ∂Z

∂θ g
θθ)
]

≡ −∂Ni

∂R
∂Nj

∂R coef rr− ∂Ni

∂R
∂Nj

∂Z coef rz− ∂Ni

∂Z
∂Nj

∂R coef zr− ∂Ni

∂Z
∂Nj

∂Z coef zz
(46)

term #3 = gs

q2 g
ϕϕ[∂∂R (∂Φ

∂R
∂R
∂θ + ∂Φ

∂Z
∂Z
∂θ)]∂R∂θ + gs

q2 g
ϕϕ[∂∂Z (∂Φ

∂R
∂R
∂θ + ∂Φ

∂Z
∂Z
∂θ)]∂Z∂θ

= (gs

q2
∂R
∂θ g

ϕϕNi)[∂∂R (∂Nj

∂R
∂R
∂θ + ∂Nj

∂Z
∂Z
∂θ)] + (gs

q2
∂Z
∂θ g

ϕϕNi)[∂∂Z (∂Nj

∂R
∂R
∂θ + ∂Nj

∂Z
∂Z
∂θ)]

= − ∂
∂R (gs

q2
∂R
∂θ g

ϕϕNi)(
∂Nj

∂R
∂R
∂θ + ∂Nj

∂Z
∂Z
∂θ)− ∂

∂Z (gs

q2
∂Z
∂θ g

ϕϕNi)(
∂Nj

∂R
∂R
∂θ + ∂Nj

∂Z
∂Z
∂θ)

∼ −∂Ni

∂R (gs

q2
∂R
∂θ g

ϕϕ)(∂Nj

∂R
∂R
∂θ + ∂Nj

∂Z
∂Z
∂θ)− ∂Ni

∂Z (gs

q2
∂Z
∂θ g

ϕϕ)(∂Nj

∂R
∂R
∂θ + ∂Nj

∂Z
∂Z
∂θ)

= −∂Ni

∂R
∂Nj

∂R (gs

q2 g
ϕϕ ∂R

∂θ
∂R
∂θ)− ∂Ni

∂R
∂Nj

∂Z (gs

q2 g
ϕϕ ∂R

∂θ
∂Z
∂θ)− ∂Ni

∂Z
∂Nj

∂R (gs

q2 g
ϕϕ ∂Z

∂θ
∂R
∂θ)− ∂Ni

∂Z
∂Nj

∂Z (gs

q2 g
ϕϕ ∂Z

∂θ
∂Z
∂θ)

= −∂Ni

∂R
∂Nj

∂R coef rr− ∂Ni

∂R
∂Nj

∂Z coef rz− ∂Ni

∂Z
∂Nj

∂R coef zr− ∂Ni

∂Z
∂Nj

∂Z coef zz
(47)

7.7 Boundary Conditon

The solution domain is bounded by two magnetic flux surfaces. One is the innermost flux surface a = a0
and the other one is the outermost flux surface a = a1. Dirichlet boundary condition and Neumann
boundary condition can be specified on either one of these two surfaces. We use a set of array to store
the index of the grid points which sit on boudnaries.

The Dirichlet boundary condition can be imposed by zeroing the row of the matrix with indices on
the boundaries and then set their diagonal entries to 1. The rhs vector will be changed acoordingly by
setting those elements to the real solution. Here is a simple example. Assumping there are 5 grid points
and they are numbered as 1, 2, 3, 4, 5. The linear system is given as

a1 a2 a3 a4 a5
b1 b2 b3 b4 b5
c1 c2 c3 c4 c5
d1 d2 d3 d4 d5
e1 e2 e3 e4 e5

x1
x2
x3
x4
x5

 =

b1
b2
b3
b4
b5

Suppose the boundary points are at 2 and 5, and the Dirichlet bounnday condition is given on these
points, i.e.

x2 = v1
x5 = v2

17

Then the matrix and rhs are modified in the following way
a1 a2 a3 a4 a5

1
c1 c2 c3 c4 c5
d1 d2 d3 d4 d5

1

x1
x2
x3
x4
x5

 =

b1
v2
b3
v4
v5

By solving the above linear system, we immediately get x2 = v1 and x5 = v2. This is unsymmetrical
zeroing. We can do symmetric zeroing to keep the modified matrix symmetrical so that better linear
solver can be applied. It can be explained by continuing zero the corresponding columns, i.e., column 2
and 5, of the row-zeroing modified matrix

a1 a2− a2 a3 a4 a5− a5
1

c1 c2− c2 c3 c4 c5− c5
d1 d2− d2 d3 d4 d5− d5

1

x1
x2
x3
x4
x5

 =

b1− a2v1− a5v2
v2
b3− c2v1− c5v2
v4− d2v1− d5v2
v5

i.e.,

a1 a3 a4
1

c1 c3 c4
d1 d3 d4

1

x1
x2
x3
x4
x5

 =

b1− a2v1− a5v2
v2
b3− c2v1− c5v2
v4− d2v1− d5v2
v5

Note that the rhs vector b was modified acoordingly.
If Neumann boundary condition is imposed, the correction is much more complicated. To make the
explanation easier, we write the problem as follows

∆u = f
∂u
∂n = g

and the numerical linear system as
Ax = b

We start from the variational form∫ ∫
Ni∇⊥ · gs∇⊥ΦJ dadθ =

∫
J gsNin ·∇⊥Φdl −

∫ ∫
∇⊥(JNi) · gs∇⊥Φdadθ

Suppose on the boundary we have
n ·∇⊥Φ = γ(a, θ)

n is the boundary normal directon pointing away from the solution domain. In the current version of
GTS, this directon is equivalent to ∇a

|∇a|
. Thus,

∇a

|∇a|
·∇Φ = γ(a, θ)

Using the previous expression for ∇Φ, it becomes

∇a

|∇a|
· (∂Φ
∂a

∇a+
∂Φ
∂θ

∇θ) = γ(a, θ)

i.e.,
1
|∇a|

(
gaa

∂Φ
∂a

+ gaθ
∂Φ
∂θ

)
= γ(a, θ)

Therefore∫
J gsNin ·∇⊥dl

=
∫
J gsNi 1

|∇a|
(gaa ∂Φ

∂a + gaθ ∂Φ
∂θ)dl

=
∫
e1
J gsNi 1

|∇a|
(gaa ∂Φ

∂a + gaθ ∂Φ
∂θ)dl +

∫
e2
J gsNi 1

|∇a|
(gaa ∂Φ

∂a + gaθ ∂Φ
∂θ)dl +

∫
e3
J gsNi 1

|∇a|
(gaa ∂Φ

∂a + gaθ ∂Φ
∂θ)dl

≡ I1 + I2 + I3
=
∫
J gsNi 1

|∇a|
γ(a, θ)dl

18

where I1, I2, and I3 are the linear integral along one of the 3 edges of each triangle, respectively. For
simplicity, we use the C0 linear elements Ni.

(1) if the boundary falls on edge 1,

N1 = 1− ξ
N2 = ξ
N3 = 0
a =

∑
i aiNi = a1(1− ξ) + a2ξ = a1 + ā21ξ

θ =
∑
i θiNi = θ1(1− ξ) + θ2ξ = θ1 + θ̄21ξ

dl2 = da2 + dθ2 = ā2
21dξ

2 + θ̄2
21dξ

2 = (ā2
21 + θ̄2

21)dξ2 = l221dξ
2

The following terms are used to modify the right hand side

rhs(v1) = rhs(v1)−
∫ 1

0
N1(ξ, 0)J gs 1

|∇a|
γl21dξ

= rhs(v1)−
∫ 1

0
(1− ξ)J gs 1

|∇a|
γl21dξ

' rhs(v1)− 1
2J gs

1

|∇a|
γl21

rhs(v2) = rhs(v2)−
∫ 1

0
N2(ξ, 0)J gs 1

|∇a|
γl21dξ

= rhs(v2)−
∫ 1

0
(ξ)J gs 1

|∇a|
γl21dξ

' rhs(v2)− 1
2J gs

1

|∇a|
γl21

rhs(v3) = rhs(v3)−
∫ 1

0
N3(ξ, 0)J gs 1

|∇a|
γl21dξ

= rhs(v3)−
∫ 1

0
(0)J gs 1

|∇a|
γl21dξ

= rhs(v3)

(2) if the boundary falls on edge 2,

N1 = 1− ξ − η = 0
N1 = 1− η
N2 = η
a =

∑
i aiNi = a2(1− η) + a3η = a2 + ā32ξ

θ =
∑
i θiNi = θ2(1− η) + θ3η = θ2 + θ̄32ξ

dl2 = da2 + dθ2 = ā2
32dη

2 + θ̄2
32dη

2 = (ā2
32 + θ̄2

32)dη2 = l232dη
2

The following terms are used to modify the right hand side

rhs(v1) = rhs(v1)−
∫ 1

0
N1(ξ, η)J gs 1

|∇a|
γl32dη

= rhs(v1)−
∫ 1

0
(0)J gs 1

|∇a|
γl32dη

= rhs(v1)
rhs(v2) = rhs(v2)−

∫ 1

0
N2(ξ, η)J gs 1

|∇a|
γl32dη

= rhs(v2)−
∫ 1

0
(1− η)J gs 1

|∇a|
γl32dη

' rhs(v2)− 1
2J gs

1

|∇a|
γl32

rhs(v3) = rhs(v3)−
∫ 1

0
N3(ξ, η)J gs 1

|∇a|
γl32dη

= rhs(v3)−
∫ 1

0
(η)J gs 1

|∇a|
γl32dη

' rhs(v3)− 1
2J gs

1

|∇a|
γl32

(3) if the boundary falls on edge 3,

N1 = 1− η
N2 = 0
N3 = ηa =

∑
i aiNi = a1(1− η) + a3η = a1 + ā13η

θ =
∑
i θiNi = θ1(1− η) + θ3η = θ1 + θ̄31η

dl2 = da2 + dθ2 = ā2
13dξ

2 + θ̄2
13dη

2 = (ā2
13 + θ̄2

13)dη2 = l213dη
2

19

The following terms are used to modify the right hand side

rhs(v1) = rhs(v1)−
∫ 1

0
N1(0, η)J gs 1

|∇a|
γ(−l13)dη

= rhs(v1)−
∫ 1

0
(1− η)J gs 1

|∇a|
γ(−l13)dη

' rhs(v1)− 1
2J gs

1

|∇a|
γ(−l13)

rhs(v2) = rhs(v2)−
∫ 1

0
N2(0, η)J gs 1

|∇a|
γ(−l13)dη

= rhs(v2)−
∫ 1

0
(0)J gs 1

|∇a|
γ(−l13)dη

= rhs(v2)
rhs(v3) = rhs(v3)−

∫ 1

0
N3(0, η)J gs 1

|∇a|
γ(−l13)dη

= rhs(v3)−
∫ 1

0
(η)J gs 1

|∇a|
γ(−l13)dη

' rhs(v3)− 1
2J gs

1

|∇a|
γ(−l13)

These are implemented in subroutine neumbcfix.
The stiffness matrix A is singular when neumann bc is specified. Thus the nullspace of this matrix is

not empty, and in almost every case the constant vector e = {1} belongs to this space, i.e.,

nullspace=span{e}

To check if this is true, we just need to confirm the following the matrix-vector product of A and e

A.e = 0

is zero. Then We need to check the solvability by computing the vector product of rhs vector b and the
constant vector e

b.e

If dot product is zero, then there is a solution; if not, the following projection is needed

b = b - e (b.e)/(e.e)

to ensure that there exists a solution in the linear system we are solving. If a solution exists, its unique
though only up to an additive constant; in this case theres also a requirement on γ. This follows from∫ ∫

∆udσ =
∫ ∫

fdσ. With partial integration,
∫
∂u
∂ndl =

∫ ∫
fdσ, i.e.,

∫
γdl =

∫ ∫
fdσ.

Here is the implementation after the above steps

/* declare nullspace and create nullspace object*/
MatNullSpace nullsp;
PetscBool isNull;

call MatNullSpaceCreate(partd_comm, PETSC_TRUE, 0, PETSC_NULL_OBJECT, nullsp, ierr);
call MatNullSpaceTest(nullsp, Amat, isNull,ierr)
call KSPSetNullSpace(ksp, nullsp,ierr)
call KSPGetPC(ksp,prec,ierr)
call PCFactorSetShiftType(prec,MAT_SHIFT_POSITIVE_DEFINITE,ierr)
call PCFactorSetShiftAmount(prec,1.e-10,ierr)
call MatNullSpaceDestroy(nullsp,ierr)

After it is solved, the solution vector x needs to be projected away from the nullspace by

x = x - e (x.e)/(e.e)

in the end.
When matrix is not big, we can use the following technique. First an n-dimension space can be

spanned by
Rn = spane, q2, q3, · · · , qn

where q2, q3, · · · , qn are n− 1 linear independent vectors and they forming the following transformation
matrix

Q = [e, q2, q3, · · · , qn]

20

Apply this transformation to our linear system Ax = b, we get

(QTAQ)(QTx) = QT b

(QTAQ) =
[

0 0
0 B

]
, (QTB) =

[
0
d

]
, (QTx) =

[
0
z

]
So instead of solving Ax = b, we solve Bz = d. x is recovered from

x = Q

[
w
z

]
where w is arbitrary constant. If we take w = 0, we get the least square solution.

The example of dealing with Neumann bc is given in subroutine testsolve by setting whichone = 4
and bc type = 0.

u = a2,
∂u

∂a
= 2a,

∂u

∂t
= 0

∂u

∂n
= n ·∇u =

∇a

|∇a|
·∇u =

∇a

|∇a|
· ∂u
∂a

∇a =
1
|∇a|

∂u

∂a
gaa ≡ γ(a)

7.8 Numerical Difficulty: periodic domain

The numerical difficulty comes from the 2π peroidicity in θ direction when numerical integration is
performed. The value of 2π must be subtracted from θ whenever the elements has one or two nodes
crossing the θ = 0, 2π line. This is implemented in subroutine fixtheta.

21

Bibliography

[1] W. X. Wang et al, Gyro-kinetic silumation of global turbulent transport properties in tokamak experi-
ments, Physcs of Plasma, vol 13, 2006

[2] W. D. D’haeseleer, Flux coordinates and magnetic field structure, 1991.

[3] G. E. Karniadakis and S. J. Sherwin, Spectral/hp Element Methods for CFD, 1999.

22

1 Flux Coordiante Basics

We review some important facts here about curved coordiante system that will be needed in the the
derivation of pde equations and in the implementation of finite elements in the flux coordiantes. We list
them here so we will not mention them when we use these facts.

As a start, we introduce the coordinate surface ui = const. ∇ui is perpendicular to the ith surface.
i = 1, 2, 3.

The coordinate curve ui is defined by the intersection of 2 surfaces uj = const, uk = const. On this
curve, duj = duk = 0, j 6= k, j 6= i, k 6= i.

R = R(u1, u2, u3), ei = ∇ui, ei =
∂R

∂ui
ei · ei = δij

ei =
ej × ek

ei · ej × ek
=

1
J
ej × ek

ei =
R

ui
=

ej × ek

ei · ej × ek
= J ej × ek

Di = D · ei, Dj = D · ej ,D =
∑
i

Die
i =

∑
j

Djej

dui are contravariants. ∇Φ is a covariant vector:

∇Φ =
∂Φ
∂ui

∇ui =
∂Φ
∂ui

ei

1). gradient

∇Φ = ∇ui
∂Φ
∂ui

=
∂Φ
∂ui

ei

2). divergence

∇ ·D =
1
J

∂

∂ui
(
JDi

)
=

1
J

∂

∂ui
(
JD · ei

)
=

1
J

∂

∂ui
(
JDje

j · ei
)

=
1
J

∂

∂ui
(
JDjg

ji
)

3). laplacian

∆D =
1
J

∂

∂ui
(
J∇D · ei

)
=

1
J

∂

∂ui

(
J ∂D
∂uj

ej · ei
)

=
1
J

∂

∂ui

(
J ∂D
∂uj

gji
)

4). Jacobian

J =
∂Φ
∂u1
· ∂Φ
∂u2
× ∂Φ
∂u3

5). metrics
gaa = ∇a ·∇a, gaθ = ∇a ·∇θ, gθθ = ∇θ ·∇θ,

6). the differential arc length

dl(along uj) ≡ dl(i) = ‖dR‖ =
√
dR(i) · dR(i)

while
dR(i) =

∂R

∂u1
du1 +

∂R

∂u2
du2 +

∂R

∂u3
du3 = eidu

i = J ‖∇uj ×∇uj‖dui

7). the differential area element

dS(in ui ≡ const) ≡ dS(i)
= ‖dR(j)×R(k)‖
= ‖∂R∂uj × ∂R

∂uk ‖dujduk
= ‖ej × ek‖dujduk
= J ‖ei‖dujduk
= J ‖∇ui‖dujduk

23

2 Numerical integration

The basic problem considered by numerical integration is to compute a definite integral∫
u(ξ)dξ (48)

There are many methods of approximating the integral with arbitrary precision. A method which yields
a small error for a small number of evaluations is usually considered superior. Gauss Quadrature is one
of such algorithms.

The integrand is evaluated at a finite set of points called integration points and a weighted sum of
these values is used to approximate the integral. The integration points and weights depend on the
specific method used and the accuracy required from the approximation.

In Gauss quadrature technique, the integrand is represented as a Lagrange polynomial using Q points
ξi

u(ξ) =
Q−1∑
i=0

u(ξi)hi(ξ) + ε(u)

If we substitute it into the integral (48), we obtain a representation of the integral as a summation∫
u(ξ)dξ =

Q−1∑
i=0

wiu(ξi) +R(u)

where
wi =

∫ 1

−1
hi(ξ)dξ

R(u) =
∫ 1

−1
ε(u)dξ

Since u(ξ) is represented by a polynomial of order Q− 1, we would expect the above relation to be exact
if u(ξ) is a polynomial of order Q − 1 or less. This would be true if the points are equispaced in the
interval. There is, however, a better choice of abscissae which permits exact integration of polynomials
of higher order than Q− 1.

If we ensure that the quadrature formula is exact for polynomials of order k at least, then the formula
is also exact for the next (k − 1) order of polynomials.

24

