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Abstract. Understanding the mechanism of anomalous transport in magnetically confined plasmas

requires the use of sophisticated diagnostic tools for the measurement of turbulent fluctuations. The

article describes the results of an extensive numerical study of microwave reflectometry in tokamaks

showing that the two dimensional structure of plasma fluctuations near the cut-off can be obtained

from the phase of reflected waves. This requires the latter to be collected by an optical system making

an image of the reflecting layer onto an array of microwave receivers, and the amplitude of fluctuations

to be below a threshold that is set by the spectrum of poloidal wavenumbers. The conceptual design of

an experimental scheme for the global visualization of turbulent fluctuations in tokamaks is described.

1. Introduction

The direct impact of plasma confinement on the
feasibility of an economical fusion reactor makes
understanding the mechanism of anomalous trans-
port in magnetically confined plasmas one of the
great challenges of fusion research.

Both theory and experiments suggest that plasma
transport in tokamaks exceeds the neoclassical pre-
dictions because of the existence of a short scale tur-
bulence causing an enhancement in the diffusion of
particles, energy and momentum across the magnetic
field lines [1]. However, such an explanation is not
completely satisfactory since it is based neither on a
self-consistent theory of plasma turbulence nor on a
comprehensive set of measurements. Indeed, the role
played by turbulence in the transport of magnetically
confined plasmas is still an outstanding issue.

Because of the overwhelming difficulty in devel-
oping a theory of plasma turbulence and in perform-
ing exhaustive measurements of short scale fluctua-
tions, numerical simulations are beginning to play a
dominant role in the prediction and interpretation
of tokamak experiments. However, this is also not
satisfactory since, given the enormous complexity of
the problem, any simulation of turbulence must be
driven by a direct experimental observation of tur-
bulent fluctuations. A case in point is that of clas-
sical fluids [2], where many advances in the theory
of hydrodynamic turbulence were stimulated by the
visualization of the turbulent flow with a variety of
optical techniques. Unfortunately, none of these diag-
nostic methods can be used for the measurement
of fluctuations in low density and high temperature
plasmas, such as those in tokamaks.

In this article, a method for the global visu-
alization of turbulent fluctuations in tokamaks is
described. The outline is as follows. In Section 2,
a discussion is given of the difficulties and lim-
itations in the use of standard microwave reflec-
tometry. Section 3 contains results from a series
of numerical simulations, and their implications
for the use of reflectometry in tokamaks are dis-
cussed in Section 4. Section 5 describes the con-
ceptual design of a possible apparatus for the
global visualization of turbulent fluctuations in toka-
maks. Finally, the conclusions are presented in
Section 6.

2. Microwave reflectometry

The method described in this article is based on
microwave reflectometry [3] — a radar technique for
the detection of plasma fluctuations from the reflec-
tion of microwaves by a plasma cut-off. Because of a
high sensitivity to plasma fluctuations, this method
has found extensive use in tokamaks for the detec-
tion of turbulence. However, as we shall see in the
following, very often the high sensitivity makes the
extraction of any quantitative information from the
measured signals very difficult as well.

The interpretation of reflectometry is relatively
simple in a 1-D geometry, where a plane stratified
plasma permittivity ε = ε0(r) + ε̃(r) (with fluctua-
tion component ε̃(r) � 1) is probed by a wave prop-
agating in the r direction. Under these conditions, it
is easy to show that when the radial wavenumber of
fluctuations satisfies the equation kr < k0/(k0Lε)1/3

(where Lε = (dε0/dr)−1
r=rc

is the scale length of the
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Figure 1. In-phase (I) and quadrature (Q) components of a TFTR reflectometer sig-

nal in a 200 µs window (left), and probability density distribution of the signal amplitude

ρ =
p

I2 + Q2 (right); open circles are the Rayleigh distribution (2ρ exp[−ρ2]).

plasma permittivity at the cut-off r = rc, and k0 is
the free-space wavenumber of the probing beam), the
fluctuating component of the signal phase is given by
the approximation of geometric optics [3]

φ̃ = k0

∫ rc

0

ε̃(r)√
ε0(r)

dr. (1)

By taking |kr| > 1/Lε, since we are interested in
short scale fluctuations, and ε0(r) ≈ (rc − r)/Lε,
since most of the contribution to φ̃ comes from a nar-
row region near the cut-off, from Eq. (1) we obtain
[3]

Γφ(kr) = πM
k2
0Ln

|kr| Γn(kr) (2)

where Ln = n/(dn/dr)r=rc is the scale length of the
electron density n, M ≡ (n∂ε/∂n)r=rc (≈ 1 for the
ordinary mode and ≈ 2 for the extraordinary mode),
Γφ(kr) is the power spectrum of φ̃ (considered as a
function of rc) and Γn(kr) is the power spectrum of
the relative plasma density fluctuation ñ/n.

In conclusion, for a 1-D turbulence, the power
spectrum of density fluctuations (Γn(kr)) can be
obtained from the power spectrum of the signal phase
(Γφ(kr)). The latter can be measured by perform-
ing radial correlation measurements using several
probing waves with closely spaced cut-off layers.

The use of reflectometry becomes considerably
more difficult in plasmas with multidimensional tur-
bulent fluctuations. Unfortunately, this is just the
case of interest in magnetically confined plasmas,
such as in tokamaks, where turbulent fluctuations

vary in both radial and poloidal directions. The dif-
ficulty stems from the fact that, when the plasma
permittivity fluctuates perpendicularly to the direc-
tion of propagation of the probing wave, the spec-
tral components of the backward field propagate
along different directions. This may result in a com-
plicated interference pattern on the detector plane,
from which it is very difficult to extract any infor-
mation on the fluctuations under investigation. This
phenomenon is illustrated in Fig. 1, which shows the
in-phase (I) and the quadrature (Q) components of
a TFTR reflectometer signal together with the den-
sity distribution of the amplitude ρ =

√
I2 + Q2 [4].

The fluctuations in the amplitude of the measured
signal are the result of large 2-D plasma density fluc-
tuations that transform the signal components into
two independent normal random variables with zero
mean, as demonstrated in Fig. 1 by the random walk
of the complex amplitude (left) and the Rayleigh dis-
tribution of ρ (right). Consequently, this is a case
where the measured signals cannot be used for infer-
ring the properties of plasma fluctuations.

To better understand and quantify this phe-
nomenon, we have performed a series of numeri-
cal simulations of reflectometry in plasmas with 2-D
fluctuations [5]. Here we will present only the results
that are of interest for the subject of this article.

3. Numerical simulations

In a system of orthogonal co-ordinates (x, r), we
assume that a plane stratified plasma density (n(r))
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is perturbed by a field of 2-D fluctuations (ñ(x, r))
with spectral distribution

ñ(x, r)
n(r)

=
M∑

p=1

M∑
q=1

∆pq cos(pκrr) cos(qκxx + ϕpq) (3)

consisting of M × M discrete components with
wavenumbers pκr and qκx (κr and κx are constants),
random phases ϕpq and amplitudes

∆2
pq ∝ p exp[−(pκr/∆kr)2 − (qκx/∆kx)2] (4)

where ∆kr = κrM/2 and ∆kx = κxM/2. Through-
out this article we will use the value M = 20.

The plasma is confined to the region r < rb, and
the probing wave is launched in the r direction from
the free-space region r > rb. For facilitating the com-
parison with experimental results, the density n(r) is
taken similar to the electron density distribution on
the equatorial plane of a typical TFTR discharge.
Finally, the probing wave has a frequency of 75 GHz
and the ordinary mode of propagation with the elec-
tric field perpendicular to the x axis.

The wave amplitude (E(x, r)) is expressed as the
sum of 2N + 1 independent solutions of the wave
equation

E(x, r) =
N∑

n=−N

cnEn(x, r) (5)

where N � M (to be determined). The functions En

are cast in the form

En(x, r) =
N∑

m=−N

fmn(r)eimκx x (6)

where fmn(r) are solutions of the system of 2N + 1
ordinary differential equations

d2fmn

dr2
+ k2

0(ε0 − α2
m)fmn + k2

0(ε0 − 1)

×
M∑

p=1

M∑
q=1

[
∆pq

2
cos(pκrr)(f(m−q)neiϕpq

+ f(m+q)ne−iϕpq)
]

= 0 (7)

(m = −N, −N + 1,...,N)

with ε0 = 1 − (ωp/ω)2 the unperturbed permittiv-
ity, ωp = (4πnee

2/me)1/2 the plasma frequency and
αm = mκx/k0. These equations, which are obtained
by inserting Eqs (3) and (6) into the wave equa-
tion and performing a Fourier expansion in x, can
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Figure 2. Spectra of backward waves in free space as

a function of kx for fluctuations with ∆kx = 0.5 cm−1,

∆kr = 1 cm−1 and σn = 2.5× 10−3 (a), σn = 5.0× 10−3

(b), σn = 1.0 × 10−2 (c). Calculations were done with

N = 80.

be solved with the Runge–Kutta method. The coef-
ficients cn in Eq. (5) are obtained by imposing on the
wave amplitude in free space the form

E(x, r) = e−ik0r +
N∑

n=−N

Anei[nκxx+(k2
0−n2κ2

x)1/2r]

(8)

where the first term on the right hand side is the
launched wave, while the second represents the field
of reflected waves (in the following referred to as the
backward field Eb). In the region r < rb, Eb repre-
sents a virtual field that an observer in free space
could measure by mapping the plasma region onto
an array of detectors using an optical system.

Finally, the integer N must be chosen large
enough to make the results significantly unchanged
by any increase in its value. This condition, to be ver-
ified a posteriori, allows the closure of the system of
differential equations (7) by setting to zero all terms
f(m±q)n with |m± q| > N .

Shown in Fig. 2 are the amplitudes |An| of
reflected waves as a function of kx = nκx for fluc-
tuations with ∆kx = 0.5 cm−1 and ∆kr = 1 cm−1.
The three cases shown in Fig. 2 differ only in the
value of the total density fluctuation (defined as the
volume average σn = 〈ñ2/n2〉1/2), which is equal
to 2.5 × 10−3, 5.0 × 10−3 and 1.0 × 10−2, respec-
tively. These results show that a rise in the level of
plasma fluctuations causes a spectral broadening of
the reflected waves, and a decrease in the amplitude
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Figure 3. Modulus of the backward field |Eb| (left) and fluctuating phase φ̃ (right)

at the plasma boundary (r = rb) for the three cases of Fig. 2. The dashed line is the

phase of 1-D geometric optics (φGO).

(A0) of the wave propagating along the direction of
the specular reflection (kx = 0).

For the three cases of Fig. 2, the modulus (ρ =
|Eb|) and the phase deviation (φ̃) from the mean of
the backward field at the plasma boundary (r = rb)
are shown in Fig. 3. The large fluctuations in ρ indi-
cate that the backward field is far from being a plane
wave. Also shown in Fig. 3 is the phase obtained
from Eq. (1) neglecting the bending of rays, which
in the following we will indicate with φGO and refer
to as the phase of 1-D geometric optics. These results
show that φ̃ is significantly different from φGO , and
that the discrepancy grows with the level of plasma
fluctuations.

In Fig. 3, similarly to the experimental case in
Fig. 1, large variations in ρ are caused by the inter-
ference of reflected waves. The question, then, is
whether the fluctuations in ρ are smaller at other
radial locations. According to the random phase
screen model of reflectometry [6], where the primary
effect of plasma fluctuations is assumed to be a phase
modulation of the probing wave near r ≈ rc, these
fluctuations should be very small near the cut-off
region.
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Figure 4. Isometric 3-D plot of the field amplitude

ρ(x, r) for case (a) of Fig. 2; the probing wave is launched

from the free-space region r > rb.

The isometric 3-D plot of Fig. 4 shows that a
region with small variations in ρ(x, r) indeed exists.
However, such a region is located at a considerable
distance from the cut-off. As a measure of the fluc-
tuation in the amplitude of the backward field, we
define the variance σ2

ρ(r) = 〈(ρ − 〈ρ〉r)2〉r, where
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Figure 6. Fluctuating phases φG (solid line) and φGO

(dashed line) for the cases of Fig. 2.

〈...〉r indicates the average at a constant value of r.
Figure 5 shows that in all three cases of Fig. 2 the
absolute minimum of σρ occurs at the same radius
r = rG.

It is also interesting to note that for r � rG, σρ

approaches the variance given by the Rayleigh dis-
tribution of a Gaussian noise, indicating that, as in
Fig. 1, the real and the imaginary components of
the backward field become two independent normal
random variables with zero mean.

Shown in Fig. 6 is the value of φGO and the phase
deviation from the mean of the backward field at
r = rG (in the following referred to as the phase
φG). The excellent agreement between φGO and φG

is tantamount to a reduction of the problem of
2-D fluctuations to that of 1-D fluctuations. In both
cases, Eq. (2) provides a link between the plasma

RR

ε

rr r

i εi+1

θi+1

i+1 i -1 i+1i i

θi

Figure 7. Geometry used for deriving Eq. (9).

fluctuations and a measurable phase — the phase of
measured signals for 1-D fluctuations and the phase
φG for 2-D fluctuations.

These properties of the plane r = rG, i.e. where σρ

is minimum and φG ≈ φGO , would make the back-
ward field appear to an observer in free space as com-
ing from a virtual location behind the cut-off. This is
caused by the spatial variation of ε0 that produces a
bending towards the r axis in the trajectory of waves
with kx 6= 0. To quantify this phenomenon, let us
consider the geometry of Fig. 7, where the plasma
is divided into N plane slabs with thickness δ and
uniform permittivity εi. For a ray with wavenumber
kx, we can easily derive the difference equation

li+1 − li = li
tan(θi)

tan(θi+1)
− li + δ (9)

where Ri and θi are the radius and the angle of
intersection with the r axis of the ray tangent, and
li = ri −Ri.

From this and the fact that kx is constant, we
obtain

li+1 − li
δ

≈ li√
εi − α

√
εi+1 − α−√εi − α

δ
+ 1 (10)

where α = (kx/k0)2. The limit N → ∞ turns
Eq. (10) into the differential equation

d

dr

l(r)√
ε0(r) − α

=
1√

ε0(r) − α
(11)

which, apart from terms of order αLε, gives

l(r = rb) ≈
∫ rb

rc

1√
ε0(r)

dr. (12)

Since this expression does not depend on kx, all rays
starting from the same point would appear in free
space as coming from the radial position

r = rG ≈ rb −
∫ rb

rc

1√
ε0(r)

dr. (13)
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It is interesting to note that the integral in this equa-
tion is the group delay multiplied by the speed of
light. The results in Fig. 8, where σρ(r) is displayed
for three density profiles with identical cut-offs, show
that Eq. (13) agrees with the results of the numerical
simulations.

In deriving Eq. (13) we have neglected terms of
order Lε(kx/k0)2, which is the order of magnitude
of the displacement from the cut-off of the turning
points of backward waves. Since these terms depend
on kx, their inclusion would make rG depend on kx

as well. This explains why the minimum value of σρ

increases with both σn (as in Fig. 5) and Lε (as in
Fig. 8), since the range of kx of the backward waves
increases in both cases. As we shall see in Section 4,
this sets the conditions for the applicability of the
method proposed in this article.

The results described so far represent an enor-
mous reduction in the difficulty of obtaining the
spectrum of turbulent fluctuations from reflectom-
etry data. However, as explained in the introduc-
tion, we are looking for an experimental technique
capable of providing a direct visualization of turbu-
lent fluctuations. Thus the crucial issue is the sim-
ilarity of the phase φG to the local value of den-
sity fluctuations near the cut-off. This is illustrated
in Fig. 9, again for the three cases of Fig. 2, show-
ing the phase φG and the normalized plasma den-
sity fluctuation n∗ ≡ (σφ/σn)(ñ/n) (where the nor-
malizing coefficient σφ/σn = (π3/2k2

0Ln/∆kr)1/2 is
obtained from Eqs (2)–(4)). The radius in Fig. 9 is
r = rc + 0.8 cm, which is the value giving the best
agreement between n∗ and φG. This radial position is

-2
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Figure 9. Phase φG (dashed line) and normalized den-

sity fluctuation n∗ at r = rc + 0.8 cm (solid line) for the

three cases of Fig. 2.

shifted from rc by an amount of order (k0Lε)1/3/k0,
i.e. it is located where the amplitude of waves with
|kx| � k0 (approximately an Airy function) is the
largest. The small discrepancy between φG and n∗

can be explained by the different structure of these
two quantities, the former being an integral function
of the latter. This is also what causes the different
dependence on kr of the two power spectra in Eq. (2).

The similarity between n∗ and φG degrades very
quickly moving away from the radial position giv-
ing the best agreement. This is illustrated in Fig. 10,
which shows φG and n∗ at three radial locations for
plasma fluctuations similar to those of case (b) in
Fig. 2, but with a larger value of ∆kr = 2.0 cm−1
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(corresponding to a radial correlation length of
∼1 cm). Note that the radial position where the dis-
crepancy between φG and n∗ is minimum is again at
r = rc +0.8 cm, where, in spite of the shorter scale of
fluctuations, it is almost identical to that displayed
in Fig. 9. Thus the conclusion is that the measure-
ment of the phase φG can provide the local value of
the plasma density fluctuation near the cut-off.

4. Discussion

The results in the previous section can be sum-
marized by saying that the field of reflected waves
arises near the cut-off from the phase modulation of
the probing wave, with a magnitude given by 1-D
geometric optics, i.e. neglecting the effects of fluc-
tuations on ray trajectories. Because of the distor-
tion caused by the non-uniformity of the average
plasma permittivity (ε0), the backward field appears
to arrive from a distant point behind the cut-off
(r = rG), where it can be approximated by a plane
wave E = exp[iφ̃(x)]. To interpret these results, let
us consider the simple model where the phase φ̃

is a normal random variable with mean 〈φ̃〉 = 0,
variance σ2

φ ≡ 〈φ̃2〉 and autocorrelation γφ(ξ) ≡
〈φ̃1(x)φ̃2(x + ξ)〉/σ2

φ. For the first two moments of
the backward field we obtain 〈E〉 = exp(−σ2

φ/2)
and 〈E1E

∗
2 〉 = exp[−σ2

φ(1− γφ)], respectively, which
are both decreasing functions of σφ. Consequently,
in agreement with results in Fig. 2, as the level
of fluctuations increases, the amplitude of the wave

propagating along the direction of specular reflection
(i.e. 〈E〉) decreases, and the spectrum of reflected
waves (i.e. the Fourier transform of 〈E1E

∗
2 〉) broad-

ens. In particular, for σφ � 1, taking γφ(ξ) =
exp[−(ξ/δ)2] and expanding to the second order in
ξ, we obtain 〈E1E

∗
2 〉 ≈ exp[−(σφξ/δ)2]. Thus, away

from the cut-off, if ∆kx is the spectral width of
fluctuations and σφ∆kx � k0, the reflected waves
will be distributed over the range of radial wave-
numbers δkr ≈ σ2

φ∆k2
x/2k0. Consequently, at a

distance from r = rG larger than the diffraction dis-
tance D = 1/δkr, the interference of waves will pro-
duce (as in Figs 1 and 3) a complicated field pattern
with large amplitude variations and random phases.
This suggests that the amplitude ρ of the measured
signal must follow the distribution derived by Rice [7]
for the case of a signal containing a sinusoidal coher-
ent component and a Gaussian noise. It is given by

P (ρ) =
ρ

σ2
e−(ρ2+ρ2

0)/2σ2
I0

(ρρ0

σ2

)
(14)

where I0 is the modified Bessel function of order zero,
σ2 is the variance of both the real and the imaginary
parts of the Gaussian noise, and ρ0 is the ampli-
tude of the sinusoidal signal. Since in our numeri-
cal simulations the probing wave has unit amplitude,
σ2 = (1−ρ2

0)/2 and ρ2
0 ≈ exp(−σ2

φ). For σφ � 1, the
Rice distribution becomes the Rayleigh distribution,
in agreement with the experimental results of Fig. 1.
A statistical analysis of several numerical realizations
of Eb indicates that Eq. (14) is in very good agree-
ment with our numerical results [5].

Obviously, this simple model of reflectometry
must fail for large fluctuations. In fact, we can easily
derive two conditions for its applicability. The first is
given by the condition for the validity of 1-D geomet-
ric optics, which is ∆kr < k0/(k0Lε)1/3 [3]. The sec-
ond condition is imposed by the fact that, since each
spectral component of the backward field originates
near the corresponding reflecting point, our model of
reflectometry must fail when these turning points are
distributed over a distance ∆rc that is comparable
to the radial scale length of fluctuations (∆k−1

r ), i.e.
when ∆kr∆rc > 1. Since for large fluctuations (i.e.
σ2

φ � 1) ∆rc/Lε ≈ σ2
φ∆k2

x/k2
0 , a second condition for

the validity of our model is σ2
φ < k2

0/Lε∆kr∆k2
x [3].

For the ordinary mode of propagation, by expressing
σ2

φ in terms of σ2
n (using Eqs (2)–(4)), this condition

can be written in the form

σ2
n <

1
π3/2L2

n∆k2
x

. (15)

For the plasma parameters of Fig. 2 (where Ln =
50 cm), Eq. (15) gives σn < 1.7 × 10−2, which
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explains why we obtained φG ≈ φGO in all three
cases of Fig. 6, where σn ≤ 1 × 10−2. Finally,
in the opposite limit of small fluctuations, where
σ2

φ � 1 and ∆rc/Lε ≈ ∆k2
x/k2

0, Eq. (15) becomes
∆k2

x∆kr < k2
0/Ln.

Figure 11 shows the result of doubling the value
of σn (= 2.0 × 10−2) for case (c) of Fig. 6, making
the amplitude of fluctuations larger than the limit
imposed by Eq. (15). As expected, this results in
a large discrepancy between φG and the phase of
geometric optics φGO .

Another way of violating Eq. (15) is to increase
the spectral width of plasma fluctuations. This is
illustrated in Fig. 12, which shows the effect of dou-
bling the value of ∆kx for case (c) of Fig. 6. Since
this pushes the level of plasma fluctuations above
the limit imposed by Eq. (15) (σn = 0.8× 10−2), the
result is again a large discrepancy between φG and
φGO .

These results show how quickly φG departs from
φGO when Eq. (15) is violated. In tokamaks, both
theory and experiments indicate that the amplitude
of short scale density fluctuations obeys the mixing
length criterion σn < 1/krLn [1]. Hence Eq. (15) is
automatically satisfied when ∆kr > π3/4∆kx.

5. Imaging reflectometry

The numerical results of the previous sections
demonstrate that the spatial structure of density
fluctuations near the cut-off could be obtained from
the measurement of φ̃G. Such a measurement could
be done by collecting the reflected waves with a wide
aperture antenna, and by imaging the cut-off onto
the detector plane taking the effect of the average
plasma permittivity into account. This is the first
novelty of the scheme proposed in this article. A
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Figure 12. Fluctuating phases φG (solid line) and φGO

(dashed line) for ∆kx = 1 cm−1 and other parameters as

for case (c) in Fig. 6.

second novelty is the simultaneous sampling of a
large portion of a plasma magnetic surface, which
requires the use of large microwave beams and of 2-D
arrays of detectors. The latter are technically feasi-
ble, as shown in Ref. [8], which describes a microwave
camera using a focal plane array (4 rows of 64 ele-
ments) for the measurement of the human body emis-
sion at 94 GHz with a resolution of 1 K and a frame
rate of 30 Hz. Another example can be found in
Ref. [9], which describes the measurement of the elec-
tron cyclotron emission in the TEXT tokamak using
a wideband 20 channel Schottky diode array in the
frequency range 90–110 GHz. More recently, simi-
lar measurements have been repeated in the RTP
tokamak [10] using a 16 channel array in the range
100–140 GHz.

Figure 13 illustrates the conceptual design of a
microwave imaging reflectometer for the visualiza-
tion of plasma density fluctuations in tokamaks. In
this scheme, as in the numerical simulations, the rays
of the probing wave impinge perpendicularly upon
the cut-off surface. This is obtained by using two
cylindrical lenses (L1 and L2) with different focal
points. For the case considered in Fig. 13, where
the probing wave has a frequency of 120 GHz and
the X mode of propagation, the focal point of L2

is at R = 2.3 m, while obviously that of L1 is at
R = 0. Since the former depends on the wave fre-
quency, the position of L2 must be adjustable. Out-
side the plasma, then, the backward wave is reflected
by the semitransparent reflector M, and an image
of the cut-off is formed by the spherical lens L3

onto the plane P, where the field is measured with
a 2-D array of microwave receivers. In Fig. 13, it
is also shown schematically how a local oscillator
(LO) could be injected into the array from the back.
Finally, by probing the plasma using simultaneously
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Figure 13. Conceptual design of an imaging reflectome-

ter for a JET-like tokamak; L1 and L2 are cylindrical

lenses, L3 is a spherical lens, M is a semitransparent mir-

ror and P is the detector plane. The shaded area on the

bottom represents a local oscillator wave illuminating the

detector array from the back.

multiple waves with closely spaced cut-offs, the pro-
posed method could provide the full 3-D structure of
plasma fluctuations.

In Fig. 13, the function of the cylindrical lenses
L1 and L2 is to tailor the wave front of the
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Figure 14. Ray trajectories (from a ray tracing code) of the probing wave in the absence

of fluctuations when the focal length of L1 in Fig. 13 is equal to that of L2. Dashed lines

represent the forward rays and solid lines the reflected rays on poloidal (left) and equatorial

(right) planes.

probing wave to the shape of the cut-off surface,
which is what allows the mapping of the cut-off sur-
face onto the detector plane by the spherical lens L3.
Figures 14 and 15 show the results of replacing L1

and L2 with a single spherical lens optimizing the
ray trajectories on either the poloidal (Fig. 14) or
the toroidal (Fig. 15) plane. In both cases, L3 would
not be able to create an image of the reflecting cut-off
onto the detector plane. Thus the use of L1 and L2

is to combine the poloidal ray trajectories in Fig. 14
with the equatorial trajectories in Fig. 15. Finally, to
avoid the spurious effects of internal reflections inside
refractive optical components, the optical scheme of
Fig. 13 should be implemented using curved metallic
mirrors.

The proposed method can use either the ordinary
or the extraordinary mode of wave propagation, but
the latter must be preferred because of the better
spatial resolution that derives from the larger prob-
ing frequency of the extraordinary mode. The spatial
resolution is given by δ ≈ 2(λ0/D)(rb − rG), where
λ0 = 2π/k0 and D is the diameter of the probing
beam. For the case of Fig. 13, we get δ ≈ 1 cm with
D = 50 cm.

The proposed method could employ the same het-
erodyne detection techniques of standard reflectom-
etry [3, 11], as illustrated by Fig. 16, which shows
an example taken from Ref. [3] for a tunable sys-
tem. In this block diagram, two local oscillators with
frequencies f1 and f2 are used for producing a main
signal (one for each array element) and a reference
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Figure 15. Same as in Fig. 13 when the focal length of L2 in Fig. 13 is equal to that of L1.

signal at the intermediate frequencies f2 − f1 + fr

and f2 − f1, respectively (where fr is the frequency
of plasma fluctuations). As in standard reflectom-
etry, this would then be followed by a final low
frequency stage [3, 11] producing for each array ele-
ment an in-phase and a quadrature component at
frequency fr.

Compared with standard reflectometry, the major
difficulty in using heterodyne detection is repre-
sented by the amount of local oscillator (LO1) power
that is needed for driving the Schottky diode array.
For instance, a 10 × 10 array would need at least
100 mW of LO power. Given the present availabil-
ity of solid state millimetre wave sources, such as
Gunn or IMPACT oscillators, this limits the use of
imaging reflectometry to frequencies not much larger
than 100 GHz. On the other hand, because of the
very efficient way of collecting the reflected wave
— a defining characteristic of imaging reflectome-
try — the probing wave does not need to be much
larger than in standard reflectometry, where often
the power losses inside the plasma are larger than
20 dB.

Another unique feature of the proposed method
is the need for the acquisition and storage of a large
number of signals. For example, for an imaging reflec-
tometer with a 10×10 array and plasma fluctuations
with a maximum frequency fr = 0.5–1 MHz, it is
necessary to acquire and store (2–4)× 108 data s−1.
Fortunately, a complete characterization of the fast
phenomena under investigation requires only a frac-
tion of a second (≤10 ms), which reduces the size of
the problem considerably.

f2 -f1

M3

f2 -f1+fr

transmitterf0

f 0 +fr f2

f 0LO1

M1

M2

f1

signal reference

f 0 =fa ÷fb

Detector
Array

LO2

bandpass
filter

bandpass
filter

Figure 16. Block diagram of a tunable imaging reflec-

tometer. LOn: local oscillator; Mn: mixer. Each ele-

ment of the detector array has a separate intermediate

frequency stage comprising M3.

6. Conclusion

In conclusion, the numerical results described
in this article have clarified the role played by 2-
D plasma fluctuations in microwave reflectometry.
They indicate that, if the amplitude of fluctuations
is below a threshold that is set by their spectrum
of poloidal wavenumbers (Eq. (15)), it is possible to
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obtain the local value of the density fluctuation by
imaging the cut-off onto a detector plane. Indeed,
this must be considered the only method for obtain-
ing a localized measurement of 2-D plasma fluctu-
ations with microwave reflectometry, regardless of
whether the measurement is a single or a multipoint
measurement.

The method of imaging reflectometry proposed
in this article must be considered a first attempt
at developing techniques for the global visualiza-
tion of turbulent and coherent structures in toka-
mak plasmas. Undoubtedly its practical implemen-
tation presents serious difficulties, such as the need
for large machine ports and 2-D arrays of microwave
detectors. Nevertheless, this technique has the poten-
tial for providing new and important information
on the spatial structure of turbulent fluctuations in
tokamaks.
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