The Future of Fusion

Contents

- Energy Needs in 21st Century
- Lessons learned from past
- Possible approaches for Accelerating Fusion Energy
- Summary

Energy Needs over the World

Energy Needs in China

UK:

JP:

Anticipation of Energy Demand in China before 2050

Renewable and nuclear energy were promoted significantly in China for reducing CO2 of 40% in 2020. Fukushima Nuclear accident make a strong impact to nuclear energy More urgent need for fusion energy.

Can Fusion Play a Role in This Century

How?

5 % of total primary energy Fusion power plant in 2100

China : 150 India : 150 EU : 50 US : 50 Japan : 30 KOREA: 20 Total: 450 GW plant

When?

- 2019-2038 ITER
- 2030-2050 DEMO
- 2040-2060 Proto-Type
- **2050--** First Power Plant
- 2060: 5-7 GW power plant
- 2070: 35
- **2080** 70
- 2090 150
- 2100 300 (x3=450!)

With Courtesy from D. Meade

Projected Fusion-Reactor Development Program Wash-1267, July 1973

- TFTR construction began in1976, 4.5 years
- JET 1977, 5.5 y
- JT-60 1978,4.5
- T-15 1979,

Single party efforts

ITER 1986, start 1986-1998, 4 parties 1999-2005, 7 parties 2005-2007, site decision, 2007.10.24, ITER-IO 2007.10-2019.11, construction

GAP Analysis: > 50 years to power Plant

	Issue	Approved	ITER	IFMIF	DEMO	DEMO	Power
		devices		ļ	Phase 1	Phase 2	Plant
Plasma performance	Disruption avoidance	2	3		R	R	R
	Steady-state operation	2	3		ſ	ſ	ſ
	Divertor performance	1	3		R	R	R
	Burning plasma (Q>10)		3		R	R	R
	Start up	1	- 3		R	R	R
	Power plant plasma performance	1	- 3		ſ	R	R
Enabling technologies	Superconducting machine	2	3		R	R	R
	Heating, current drive and fuelling	1	2		3	R	R
	Power plant diagnostics & control	1	2		ſ	R	R
	Tritium inventory control & processing	1	- 3		R	R	R
	Remote ha ndling	1	2		R	R	R
Materials, Component performance & lifetime	Materials characterisation			3	R	R	R
	Plasma -facing surface	1	2		3	4	R
	FW/blanket/divertor materials		1	1	3	4	R
	FW/blanket/divertor components		1	1	2	3	R
	T self sufficiency		1		3	R	R
Final Goal	Licensing for power plant	1	2	1	3	4	R
	Electricity generation at high availability				1	3	R

10 year	10 years	10 years	10 years	10 years
Build ITER	Run ITER	Build	Run	Build
+ IFMIF	+IFMIF	DEMO	DEMO	proto-type

- - How long will it take? Next 50 years
- - Why's it taking so long?
- Technical difficulties, limited financial and human resources, risk, politics..
- Do we really need another (moving) 50 years?
 It took only 8 years for US landing on moon in 60s!

ITER is on the right track now

Do we make things more simple or more complicated

It is time from the Era of Fusion Science to Fusion Energy

Next step: European Union Towards a demonstration fusion reactor (DEMO)

ITER is not an end in itself: it is the bridge toward a first demonstration fusion power plant that produces electrical power.

The strategy to achieve this long-term aim includes a number of different elements: firstly, the development of ITER, research into special materials, development and use of existing fusion devices.

This will be followed by a demonstration fusion reactor (DEMO).

The expectation is that after DEMO, the first commercial fusion power stations can be constructed.

ITER: scientific and technological (partially) feasibility of fusion

DEMO: bridge the gap between ITER and the first fusion power plant

Fusion Power Plant: economically acceptable, safe and environmental friendly

FAST TRACK SCENARIO

Safety & Environment

With Courtesy from EU-DA

Japan

Road Map to Fusion DEMO Reactor

SPL2-4 A.Komori Tuesday 14:15

With Courtesy from Prof. Sagara

DEMO R&D Facilities for Design Validation Test

R&D and Test Facilities Plan to be Proposed

With Courtesy from H-C-Kim

14

With Courtesy from IN-DA

10:00 SO4A-1, G. H. Neilson, Thursday SO4A-2, M.Peng SO4A-4, S. Konishi

Development Path -

With Courtesy from M.Dunne

Options for next step-Important issues

ARIES-Team:

- ARIES-I first-stability tokamak (1990)
- ARIES-III <u>D-³He-fueled tokamak</u> (1991)
- ARIES-II and -IV <u>second-stability</u> <u>tokamaks</u> (1992)
- Pulsar <u>pulsed-plasma tokamak</u> (1993)
- Starlite study (1995) (goals & technical requirements for power plants & Demo)
- ARIES-RS <u>reversed-shear tokamak</u> (1996)
- ARIES-AT <u>advanced technology and</u> <u>advanced tokamak</u> (2000)
- ARIES-CS Compact Stellarators(2007)
 With Courtesy from Farrokh Najmabadi

SS operability of a fusion energy facility, including plasma control, reliability of components, availability, inspectability and maintainability of a power plant relevant device. ≻Net electricity generation. ≻Complete T fuel cycle. > Power and particle management. >Necessary date for safety & licensing of a fusion facility. ► Large industrial involvement. **≻**Cost

Road Map

US: ITER—IFMIF+CTF(FNF)--DEMO-Power Plant EU&JP: ITER—IFMIF-- DEMO-Power Plant KO: ITER— DEMO---Power Plant

Risks are always there. No single device can solve all S&T problems.

Learning by Doing.

Make Next Step forward is most important.

How to Speed up fusion energy development ITER

• Decision

Technical solution Cost (size) World political and economic environments International cooperation

- Construction
 Availability of technology
 Personnel
 Financial resources
 Structure of management
- Operation Scientific mission Structure of management

- Decision
- 1985-2007
- $8m \rightarrow 6 m \rightarrow cheaper?$
- By full agreement
- Construction R&D still needed
- No enough expertise IC-IO-DA
- ~10 years?
- Operation Q=10 20 years

Decision+ Technical solution + Personnel

Wide International Cooperation

Take full advantage by using existing facilities

JET, JT-60	U, JT-60SA	Facilities for engineering:			
ASDEX-U, C-Mod	DIII-D, HL-2A(M),	ST magnets			
EAST, KS7	FAR, Tore-Supra	Remote Handling T-plant IFMIF (?)			
MAST, NS	TX,				
SST-1, HT-	7,				
TCV, TEX	TOR, FTU				
LHD, W7-X		14 wiev neutron Source			
ITER	Build Necessary (in different count	Build Necessary test facilities for next step in different countries, such as CTF.			

One party dominate cooperation mechanism is better for next step

EDEMO /Pilot plant (20 years) Electricity generation with reduced mission

Electricity generation No need real steady state Burning plasma control Sufficient T Breeding As a CTF H₂ production Testing tokamak system availability (reliability, buildability, operability and maintainability)

P_{fusion}~200MW, t = a few hours to weeks

16:20 SO2B-3 T. P. Intrator, Tuesday

Based on existing technologies: Option 1: Pure Fusion A FDF-class with SC coils A ST-type compact device Option 2: Fusion –Fission hybrid Fusion: Q=1-3, Pth=50-100MW Fission: M= 20-30, Pt = 0.3-1.5GW

Or:

ITER-type machine with different blanket: Pt =5GW, Pe=1.5GW

15:30 SO2B-1 A. Sykes Tuesday

Efforts Made in China

Z-pinch and Laser hybrid reactor configurations also proposed

DO WE FUSION HAVE ENOUGH ROOM

CN-MCF Near Term Plan (2020)

ITER construction

- ASIPP: Feeders (100%), Correction Coils (100%), TF Conductors (7%), PF Conductors (69%), Transfer Cask System(50%), HV Substation Materials (100%), AC-DC Converter (62%)
- SWIP: Blanket FW (10%) &Shield (40%), Gas Injection Valve Boxes+ GDC Conditioning System (88%), Magnetic Supports (100%),

• Diagnostics (3.3%)

Enhance Domestic MCF

Upgrade EAST, HL-2M

ITER technology

TBM

University program

DEMO design (Wan)

DEMO Material

Education program(2000)

Decision

Making

Can start construct CN next step device around 2020

Personnel: Education Program

Present state:

- ASIPP: HT-7/EAST (150 students), ITER (80 students)
- SWIP (60)
- School of Physics (USTC, 25)
- School of Nuclear Science (USTC-ASIPP, >50)
- CN-MOE-MCF center (10 top universities) 50

Total about 450 students, 150/y, 20-30% remain in fusion

Targets and efforts

>2000 young fusion talents >MOST, MOE, CAS, CNNC have lunched a national fusion training program for next 10 years. **Basic training in 10 Univ.** Join EAST/HL-2A experiments small facilities in Univ. Foreign Labs& Univ. Annual summer school, workshop

China Fusion Engineering Testing Reactor

R=5m; a=1.5m; k=1.75; BT=5T; Ip=8-10MA; ne=1-4x10²⁰m⁻³; Beta N: 3-5 Pth: 100MW-1GW

TWO Steps in one machine

Step 1: ITER-SS-H mode

ARIES-RS

Step 2: AT H-mode ARIES-AT

Main functions Q=1-5 T>8 hour, SSO **Component testing** T breading (TBR>1), different TBM configuration Qeng>1 T fuel recycling **RH** validation **RAMI** validation (weeks) Hybrid blanket testing (spent fuel burner, transmutation)

Efforts from China ASIPP

China needs fusion more urgent and would like to be the first user of fusion energy

- I. Very Strong Supports from top leaders to public
- II. Start MCF program with strong evolvement with industry
- III. Finding possible near term application

Summary

- Fusion development comes to a new era with significant progress during past 50 years.
- It is too long to wait for another 50 year to get electricity by fusion.
- A much more aggressive approach should be taken with better international collaboration towards the early use of fusion energy.
- Decision should be made quickly. A EDEMO/Pilot plant might be a better approach to start.