IEEE 24th Symposium on Fusion Engineering (SOFE)

Status and Challenges of the ITER Tokamak Core

Gary Johnson – Former Deputy Director General – ITER Tokamak

Presented by A. Rene Raffray

June 27, 2011

ITER_D_3ZRGRA v1.1

Technical Challenges of the Tokamak

- Tokamak
 - Large scale up of many systems
 - High quality high tech components
 - Tight tolerances
 - Manufacturing around the world
 - Highly integrated design
- Superconducting magnets
 - Unprecedented magnet size
 - High field performance ~12T
 - Conductor and magnet manufacturing
- Vessel Systems
 - Large size
 - High quality components
 - Safety boundary
- Plasma facing components
 - High steady heat flux
 - EM loads under off-normal events
 - Special materials
 - Plasma-Wall Interaction
 - RH requirements

Tokamaks

JET – Internals & Plasma

ITER will allow us to produce plasmas with temperatures of 100 - 200 million °C (10 times the temperature of the sun's core) ⇒ 500 MW of fusion power

ITER Tokamak – Mass Comparison

ITER Machine mass: ~23000 t 28 m diameter x 29 m tall

Charles de Gaulle mass: ~38000 t (empty) 856 ft (261 m) long (Commissioned 2001)

Superconducting Magnets

Magnet System

ter china eu india japan korea russia usa

SOFE, Chicago, IL, June 27, 2011

Stack of 6 (US)

Magnet Energy Comparison

Superconducting Magnet Energy: ~51 GJ

Charles de Gaulle Energy: ~38000 t at ~14 km/hr

TF Conductor Procurement

ITER TF Conductor

Facts

~90 km / 400 t of Nb₃Sn conductor

(The biggest Nb₃Sn conductor procurement in history)

- ~150,000 km of strand (15 x around Earth)
- Operates at ~5 K
- 11.8 T (peak TF field)
- 68 kA (peak TF current)
- Manufactured by EU, JA, RF, CN, KO, & US

SOFE, Chicago, IL, June 27, 2011

ter china eu india japan korea russia usa

TF Strand Production Status

• JA, KO, RF, EU, US, & CN are qualified for strand production. Most have launched strand industrial production and started data input into ITER Conductor Database.

JADA signed a development contract with Toshiba for winding trials and fabrication of structural section prototypes.

- This is now finished. One prototype radial plate has been made.

Europe

- EUDA has signed a procurement contract for their 9 TF coils as well as for prototype radial plates with SIMIC (IT) and CNIM (FR).
- Two prototype radial plates are nearly complete .
 - A winding facility is starting construction by ASG at La Spezia. SOFE, Chicago, IL, June 27, 2011

TF Coils - A Worldwide Collaboration

- So big that it must be manufactured
- PF3: 24.5 m dia. & 386 ton
- Building is 250 m long x 45 m wide and will be the first on site!
- PF Coil 2,3,4,5,&6 PA signed with EU
- PF Coil 1 PA signed in March 2011

CS & CC Status

THE CORRECTION COLLS

Correction Coils (9 pairs) (CN)

Central Solenoid (13.6 m tall x 4.2 m dia ~1000 ton)

Status

- PA signed in March 2010 with USA
- CS PDR scheduled for September 2011
- Coil tendering in progress

Status

- Procurement contract for CC coils signed with ASIPP in December 2010
- Manufacturing line under procurement at Hefei

Feeders Status

Vessel Systems

Facts

- First safety barrier for ITER
- SS 316 LN-IG
- ~5300 tons (VV, ports, shielding only)
- 19.4 m (63 ft) torus outer diameter
- 11.3 m (37 ft) torus height

Status

- VV sector and port PA's signed (EU, KO, IN, & RF)
- KO VV & port contract awarded to Hyundai Heavy Industries
- EU VV contract awarded to the AMW collaborations
- Manufacturing schedule is on critical path!!!

VV Status

ELM & VS Coils (VV interfaces implemented)

Technical Challenges

- Large Size
- Tight tolerances
- High quality components
- Part of safety boundary

Vacuum Vessel - Mass Comparison

VV & In-vessel components mass: ~8000 t ~19.5 m outside diameter x 11.2 m tall Eiffel Tower mass: ~7300 t 324 m tall (Completed 1889)

Vacuum Vessel Prototypes

Full Size Prototype of the ITER Vacuum Vessel (2001) (JA Domestic Agency)

china eu india japan korea russia usa

VV Mock-up of Electron Beam welding on the inner shell (EU Domestic Agency)

Mock-up of E-beam Welding for Key and Blanket Manifold Support (KO Domestic Agency & HHI)

Plasma Instability Control / Mitigation

Background

- Edge Localized Mode (ELM) control is a requirement for ITER
- Uncontrolled ELMs can lead to unacceptably rapid erosion of the divertor target
- ELM coils provide resonant magnetic pertubations (RMP) at plasma edge

Technical Challenges

- High currents in neutron environment (~60 kA @ 2.3 kV)
- Scale up of conductor (26 to 59 mm diameter)
- Remote handling
- Interfaces

Status

- IVC PDR has been completed
- R&D activities on conductor and joints are in progress
- IVC interfaces have been fully implemented into VV design

china eu india japan korea russia usa

SOFE, Chicago, IL, June Alternative concepts are being investigated 19

Thermal Shield Status

- SS 316 LN-IG
- ~880 tons
- 28 m outer diameter
- 23 m tall

Status

- PA signed with Korea in May 2010
- Drawings for VV TS issued August 2010
- Design and Fabrication contract placed in 2010
- Final Design for Cryostat TS to be completed in 2011

Cryostat Status

Status

- CDR completed in November 2009
- PDR completed in June 2010
- FDR completed in Nov 2010
- PA signing planned for July 2011

Plasma Facing Systems

In-Vessel Components – Blanket & Divertor

Blanket main functions :

- Exhaust the majority of the plasma power
- Contribute in providing neutron shielding to superconducting coils
- Provide limiting surfaces that define the plasma boundary during startup and shutdown.

Divertor main functions :

- Minimize the helium and impurities content in the plasma
- Exhaust part of the plasma thermal power

See presentation in SO2A (Tue PM): S. W. Lisgo, R. A. Pitts: "Challenges for the ITER Plasma Interface"

- 440 blanket modules

- 18 or 36 toroidal rows

- ~100 different variants

- ~4 tons each

- 18 poloidal rows

- Mass: 1530 tons

Technical Challenges

Baseline Blanket Status

(more details in next presentation: "Design of the ITER First Wall & Blanket")

Shield Module

First Wall Panel

Example FW Mock-Up R&D Results

• High steady state heat flux ~ 5 MW/m²

High EM loads from off-normal events

Demanding interface accommodation

• Successful tests at 0.875 MW/m² (12,000 normal cycles) and 1.4 MW/m² (1000 cycles) SOFE, Chicago, IL, June 27, 2011

iten china eu india japan korea russia usa

Material bonding techniques

Remote handling requirements

24

Divertor Status

Technical Challenges

- High steady state heat flux up to 10 MW/m² (3000 cycles) & 20 MW/m² (300 cycles)
- Material bonding techniques
- Remote handling requirements

Qualification Prototypes - Status

- All the 3 Domestic Agencies have qualified
- Pre-PA Qualification process successfully completed in all the concerned DAs.

Power Handling Comparisons

HIGH HEAT FLUX COMPONENTS	FOSSILE FIRED BOILER WALL (ABB)	FISSION REACTOR (PWR) CORE	ITER DIVERTOR
DESIGN			12/15 mm ID/OD
HEAT FLUX - Average MW/m ² - Maximum MW/m ²	0.2 0.3	0.7 1.5	3 – 5 (W areas) 10 – 20 (CFC areas)

ITER_D_3ZRGRA v1.1

In-Vessel Remote Handling

EFDA

Summary

- The large size and unique requirements of ITER have presented many technical challenges for the design and manufacturing
- ITER designs, R&D, and manufacturing plans are addressing these challenges
- Key design activities required for first plasma are nearly complete
- Procurement contracts for many major systems are in place and ITER components are in fabrication around the world

Disclaimer

The views and opinions expressed herein do not necessarily reflect those of the ITER Organization

