

SOFE, June, 2011

Key Features in the Operation of the KSTAR

Jong-Gu Kwak and the KSTAR Team

KSTAR Research Center National Fusion Research Institute

Brief history of the past 4 years

• 1st campaign (2008)

- 2007. 9 Device construction
- 2008. 4 SC magnet cool-down (4.5 K)
- 2008. 5 TF operation up to 15 kA (1.5 T)
- 2008. 6 ~ 7 First plasma up to 107 kA (ECH preionization)
- 2nd campaign (2009)
 - 2009. 10 Plasma current up to 320 kA (ECH 110 GHz, 2 T)
 - 2009. 11 TF magnet operation up to 35 kA (3.5 T @ R=1.8 m)
- 3rd campaign (2010)
 - 2010. 7 Baking of PFC & vacuum vessel
 - 2010. 9 ~ 10 IVC coil operation, NBI beam injection
 - 2010. 10 ~11 Plasma startup, shaping, and H-mode
- 4th campaign (2011)
 - 2011. 5 Baking of PFC & vacuum vessel up to 300C
 - 2011. 6 PF coil test up to 15 kA and startup, shaping

Contents

Machine operation

- Vacuum in main vessel and cryostat
- Superconducting Magnet
- Machine control and DAQ system

Plasma operation

- Start-up
- Plasma control

Key system

- IVCC
- Heating

♦ H-mode in 2010

Vacuum Pressure during Campaign

- Baking on vessel wall(130 °C), pumping duct(120 °C) and PFC(300 °C)
- Routine(dailly) GDC (Gaseous Discharge Cleaning) and boronization
- ♦ Base pressure was less than 8x10⁻⁸ mbar
- Water level drops after baking and boronization
- Pumping period for plasma experiment: 2 months at commissioning phase

Outgassing Rate of Vacuum Vessel

Campaign	PFC area (unit : m ²)	Outgassing rate (unit : m·bar·l·s ⁻¹)	Per unit area (unit : m·bar·ℓ·s ⁻¹ m ⁻²)	Baking system
1 st (2008)	1.54	1.43 ×10 ⁻⁴ (M 28 dominated)	9.31× 10 ⁻⁵	• Vessel wall (100 °C)
2 nd (2009)	11	1.93 ×10 ⁻⁴ (M 02 dominated)	1.75 ×10 ⁻⁵	• Vessel wall and pumping duct (130 °C)
3 rd (2010)	54	6.49 ×10 ⁻⁴ (M 28 dominated)	1.20 ×10 ⁻⁵	 Vessel wall and pumping duct (130 °C) Hot N2 gas on PFC (225°C)
4 th (2011)	54	4.21 × 10 ⁻⁴ (M 28 dominated)	7.80 × 10 ⁻⁶	 Vessel wall and pumping duct 130 °C) Hot N2 gas on PFC (300 °C)

Outgassing Rate of Cryostat

- He outgassing rate in the cryostat is the key parameter in the operation of SC magnet in terms of a good ther mal barrier and Paschen discharge
- ◆ The outgassing rate increased year by year, however it was saturated around in the range of 10⁻⁵ mbar·ℓ/s.
- At 4th campaign, the vacuum pressure in the cryostat i s 5 ×10⁻⁸ mbar.
 - (Note : Max. allowable pressure is **1.0 x 10⁻⁵ mbar**)
- PF coil/structure circuit was suspected to be the do minant source of the cold leak.

	Total outgassing rate	Helium leak rate	unit
1st campaign	1.12E-07	8.92E-08	mbar∙ℓ/s
2nd campaign	3.08E-06	2.45E-06	mbar∙ℓ/s
3rd campaign	3.33E-05	1.47E-05	mbar∙ℓ/s

TF Magnet Operation

- The TF magnet system was charged up to 35 kA, which produced 3.5 T at the center of the vacuum vessel.
 - The coil temperature increase was below 0.2 K
 - Maximum mechanical stress of the TF structure was 152 MPa, which is lower than the operational criteria of 500 MPa
 - Maximum radial displacement of toroidal ring is less than 0.4 mm.

PF Magnet Operation

- Current ramp rate was usually less than 3 kA/s.
- PF 1&2 temperature rise was just up to 7.3K.

12

11

PF1

PF2

- Blip operation(100 ms) doesn't have large affect on the temperature rise.
- The temperature rise is influenced by Lhe coolant pass as well as dI/dt(dB/dt) and duration time.
- R&D activities of TH analysis using Gandalf, VINCENTA and 4C code. 8

Machine Control with EPICS

Machine Control System

- Reliability and stability of CW superconducting machine
- Integration of heterogeneous controllers:
 - VME, VXI, cPCI, PXI, PCI, PLC, and cFP
 - 32 control systems with 110 subsystems participated in 3rd campaign
- Real time control based on the distributed network with EPICS
 - No. of handling signals : ~ 50,000 I/O
 - Total operational data : 614 GB(dailly increasing of data : about 5~6 GB)
 - Data storage : EPICS Channel Archiver

DAQ System for Plasma Diagnostics

- 25 diagnostics systems synchronized with Local Timing Unit(LTU)
 - No. of I/O : ~ 11,600 tags
 - Data stored to the MDSplus server/Central storage
 - Archived data at 2010 : 1794 GB/2,126 shots(daily increasing of data : about 40 GB)
- a distributed clustered storage system for 2-D image advanced diagnostics

Incoloy 908 in SC Magnet Coil Jacket

- Incoloy 908 in SC coil jacket as it has low thermal expansion coefficient compatible to Nb₃Sn.
- On the other hand, ferromagnetic incoloy 908 (μ ~10) nonlinearly deforms magnetic field structure

Radial Bz Profile during Start-up

- The magnetic field structure near in-board side is affected by Incoloy
 - Without compensation, the deviation could increase up to 60 G
 - The deviation should be less than 20 G for successful startup
- Success shot rate increased up to 74.3 % in 2010 (21.5 % in 2009)
 - Pure ohmic start-up was achieved with ~3V of the loop voltage in 2010
 - Start-up w/o blip resistor was achieved for switching Ip direction.

Plasma Control System (PCS)

A fast, flexible control system in operation since 2008

- Based on the Linux cluster tech, embedding 8 processes in a box
 - Adapted from DIII-D PCS, with ~20 kHz control cycles
- Extended digital interfaces on reflective memory (RFM)
- Integrated control capability for tokamak actuators
 - Magnets, fueling, heating and IVCC etc.
 - Capable of getting ~200 plasma diag. through the built-in digitizers

Vertical Control and Shaping

- Vertical stabilization is done with passive Cu plates and IVCC
 - In-vessel vertical coil [IVC] installed behind the passive plates
 - PS spec. : +-10 kA/turn, 960 V, PWM
 - Design changes of the passive plates enhances control speed by 5 times
 - Each up/down Cu plate is cut into 4 pieces
 - · Gap resistance(2.1 mohm) per toroidal turn is attached

Magnetic shape control with real-time EFIT & isoflux algorithm

- The real-time EFIT set as a shape verification tool for L-mode d ischarges as in 2010
 - Based on the 12-element vessel model EFIT
- Real-time shape control using iso-flux was verified in low-kapp a realm in 2010
 - Extending to the well-balanced DND in 2011

In-vessel Control Coils

- 16 segmented modules
 - (4 circular coils for position Control and 12 FEC coils)
- n=1 and 2 capabilities, poloidally three coils(parity change)
- 15 Wide physics experiment and flexibilities of control(IRC, FEC, RWM)

Diverter Operation

Double null operation

- Two striking points are god agreement between EFIT
 & measurements by Langmuir probes (within ~ 2 cm)
- IR camera is available in 2011

In-vessel cryo-pump (IVCP)

- Installation of IVCP was finished $\!$
- Tentative use LHe supply system for 1-2 years
- Open loop of LHe (from 1,000 liter dewar)
- 4 working hours per day/ lower diverter region

H-mode in 2010

- Access to H-mode around B_T~2 T
- Ip=600kA, R~1.8 m, a~0.5 m,

n_e > 1.4x10¹⁹ m⁻³, κ~1.8

- Clear indication of L-H transition from
 - D_{α} , W_{MHD} , XICS, ECE, CES, etc
- Low threshold power, P_{LH} < 1.5 MW</p>
- Relative low density regime
- Marginal powers for L/H transition
- Slow L/H transitions and dithering
- Often synchronized with sawtooth crashes
- ELM filament dynamics revealed
 - y 2-D ECEI measurement

b

Widely extended operation regime in KSTAR 201 0

* Y.S. Park, S.A. Sabbagh, J.W. Berkery, et al. (accepted by Nucl. Fusion) (2011)

- In 2010, KSTAR operation regime was widely extended
 - β_N up to 1.3, Elongation up to 1.9
 - Triangularity up to 1.0
 - I_i covered: 0.8 to 1.9, but only circular has I_i <1.0
- For n=1 RWM and vertical stabilities,
 - li should be decreased more

KSTAR joined the H-mode club in 2010

KSTAR Mission

- To achieve the superconducting tokamak construction and operation experiences, and
- To develop high performance steady-state operation physics and technologies that are essential for ITER and fusion reactor development
- Based on achieving H-mode in 2010
- In 2011 experimental campaign,
 - H-mode will be fully commissioned within given machine capability
 - ITER relevant/urgent, KSTAR specific research issues will be pursued
 - 1.5MW NB, 1MW ECH, and 1 MW ICRF are available in 2011
 - 15 MW auxiliary heating system will be available in 5 years.
- So that we will prepare the second stage of KSTAR mission.

Summary

Machine commissioning

- Vacuum of the vacuum vessel and the cryostat
- TF and PF coils are operated within the safety margin of SC magnet.
- Control systems based on distributed network and EPICS

Plasma operation

- PCS for plasma shaping and Iso-flux control with real time EFIT
- Startup scenario compensating Incoloy
- H-mode in 2010

Key system

- Picture framed in vessel coils(IVC, IRC, RMP, RWM, FEC)
- 1.5MW NB, 1MW ECH, and 1 MW ICRF is available
- 15 MW auxiliary heating system will be available in 5 years.

ELM mitigation with RMP is the top priority in 2011

KSTAR Papers to SOFE 2011

SPL2-1 (invited) "Recent Experimental Results of KSTAR" <u>M. Kwon</u> SO4C-2 (invited) "The Construction of ITER, Viewed from Lessons Learned from KSTAR Project" <u>H. Y. Yang</u>

- SP1-15 Design Feature & Operation Results of Kstar PFC GN2 Baking

System S. T. Kim

- SP1-29 Investigation of the Radioactivity Inside the Kstar Vacuum Vessel after Shutdown by Using Gamma-Ray Spectrometry <u>Y.S. Lee</u>
- SP1-32 Temporal and Spatial PFC Temperature Profiles in KSTAR 2010 Campaign <u>E. N. Bang</u>
- SP2-24 Influence of Plasma Operation on the PF circulator of the KSTAR HRS System During 2010 Campaign <u>H. J. Lee</u>
- SP3-37 Conceptual Disign of the Kstar Motor Generator <u>C. H. Kim</u>
- SP3-39 Current Control Method of Thyristor Converter for PF superconducting

Coil in KSTAR, <u>H. S. Ahn</u>

- SP3-40 Development of in-Vessel Vertical Coil Power Supply J. K. Jin

