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'e)tile] Challenges and Opportunities in Fusion Power Supplies

m Large numbers of conversion units;
m Dynamic response required by new functions;
m Reactive power and harmonics issues;

m Size, weight, and cost.
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Opportunity for optimizations overall power supply systems
m Universal modular circuits

m Control coordination between each function blocks

Newer and emerging technologies in power electronics
m IGBT and IGCT based switching circuits
m Multilevel inverters/converters
m Switched capacitor circuits
® Wide band gap devices, such as SiC and GaN
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Modular circuit structures
m Lower voltage/current stress for individual switching devices
B Lower costs
m Better power quality
m Fail safe

Adaptation of wide band gap devices
m Better efficiency
m Smaller footprint and weight

m Batter dynamic response

Distributed real time simulation
m Hardware-in-the-loop based algorithm development

m Platform for system level coordination and optimization




Modular Circuit Structure Example: M2LC for
Vertical Stabilization (VS) coils
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Control Goal:

1. Regulate the VS coil current

2. Minimize looping current
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Simulation of the M2LC for a VS coil

Load inductance L 1.4 mH
Load resistance R 10 m
Buffer inductance L,,,L, 5uH
Module capacitance 2F
Capacitor voltage in cell groups 1&2 (V) 1185V
Capacitor voltage in cell groups 3&4 (V) 1200 V
Capacitor voltage in cell groups 5&6 (V.,) 1230V
Capacitor voltage in cell groups 7&8 (V) 1170 V
Carrier frequency 2 kHz
Proportional gain Kp 5 V/A
Integral gain Ki 10V/(A s)
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The current reference has one major event and two minor events. A
continuous 30 Hz 3000 Ampere “noise” is added on top of all the events.



51?’ IO By-pass Operation of Faulty Modules, Case 1
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At 2.5 s, assuming there was a device failure, Group 1 was

shorted out.

Because of the robust control strategy and redundant voltage for the
two minor events, the load current is not affected.
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O lower voltage stress on switching devices; with lower voltage stresses,
1400 V to 1700 V rated IGBTs could be used; usually, IGBTs at this voltage
range can be switched at a higher frequency than IGCTs; thus, superior
dynamic response could be achieved;

d lower current stresses; since i, ,1is the summation of i, and - each
cell (cell group) only needs to supply half of the load current;

O expandability; if needed, more cell (cell groups) can be connected in
series to achieve a higher voltage level;

0  multiple level output; high resolution current control with low
switching frequency and good efficiency;

O fail safe; failed module could be disconnected while the full system goes
through safe shut down process.




Adaptation of Wide Band Gap Devices
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Infineon: High Temperature Power Electronic Devices and Packaging for HEV
= Development of Si based chips for power switching has come to an end.

* The two development directions are: better cooling strategy and wide band gap

devices.
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On Resistance vs. Breakdown Voltage
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SiC have 10X lower total power dissipation than Si.

Rajan: GaN Device in OSU
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J SiC Power Devices

Commercial Availability

X

d Silicon Carbide Schottky rectifiers commercially available from 3 sources:
* CREE, Inc (NC), SICED (Siemens/Infineon-Germany), SemiSouth Laboratories (MS)

Product links to U.S.
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Picture courtesy: Wright Patteron Air Force Base 15
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Megawatt scale applications
3
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Comparison of on-state voltage between the 1.2kV/100A SiC module and the
equivalently rated Si IGBT module (CM100DY-24NF)

Jim Richmond, Scott Leslie, etc. “Roadmap for Megawatt Class Power Switch Modules Utilizing Large Area Silicon Carbide
MOSFETs and JBS Diodes”
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High Voltage Devices

9% Weight and 12% Volume vs IGBT module
IGBT Module

SiC Module
10 kV
100 amps

High Voltage Silicon Carbide Power Devices. [Online]. Available: http://
arpae.energy.gov/LinkClick.aspx?fileticket=RaTsvSsOacE%3D&tabid=116
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OSU 30 kW SiC JFET Inverter and GaN Tests

S

30 kW SiC JFET Inverter GaN Test Board
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Distributed Real-time Simulation
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Real-time simulation for Electric Power Systems

Real-time Simulation refers to a

computer model of a physical Model of electric
system that can execute at the same power systems
rate as actual "wall clock" time. In
other words, the computer model
runs at the same rate as the actual
physical system.

m 4 real-time
target machines;
m 10 CPUs;

m PCI links
between targets;
m 512 Digital I/

O;
m 4 Xilinx
FPGAs
m 282 Analogue
1/0.

I/0 and real- External

time model monitoring and

execution

control units
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Real Time Simulation Results of the M2LC for a VS coil
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Real time simulation of Communication Network

Model Overview
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m Combine real time simulations of electric power system and real time
simulation simulations of communication (system-in-the-loop) network;

m Analysis the impact from communication network failure and latency;

m Pave the road for system level coordination/optimization.
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