High temperature plasma facing component designs for biomass hybrid reactor: GNOME

K. Ibano, Y. Yamamoto, and S. Konishi Graduate school of Energy Science, Kyoto University

Introduction

- GNOME: Fuel production plant using fusion nuclear heat.
- Gasification of biomass (garbage, forest thinning.)
- High Net energy conversion $(\eta \sim 2)$
- P_{fus} = 300 MW 500 MW, Q ~ 5 will be enough.
- High temperature coolant output is requested.
- \rightarrow Updates in blanket design.
- \rightarrow Wider operation windows.

Outlines of talk

High temperature components with liquid PbLi coolants.

Neutronics

TBR Nuclear heat Energy Multiplication

Coolant flow

Pressure loss/ Pump power Blanket Divertor

Feasibility of PbLi cooled components for the high temperature operation were studied.

Blanket component

W FW RAFM structure SiC_f/SiC cooling panel He cooling channels

High temperature (>900 °C) PbLi coolant operation for the high biomass-gasification efficiency.

PbLi

Neutornics

- MCNP5
- FENDL-2.1
- MCNPX converting CAD to MCNP geometry

Neutronics – **Tokamak**-

Neutronics – **Tokamak**-

Geometry

Neutron source

Neutronics – **Tokamak**-

TBR was higher than other calculations.
→ Simplified BLK structure. (no SiC inserts)
→ Detailed analysis should be taken.

Neutronics – **Blanket**-

Neutronics summary

- Tokamak analysis tells total TBR & distribtuion of nuclear heat.
- Information from detailed component analysis will be feedback into the entire tokamak analysis and component designs.

Local TBR \rightarrow Total TBR analysis Heating distribution \rightarrow FEM, CFD

Using these data, the feasibility of PbLi cooled components will be discussed.

Pressure drop at In-board

Neutronics result tells how much fraction of nuclear power will be derived to in-board

BLKs.

In-board coolant path

 Unlike out-board, inboard blankets should share a path for one sector to avoid complex wiring.
 Plus, really limited space for the coolant ducts.
 → duct diameter

should be small as possible.

Coolant flow

→Assuming one path to each 15 deg. (total 24 ducts)
→Turn into dP vs dT.

- High temperature operation → larger dT
 → smaller Ppump
- Module cooling should be taken for <u>P_{fus} > 1GW.</u>

Pressure drop along the poloidal flow and the fast toroidal flow was evaluated.

Divertor heat flux

Divertor pressure drop

Summary

Coolant flow, pressure drop, pump power were studied for various P_{fus} reactors.

 $P_{fus} \ge 1$ GW: advanced performance target, complex structure.

 $P_{\rm fus}$ < 500MW : reasonable assumption, simple structure.

<u>Biomass-hybrid ~ 500 MW has a operation</u> window with the PbLi cooled compoents.

ANSYS heat analysis

 RAFM < 550 °C has been confirmed with PbLi at 1000 °C by flowing He into the SiC insulator panel.