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Outline 

  Short recap - liquid metal plasma facing components 
–  Solids (tungsten) vs. liquids 
–  LTX and liquid metal PFCs 

  LTX design for liquid lithium operation 
–  Overview 
–  Shell and heater systems 
–  Recycling diagnostics 
–  2010 lithium evaporation system 

  Results with evaporated coatings (2010) 
–  Cold walls 
–  Hot walls and discussion 

  Near-term plans, and summary 
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Plasma-facing components (PFCs) for reactors 
  Only candidate solid material considered viable  

 for reactor-grade PFCs is tungsten 
–  Ductile to brittle transition: 200 – 500 °C 
–  Subject to radiation-induced embrittlement  

 above a few DPA 
» Require 100 – 200 DPA lifetime  

–  Subject to surface damage under  
 He fluence 

  Flowing liquid metal PFC is continuously renewed 
  Neutron damage limited to supporting substrate 
  Plasma-material interaction (PMI) limited to the liquid metal: sputtering + 

evaporation 
  PMI issues and neutron damage issues are separable with liquid metal 

systems 

Liquid metal walls offer another PFC solution 
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Liquid metals and LTX 
  LTX is the first confinement device designed to test a full,  

 hot, liquid metal (lithium) wall 
  Liquid lithium wall development relevant to all liquid metals 

–  Gallium, tin, tin-lithium eutectics 
  Lithium has a strong affinity for hydrogen 

–  Forms a stable hydride 
–  Low recycling wall 

  Low recycling wall           hot edge in a magnetically confined plasma 
–  Power flux is carried by particles at the edge 
–  Poor fueling efficiency (~5-10%) for recycled particles guarantees 

high particle density at the wall (for a high recycling wall) 
–  For low recycling, only edge particles are those lost from the core 
–  High recycling = low power/particle (low edge temperature) 
–  Low recycling = high power/particle (high edge temperature) 

  LTX combines development of liquid metal wall technology and a test    
of the physics consequences of low recycling liquid lithium walls 
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LTX has a full, 5 m2 heated, conformal wall  
Inner heated shell (explosively bonded SS on copper) 

Heat shielded centerstack 

Fast, 
uncased 
internal 

coil 

Flux loops 

2-axis 
Mirnov  
coils 
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Robust operation of LTX heaters 
to 300 °C demonstrated 

Heater cold ends 

Ceramic break 

Swagelok  
+ Kal-rez seal 

250 lbs /
quadrant 

Heaters 

  Shell “floats” in vessel; external supports 

Nickel plated copper  
– emissivity control 

Support 
legs 

Cold zone 

Hot zone 

External heater 
leads 

Vacuum seals 

  Cable heaters (Durex Corp.) Nichrome 
elements, compacted (swaged) MgO 
insulation, thermal transfer medium 
–  But: Nichrome sublimates at operating 

temperature, in vacuum 
–  Solution: re-entrant heaters  Nichrome 

elements in air 
–  No leaks, no heater failures in 3 years 

testing 
  Bonus: no in-vacuum electrical feeds 
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Recycling source being replaced by active fueling 
  Molecular cluster injector for LTX 

–  Precooled (82K) gas condenses 
     through nozzle exhaust 

  Forms clusters 
–   Less expansion of jet 
–  High fueling capability 
–  Millisecond response 

  Combined with existing supersonic 
gas injector 

Veeco piezoelectric 
valve 

Stainless steel convergent 
- divergent nozzle 

Supersonic 
Gas  
Injector 

Molecular 
Cluster  
Injector 

Nozzle 
exit 

Gas density in 
MCI jet  
exceeds 1016cm-3 

 - between a 
pellet and 
conventional gas 
fueling 

Liquid nitrogen 
inlet, outlet 
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Recycling measurements employ Lyman-α arrays 

 Lyman-α array 
viewing shell 
high-field (inner) 
side 
 Replaced for 
upcoming run 
with a JHU-style 
detector set 

 Lower noise 
 View of shell low-field 
(outboard) side through 
tangential port (array 
developed by K. Tritz, JHU) 

 View of lower molybdenum 
limiter in lower shell 
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New lithium coating systems developed for LTX 

  Two evaporators installed 
  LTX lithium experiments have begun 
  Total of 10 g evaporated onto walls in first round 

–  44g total lithium evaporated in 2010 
–  Sufficient for a 4 micron coating of the entire shell 

Y2O3 crucible, Ta heater 
 Tested to 700 °C 

Evaporator (1 of 2) with linear motion 
stage mounted on LTX 
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Crucibles and heaters effective, simple, reliable 

  Cleanup relatively straightforward 
  No significant issues with yttria crucibles after 600C operations 

–  Lithium did not wet the crucible  
–  Thermocouple wetting provided an escape route 
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Current LTX status  
  (Almost) overhead 

fisheye view of LTX 

  Plasma current ~70 kA, shot duration ~20 msec 
–  Thomson: Te ~ 50 – 150 eV 

  Shells routinely heated to 300 C for bakeout 
  Operated with lithium coatings October – December 2010 
  Presently vented for maintenance, upgrades: preparing for pumpdown 

»  More engineering details: T. Kozub (tkozub@pppl.gov) for poster copy 
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Lithium initially evaporated into helium glow 

  Lithium introduced by evaporation from yttria crucibles at 550 C 
  5 gram load per crucible, 2 crucibles, 1.2 g evaporated in first run 

Glow probe head 
>Lithium-dominated discharge 
>Working gas was helium 

RGA trace indicating lithium gettering of water 
>Trace is dominated by liberated hydrogen  

Water 

Hydrogen 
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Lithium wall conditioning produced immediate 
effect on the discharge 

  First lithium operation shown – cold shell 
  Lithium glow preceded by helium glow with hot (250C) shell for 

preconditioning 
  Discharge current, duration significantly increased after only a few 

hours of operation following Li glow 
  Pressure history shows evidence of reduction in recycling 

Plasma current comparison Pressure evolution 

3x increase 
In prefill 

Discharge 
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LTX was operated with a lithium-coated 300 °C shell 

  Hot (300 °C) shell with thin lithium coatings does not exhibit a significant 
reduction  in recycling 
–  “Liquid” lithium is impurity-dominated 
–  Relevant to any experiment with lithium on a hot substrate 

  First full high temperature, high Z wall operation of a tokamak 
−  Lithium evaporate into 5 mTorr helium fill to disperse coating 

(Warm) cluster 
injector system, 
wall puffer 
employed for 
fueling with cold 
lithium walls 
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Shell interior at 300 °C after 4 g lithium deposition 

  Deposition rate ~0.75 g/hour/evaporator; 3 hour evaporation  
–  Evaporate into 5 mTorr helium to distribute lithium 
–  Est. 1.6 micron average deposition layer 

  Lithium coating darkens rapidly 
  No visual evidence of metallic surface 
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Discussion of hot wall results 

  Partial pressure of water during cold wall lithium evaporation was 
~ 5 x 10-9 Torr 

  Partial pressure of water during the hot wall experiment was      
~2 x 10-8 Torr 

  With cold walls, improved discharges were obtained for ~48 hours 
  With hot walls, no improved discharges were observed 

–  Delay between termination of coating and tokamak operations 
was 1 hour, 15 minutes 

–  If the only factor affecting the condition of the lithium coating 
was background water pressure, coating should have been 
active for ~12 hours 

  Therefore, hot coating passivated more quickly than can be 
accounted for by background water pressure 

  Suspect segregation of oxygen, other impurities to the surface 
was responsible for rapid passivation 
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LTX and CDX-U fueling  

  Fueling requirements for LTX are approaching CDX-U 
requirements for low recycling operation 
–  LTX: similar shot duration 
–  Lower plasma current, density 

Liquid lithium tray (resistive heaters, 
puffing limit) 

Bare SS tray (~5×1018) 

Lithium rail limiter + titanium gettering 

Tray + e-beam evaporative 
coatings  

Rail limiter discharges after 100g in-
vessel lithium spill 

Total fueling 
⇒including 

  prefill 
LTX – solid fresh lithium 

LTX – 
passivated 

lithium 
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Loop voltage comparison indicates modestly improved 
discharge performance with cold wall coatings 

  Preliminary result (just a few discharges from LTX) 
  Require more discharges, full confinement assessment 
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Near-term (2011) plans 

  Improve vacuum conditions in LTX 
–  Adding vacuum vessel bakeout to 120 C 
–  Vessel will be cooled during tokamak operations with hot shell 

  Increase shell bakeout temperature to 400 C 
  Add water pumping 

–  Installing two lithium getter pumps 
–  Pumping speed for each unit estimated at 2500 L/sec 
–  Each pump will employ a heated lithium crucible and a large 

wall area for lithium deposition 
  Summer 2011: begin operations with liquid lithium fills in both 

lower shells 
–  Fill system in preparation; modification of evaporation system 

  Preliminary assessment of confinement with partial liquid lithium 
walls later this year  
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Lower shells designed for liquid lithium pools 

  Lower shells have welded stainless steel lips to retain lithium 
  Double molybdenum limiters are designed to wick lithium 

–  Tested – wicking system works  
–  Limiters extend 2 mm above the stainless steel retention lips to 

reduce plasma contact with the retention lips 

Welded retention lip ~ 
1 cm tall 

Inboard double 
molybdenum limiter. 
Lithium wicks between 
the moly plates to the 
top of the limiter 

Bottom of shells 
to be filled with 
liquid lithium 

Stainless steel 
plasma-facing 
surface explosively 
bonded to 1 cm 
copper 

Bottom 
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Summary 

  LTX began operations with lithium walls in October 2010 
–  No wall conditioning preceded introduction of lithium 

  Immediate effect on discharge 
–  Plasma current: 15  70 kA (~CDX-U) 
–  Plasma duration: 5 – 20 msec (~CDX-U) 

  Observe rapid passivation of hot (300C) lithium films 
–  Tentative indications of impurity surface segregation 

  Better thermal control of the vacuum vessel in implementation 
–  Controlled bakeout + active cooling 

  Enhanced pumping being installed with new lithium getter pumps 
  Liquid lithium fill of lower shells scheduled for late this summer, or 

early fall 


