

#### THE ANALYSIS OF THE ELECTROMAGNETIC LOADS ON SELECTED ITER BLANKET SHIELD MODULES DUE TO INDUCED EDDY AND HALO CURRENTS

#### J. D. Kotulski, R. S. Coats, M. Ulrickson Sandia National Laboratories Albuquerque, NM 87185 jdkotul@sandia.gov



Sandia National Laboratories is a multi program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.







#### Overview

- ITER Device
  - Overall System Model
  - Typical Blanket Model
- Plasma Disruption Scenarios
  - Basic description
- Electromagnetic Model
  - Eddy currents
  - Halo currents
- Results
  - Forces and Torques
    - Selected modules
    - Different disruption scenarios
- Conclusions







#### **Example Blanket Module**



#### **Shield Module 4**

**First Wall Assembly 4** 

Key features – model contains cooling channels and eddy current slits

#### **BM** – shield module with First Wall Assembly

First wall assembly consists of CuCrZr face, SS fingers, SS beam





- A 15 MA plasma current is flowing in the device, toroidal direction.
- Impurities disrupt plasma operation.
- Plasma current starts to decrease.
  - Centroid of this plasma moves eddy currents are induced.
  - Flux surfaces contact blanket module halo currents flow.





#### Plasma Disruption Modeling for Eddy Currents

- From DINA Simulations
  - Prescribed by the International Organization
  - 20 different scenarios
- Key Features
  - Axisymmetric (2-D) description
  - Plasma current modeled by a finite number of filaments
    - Number of filaments vary with time
    - Position vary with time















## Plasma Disruption Modeling



NOTE: Points inside machine outline(red curve) Dina filaments





- Modeled by 126 solenoids. – Changed to 64.
- Each has a different time history.
- Models the time variation of the total current behavior.
- Models the movement of the plasma with time.









#### Electromagnetic Analysis for Eddy Currents

- Twenty degree sector
  - Symmetry used.
  - Adjacent simplified modules are included with inner and outer vacuum vessels.
- Solved using the Opera-3d Software
  - Reduced potential formulation.
    - Currents are decoupled from the mesh
  - Forces and torques are computed in the model coordinate system.





**Pivot Point** Poloidal Radial Toroidal Forces and torques will be presented with respect to the local coordinate system

for the module of interest





#### **Radial Torque Comparisons**





# 

#### **Radial Torque Comparisons**







**U.S.** 







• Occurs when the plasma flux surface intersects the in-vessel components.

 Behaves as direct current injection into the blanket module.

• The loads produced are in addition to those due to plasma disruption.





#### Electromagnetic Analysis for Halo Currents

- Current Flow Analysis on blanket module of interest.
  - Static analysis
    - Extract current to a TABLE file generated from an ABAQUS mesh.
- Extract Magnetic Flux density from disruption analyses.
  - To a TABLE file generated from an ABAQUS mesh.
- Calculate J x B combining the above data sets.
  - Time history of Halo included at this time
    - Direct multiplication of static data.



### Halo Current Analysis – SM 4



Calculated : I<sub>halo</sub> = 142 kA

![](_page_18_Picture_3.jpeg)

# Halo Current Analysis – SM 6

![](_page_19_Picture_1.jpeg)

![](_page_19_Picture_2.jpeg)

Voltage set on front of FW

Desired : I<sub>halo</sub> = 227 kA

Calculated : I<sub>halo</sub> = 226.9 kA

![](_page_19_Picture_6.jpeg)

![](_page_19_Picture_7.jpeg)

![](_page_20_Picture_0.jpeg)

#### **Halo Current Results**

#### RF BM 4

| Module | F <sub>r</sub> (kN) | F <sub>p</sub> (kN) | F <sub>t</sub> (kN) | T <sub>r</sub> (kN-m) | T <sub>p</sub> (kN-m) | T <sub>t</sub> (kN-m) |
|--------|---------------------|---------------------|---------------------|-----------------------|-----------------------|-----------------------|
| BM 4   | -43.2               | -657.6              | -15.3               | 6.6                   | 7.7                   | -246.1                |
| BM 6   | -12.1               | -1376.5             | -87.2               | 16.7                  | 38.1                  | -535.2                |

| BM 6        |                     |                     |                     |                       |                       |                       |  |  |  |  |
|-------------|---------------------|---------------------|---------------------|-----------------------|-----------------------|-----------------------|--|--|--|--|
|             | F <sub>r</sub> (kN) | F <sub>p</sub> (kN) | F <sub>t</sub> (kN) | T <sub>r</sub> (kN-m) | T <sub>p</sub> (kN-m) | T <sub>t</sub> (kN-m) |  |  |  |  |
| Total Loads | -12.1               | -1376.5             | -87.2               | 16.7                  | 38.1                  | -535.2                |  |  |  |  |
| FW          | -11.8               | -627.3              | -41.9               | 5.5                   | 20.0                  | -227.5                |  |  |  |  |
| SM 06       | 28                  | -749.2              | -45.3               | 11.2                  | 18.1                  | -307.7                |  |  |  |  |

![](_page_20_Picture_5.jpeg)

![](_page_21_Picture_0.jpeg)

 The electromagnetic forces and torques have been shown for two blanket modules of the ITER design.

- Analysis procedure described.

- Largest component:
  - Eddy currents radial torque
  - Halo currents poloidal force
    - Due to interaction with the large toroidal field.

![](_page_21_Picture_8.jpeg)