

Mapping of the ASDEX Upgrade Operational Space for Disruption Prediction

R. Aledda, B. Cannas, A. Fanni, <u>G. Sias</u> Department of Electrical and Electronic Engineering University of Cagliari Cagliari, Italy G. Pautasso, the ASDEX Upgrade Team Max-Planck-Institüt für Plasmaphysik EURATOM Association Garching, Germany

Summary

✓Introduction Self Organizing Map The Database Mapping of AUG operational space Disruption Prediction Conclusions

Introduction

Self Organizing Map as a Tool for:

visualization and analysis of the AUG operational space

disruption prediction

Self Organizig Map (SOM)

>Mapping from an *n*D-space to a regular array of neurons (clusters)

>Topology preservation

The Database

DB	discharges					
	disrupted	safe	range	Time period	use	
DB1	149	80	16200-19999	2002–2005	Training and Validation	
DB2	81	537	20000-22146	2005–2007	Testing of the generalization capability	
DB3	118	534	22162-25665	2007–2009	Testing of the aging	

All the disruptions except those:

- •in the ramp-up phase
- ■in the ramp-down phase if t_D>t_{ramp-:down}+100 ms;
- caused by massive gas injection
- following a VDE

Database

Signal	Acronym [unit]
Plasma current	<i>I_p</i> [A]
Safety factor at 95% of poloidal flux	q_{95}
Input power from Neutral Beam Injection	P _{NBI} [W]
Input power from Electron Cyclotron Radio frequency Heating	P _{ECRH} [W]
Input power from Ion Cyclotron Radio frequency Heating	P _{ICRH} [W]
Ohmic input power	P _{OH} [W]
Total input power	$P_{inp} = 0.9 P_{NBI} + P_{ECRH} + P_{ICRH} + P_{OH} [W]$
Locked Mode signal	<i>LM</i> [V]
Radiated power	P _{rad} [W]
Radiated fraction of the input power	$P_{frac}=P_{rad}/P_{inp}$
Plasma density divided by the Greenwald limit	ne _G
Internal inductance	l I _i
Poloidal β	b _p
Loop Voltage	U _{loop} [V]

Mapping of AUG 7D-operational space

Mapping of AUG 7D-operational space

2D mapping colored on the basis of clusters type

		Disruptive discharge		
Clusters	safe discharge	<i>t<t<sub>D</t<sub></i> -45ms	t <i>≥t_o</i> -45 ms	
green	Х	Х	-	
grey	Х	Х	<85%	
red	-	-	≥85%	
white	-	-	-	

(*) B. Cannas, et al, Nuclear Fusion, vol. 50, 075004 (12pp), 2010.

Disruption Prediction: Performance indexes and results

$$PD = \frac{n^{\circ} \text{ PrematureDections}}{n^{\circ} \text{ disruptive shots}} \cdot 100$$

$$SP = \frac{n^{\circ} \text{ Successfu} \text{Predictions}}{n^{\circ} \text{ disruptive (or Safe) shots}} \cdot 100$$

$$TD = \frac{n^{\circ} \text{ Late Dections}}{n^{\circ} \text{ disruptive shots}} \cdot 100$$

$$MA = \frac{n^{\circ} \text{ Missed Alarms}}{n^{\circ} \text{ disruptive shots}} \cdot 100$$

$$FA = \frac{n^{\circ} \text{ False Alarms}}{n^{\circ} \text{ safe shots}} \cdot 100$$

 $t_{alarm} < t_{D} - 160ms$

 t_D -160ms $\leq t_{alarm} < t_D$ -2ms or Safe shots predicted as safe

 t_D -2ms $\leq t_{alarm} \leq t_D$

 $t_{alarm} > t_{D}$

Safe shots predicted as disruptive

Prediction performance:

	Disru	Safe discharges				
	PD[%]	SP[%]	TD[%]	MA[%]	SP[%]	FA[%]
DB1	9,40	83,89	1,34	5,37	95,00	5,00
DB2	9,88	65,43	4,94	19,75	90,88	9,12
DB3	16,95	56,78	5,08	21,19	85,18	14,82

Disruption Prediction: Analysis of results

•The large majority of correct alarms is triggered in the presence of an increase of P_{rad}

•73.5% of FAs and 50% of PDs correspond to a peak in the P_{frac} signal due to the shutdown of one or more AHS

Trajectory of the discharge # 21011 on the 2D-SOM

Disruption Prediction: 2D Map of 8D operational space

Inputs : { q_{95} , P_{inp} , P_{rad} , P_{frac} , li, LM, βp , ne_G }

2D map of the 8-D operational space of AUG

Algorithm to limit FAs and PDs

The alarm is inhibited when following conditions are simultaneously satisfied:

$$\frac{dP_{inp}}{dt} \le \frac{dP_{inp}}{dt} |_{\text{THR}}$$

2.
$$P_{rad} \leq P_{rad|THR}$$

$$3. \quad \frac{dP_{rad}}{dt} < \frac{dP_{rad}}{dt} \Big|_{\text{THR}}$$

At least once in the 20ms preceding the alarm time

Disruption Prediction: 2D Map of 8D-operational space

$$\frac{dP_{inp}}{dt}|_{\rm THR} = -1.2 \,\rm GW/ms$$

Is the minimum value assumed by P_{rad} at the alarm time, for all the correct predictions in the presence of an increase of P_{rad} .

 $P_{rad|THR} = 1.3 \,\mathrm{MW}$

the minimum value assumed by P_{rad} at the alarm time, for all the correct predictions in the presence of an increase of P_{rad}

$$\frac{dP_{rad}}{dt}\Big|_{\rm THR} = 11\,\rm MW/ms$$

is the minimum value assumed by dP_{rad}/dt at the alarm time, for all the correct predictions in the presence of an increase of P_{rad} .

Prediction performance:

Disrupted discharges					Safe discharges	
	PD[%]	SP[%]	TD[%]	MA[%]	SP[%]	FA[%]
DB2	9.88	69.14	6.17	14.81	93,85	6,15
DB3	8,47	69,50	7,63	14,40	87,05	12,95

Conclusions

The SOM of the 8D-AUG operational space provides:

- I. 2D-Map where regions with different risk of disruption can be identified
- II. Disruption predictor

Self Organizing Map (SOM)

The K output neurons are fully connected to the inputs via the weights w.

•
$$O_j = \sum_{i=1}^n w_{ji} x_i$$
 is the output of *j*th neuron, $j=1,\ldots,K$

A competitive learning rule is used, choosing the winner j* as the output neuron with weight vector w closest to the input x:

$$\Delta \mathbf{w}_{j} = \eta \cdot \Lambda(j, j^{*}) \cdot \left(-\mathbf{w}_{j} \right) \quad j = 1, \dots K$$

✤ The neighborhood function Λ is equal to 1 for $j=j^*$, and decreases with the distance between neurons j and j^* in the output lattice. Thus, neurons close to the winner have their weights updated, while those further away, experience little effect.

Disruption Prediction: Alarm criteria

1. $k = (101.11 - ds_{\%})/0.7$ if $85 \le ds_{\%} < 100$

The value k is updated only if the trajectory moves into clusters with higher $ds_{\%}$.

2. k = 2 if $ds_{\%} = 100$