

Progress and Challenges in the Assembly of W7-X

Torsten Bräuer for the W7-X Team

Max-Planck-Institut für Plasmaphysik, Euratom Association D-17491 Greifswald, Germany

24th Symposium on Fusion Engineering, June 2011, Chicago, USA

- 1. The project Wendelstein 7-X
- 2. Procurement Status
- 3. Assembly Status
- 4. Challenges of next steps
- 5. Final remarks

7-X

IPP

Wendelstein 7-X is a modular, optimized stellarator

Properties:

- magnet field is produced only by external coils
- no current driven instabilities
- fivefold symmetry

Physics goals:

- Test magnetic field optimization
- Prove of reactor feasibility of stellarator-principle
- Technological goals:
- steady state operation
- modular assembly
- assembly under industrial like conditions

- 1. The project Wendelstein 7-X
- 2. Procurement Status
- 3. Assembly Status
- 4. Challenges of next steps
- 5. Final remarks

Procurement Status

Max-Planck-Institut für

IPP

7-X

Plasmaphysik Most of the basic device components have been delivered

1 machine base 50 non-planar coils 20 planar coils 10 central support ring segment ≈ 300 support elements 20 plasma vessel sectors 10 outer vessel sectors 254 ports ≈ 1700 cryo pipes and supports

15 cryo legs

≈ 113 bus bars and 400 supports

All incoming components were intense checked: geometrical checks leak tests cryogenic test for main field coils

Unternehmung WENDELSTEIN	Procurement Status	IPP	Max-Planck- Institut für
Basic device comp	onents in manufacture, test or	des	Plasmaphysik
			.9
Thermal insulation (ports)	delivery according to assembly progres	S	
In vessel components	most delivered; partly in series producti	on	
Current leads	prototypes successfully tested, series p	roduc	tion started
Trim coils	in production, partly in design		

Peripheries components (platforms, pipes, cables) manly in design, partly in production or delivered

- 1. The project Wendelstein 7-X
- 2. Procurement Status
- 3. Assembly Status
- 4. Challenges of next steps
- 5. Final remarks

Max-Planck-Institut für Plasmaphysik

IPP

Pre-assembly of magnet system modules:

- Pre-assembly of 5 x 2 half modules
 - Connection of 5 non planar coils,
 2 planar coil and support structure
 - Inserting vacuum vessel with thermal insulation
- Alignment of two half modules
 - Bolting of support structure flange
 - Welding of vacuum vessel
- Installation of bus bars, cryo pipes and sensors (last step of last module)

4 of 5 magnet system modules finally pre-assembled 5th (last) magnet system module in final pre-assembly phase

Max-Planck-Institut für Plasmaphysik

Pre-assembly of magnet system modules:

Main experience:

- requirements on coil positions are achieved
 - no part of any coil shows deviation of >3.2mm in comparison to nominal
 - Expected, that magnet field quality will be fulfilled (2•10⁻⁴)
- All other parts of module are inside geometric tolerances too
 - In only a few cases rework was necessary to avoid collisions
- All super conductor joints and cryo pipe were successfully leak and high voltage tested up to now

Assembly Status

Max-Planck-Institut für

Ibb

Final assembly in torus hall:

- Adjustment of magnet modules into there final position
 - Field calculations have delivered optimized co-ordinates
- Adjustment of vacuum vessel
- Adjustment of lower and upper shell of outer vessel and welding of both shells
- Port assembly (in progress, next slides)
- Connection of modules (MS, VV, OV)
- In vessel assembly (starts end of the year)
- Assembly of periphery (started)

4 of 5 modules are inserted into outer vessel

4 of 5 modules on there final position on machine base

Assembly Status

IPP

7-X

Final assembly in torus hall:

Main experience:

Unternehmung

WENDELSTEIN

- Adjustment of magnet system modules (weight ≈ 100t, dimension ≈ 7x5x5m³) was possible in r ≤ 1.5mm
- Adjustment of outer vessel shells and vacuum vessel in r < 1.5 resp. r < 2 mm
- Deformation of outer vessel due to welding and death weight up to 15mm considered in the clashes-free design

- 1. The project Wendelstein 7-X
- 2. Procurement Status
- 3. Assembly Status
- 4. Challenges of next steps
- 5. Final remarks

Challenges of next steps

Max-Planck-Institut für Plasmaphysik

Challenges:

Unternehmung

7-X

WENDELSTEIN

- Port assembly
 - 20 support and 22 diagnostic ports per module
- Joining of vacuum and outer vessel
 - 5 separation planes
 - Handling of shrinkages
- In vessel component assembly
 - Very complex assembly situation
- Leak testing
 - All (without some exceptions) seam are tested
- Current lead assembly
- Periphery

Challenges of next steps

Max-Planck-Institut für

IPP

Port assembly: challenges

- High accuracy requirements
 - < 2.5...8.5mm to CAD
 - < 5 mm pipe to pipe (for diagnostic ports only)
- Interplay of heavy steelwork and delicate installation of thermal insulation
- Tight schedule
- Huge demand of resources
 - Welding capacity (2 shifts)
 - Permanent Metrology support

Substitution of a trial assembly process by a metrology supported method to find the 3D cut contour

Challenges of next steps

Max-Planck-Institut für

7-X Port assembly: status

- 1st Module:
 - All support and diagnostic ports final welded on vacuum and outer vessel
- 2nd module:
 - All support ports final welded
 - All diagnostic ports tack welded
 - Final welding of diagnostic ports in progress
- 3rd Module
 - Positioning and tack welding in progress (70%)
- 4th and 5th Module
 - No port assembly up to now

Challenges of next steps

WENDELSTEIN 7-X

Unternehmung

Port assembly: experience

- In 1st module few critical ports due to position deviations
- A full metrology supported welding process is necessary to guide the welder
- welding technology has been optimized; use of supports for death weight compensation and various stop blocks
- Intermediate cooling with CO₂
- Contour taking by metrology can substitute a trial assembly
- In 2nd and 3rd module requirements are fulfilled
- Port welding is more resource consuming than expected !!

Challenges of next steps

Max-Planck-Institut für

^{7-X} Joining of vacuum and outer vessel

- Weld shrinkage force displacements and deformations
- Vessels have to be moved before welding to compensate weld shrinkage
- Gap between vessels (≈ 140 mm) will be measured and individual splice-plates will be manufactured (MDT)
- Welding will be supported by metrology (up to 3 Laser-Tracker simultaneously)
- Welding procedure of last module will be adapted (based on experience of first modules)

Challenges of next steps

Max-Planck-Institut für Plasmaphysik

7-X In vessel component assembly

- Lots of mounting parts, e.g. ≈ 1000 weld studs per module, to be adjusted and welded on vessel surface
- Lots of 3D-shaped parts to be very precise 3D adjusted
- Lots of (water-) pipes to be welded inside of vessel
- Very tight assembly space
- Most of components have to be transported through a man-port
- Entrance for staff only through man-port
- · High demands of leak test capacity
- Clean room requirements

Challenges of next steps

Torsten Bräuer

Leak testing

Unternehmung

7-X

WENDELSTEIN

- Weld seams are routinely tested to a leak rate < 1*10⁻⁹ mbar*l/s
- Meanwhile there is a stock of about 100 different leak-test chambers available
- Welding seams at He-pipes made in assembly rigs are thermally shocked (77K) and leak tested
- Joints of busbars and coils are tested locally at RT
- Assembly welds at water pipes in plasma vessel will be leak tested at 430K (ohmicheating heating)
- HV tests are performed under Paschen conditions

IPP

- 1. The project Wendelstein 7-X
- 2. Procurement Status
- 3. Assembly Status
- 4. Challenges of next steps
- 5. Final remarks

Max-Planck-Institut für Plasmaphysik

IPP

- 7-X
 - Pre-assembly of magnet system modules nearly completed
 - 4 of 5 modules on their final position on machine base
 - Port assembly runs routinely
 - No serious quality deviation occurred
 - effective QM-system
 - Mock ups and trial assemblies are essential prerequisites to ensure a smoothly running work on the assembly sites
 - Higher resource needs of some work packages, complex logistic and a increased work density
 - High qualified workers were hired from industry
 - In the assembly a 2-shift system (up to 88h/week) was and is used
 - Advanced weekly and 4-weekly plans are necessary for an efficient work planning
 - Since schedule update in 2006 all milestones were met

Commissioning date is still on the middle of 2014

Unternehmung	
WENDELSTEIN	

IPP

Thank you for attention !