Integration Progress on ITER In-Cryostat Components

Jens Reich, Jean-Jacques Cordier, Giovanni Dell Orco, Bharat Doshi, Nathalie Gimbert, Chen-Yu Gung, Benoit Manfreo, Tudorel Popa

ITER Organization

(The views and opinions expressed herein do not necessarily reflect those of the ITER Organization).

er china eu india japan korea russia usa

- Configuration Management in ITER Requirements
- Measurements for integration progress
- ITER Tokamak components
- Integration progress examples
- Space management inside Cryostat
- Summary

Configuration Management in ITER - Requirements

ITER Project Requirements

1.5.3 Configuration Management Model and Site Master Plan

"ITER has to assure consistency between all components and with the site and buildings. This will be realized by establishing three-dimensional (3D) CAD models that make up the "Configuration Management Model" (CMM) [7] which represents the structure and geometry of the components in the Tokamak Complex. In the CMM, the configuration is defined in terms of component envelopes and interface characteristics. The CMM is used to assure that interferences do not exist and that the Tokamak (including port-mounted equipment) can be assembled and maintained as designed..... [PR38-I]"

• Design Integration is subdivided into Tokamak and Building Integration

Measurements for integration progress

Tools or How we can realize it in practice?

- Configuration Management Model (CMM)
- Physical and functional interface definition in Interface Control Documents (ICD), Interface Sheets (IS)
- Design Integration Review (DIR)
- Model Review Meetings (MRM)
- Virtual Reality (VR) ...

Agreed and approved integrated ITER reference baseline

Measurements for integration progress

CMM according to Plant Breakdown Structure (PBS) until level 3

PBS level 1	PBS level 2	PBS level 3	Description
15.VV			Vacuum Vessel
	15.VV.IW		In-Wall Shielding
	15.VV.MV	15.VV.S1	Main Vessel, sector 1
		15.VV.S2	Main Vessel, sector 2
		15.VV.S3	Main Vessel, sector 3

Measurements for integration progress

Interface graphs Improvements as outcome of RO and Integration work

<u>Result:</u> improved Cryostat interface situation

iter china eu india japan korea russia usa

Tokamak components as CMM

Integration progress examples- upper Cryostat

Integration progress examples- upper Cryostat

Integration progress examples- lower Vacuum Vessel

Integration progress examples- lower Cryostat

Space Management inside Cryostat

Additional spaces inside Cryostat for components, assembly and maintenance

Pipe layout inside Cryostat- necessity to manage the spaces

Space Management inside Cryostat

Spaces (e.g. concepts for tools) are integrated into the Tokamak design; (critical and safety related components to be considered)

Virtual Reality platform

Virtual Reality platform

Integration is a key horizontal function in ITER

• Tools and rules to perform Integration of systems were successfully established (CMM, VR, tolerance studies)

• There is a visible progress on main ITER components in terms of reference baseline definition & agreed interfaces

• Design Integration provides an active contribution to a consistent ITER baseline

