

The Superconducting Magnet System of Wendelstein 7-X

- Overview
- Superconductor
- Non planar coils
- Planar coils
- Bus bar system
- Current leads

. . . .

. . . .

- Demonstration of the modular structure of the device (modular coils)
- Demonstration of the suitability of a **superconducting magnet system**

Parameters of W7-X Major radius: 5.5 m Minor radius: 0.53 m Plasma volume: 30 m³ Plasma surface: 110 m³ Magn. field (on axis): < 3T Magn. field energy: 620 MJ Heating power: 10 - 30 MW Plasma pulse length: 30 min Machine height: 5.5 m Machine diameter: 16 m Machine mass: 725 t Cold mass: 425 t

Superconducting magnet system

Max-Planck-Institut für Plasmaphysik

Unternehmung

Wendelstein 7-X

Superconductor

Key data of the			- Filament
W7-X superconductor	. Strand	and the state of the	
(for all coils and bus b	oars)		Be I
outer dimensions wall thickness number of strands strand diameter void fraction cabling law Ic (6 T/4,2 K) number of filaments filament diameter Cu/Sc ratio	16 x 16 mm ² > 2 mm (Al alloy) 243 0.57 mm 37 ± 2 % 3x3x3x3x3 > 150 A (strand) 144 (NbTi) 26 μm 2,6 ± 0,1		
Jacket:			0 2000 µm
 Aluminum Alloy A 	IMgSi (6063)		
 Yield strength Rp0.2 			14

- <150 MPa (soft, room temp.)
- >280 MPa (hardened, 4 Kelvin)
- Allows bending radii of 120 mm

The production of the W7-X superconductor:

- Strand production
- Cabling (5 steps)
- Cable check and preparation for the co-extrusion
- Co-extrusion of the aluminum jacket
- Final tests of the conductor
- Delivery to the customers
- **Organizational challenge:** consortium, many involved companies in different countries
- Technical challenge: mass flow and void fraction

Summary:

- First conductor in 2001
- Last conductor in 2006
- Finally 390 parts (about 60 km) produced, tested and delivered for coils, bus bars and spares

Co-extrusion

Main technical parameter of the non planar coils

	Non planar coils
number of differently shaped types	5
windings	108 turns, divided into 6 double layers
casings	cast stainless steel
weight per coil	about 5.5 tons per coil
dimension	≈ 3.5 m x 2.5 m x 1.5 m
nominal current	17.6 kA at 4 K and 6 T
nominal insulation voltage	6 kV dc
resistance of coil	< 6 nΩ at 4 K
leak rate	$< 10^{-7}$ mbar l/s at RT and 4K
life time	15 years, 50 cool downs, 50 quenches and 5000 full current changes

Special challenge: three dimensional winding pack

Winding of the non planar winding packs

Winding work at ABB (Germany)

Winding work at ASG (Italy)

Non Planar Coils

Winding pack

- Accuracy nearly independent from the shape

Non Planar Coils

Max-Planck-Institut für Plasmaphysik

Coil casing production:

• Cast and machined stainless steel half shells

Coils assembly:

- Winding pack placed into the half shells
- Half shells connected by welding

Coil production

Summary:

- First coil in 2003
- Last coil in 2008
- Today: all 50 coils produced, tested and assembled

Delays due to:

- Late delivery of Superconductor
- Repairs:
 - Insulation
 - QD-cables
 - Welds
 - Casting defects
- Design changes:
 - structural reinforcements
- What else ?
 - HV tests at reduced pressure (Paschen tests) have proven as a very efficient tool to verify the quality of an insulation

	Planar coils
number of differently shaped types	2
windings	36 turns, divided into 3 double layers
casings	Welded and bolted stainless steel plates
weight per coil	about 3 tons per coil
dimension	≈ 4 m diameter
nominal current	16 kA at 4 K and 6 T
nominal insulation voltage	4 kV dc
resistance of coil	< 2.5 n Ω at 4 K
leak rate	$< 10^{-7}$ mbar l/s at RT and 4K
life time	15 years, 50 cool downs, 50 quenches and 5000 full current changes

Average deviations of the planar winding packs

Result: - The accuracy meets the requirements - Similar to the accuracy of the non planar winding packs

Planar Coils

Max-Planck-Institut für Plasmaphysik

- First coil in 2003
- Last coil in 2007
- Today: all 20 coils produced, tested and assembled

Delays due to:

- Late delivery of Superconductor
- Repairs:
 - Insulation
 - QD-cables
 - Welds
- Design changes:
 - structural reinforcements

Max-Planck-Institut

für Plasmaphysik

IPP

Unternehmung Wendelstein 7-X Coil Test under cryogenic conditions

- All coils were tested up to the nominal current
- Two cryostats, hosting two coils each
- Cool down within 10 days
- Full current tests at 5 K in the self field:
 - Thermal Stability
 - Deformation
 - Mechanical stress in the casings
- Quench test to check the margin
- High voltage tests
- Helium leak tests

Unternehmung Wendelstein 7-X Coil Test under cryogenic conditions

Max-Planck-Institut für Plasmaphysik

Identified problems:

- Cold leaks in welds (Al, SS)
- Cracks in the insulation
- Insufficient QD cables
- Detached sensors

Summary

- First coil tested in 2003
- Last coil tested in 2009
- In total 99 tests (due to repairs and changes during the coil fabrication)
- Finally all coils accepted
- Superconductivity was never the problem !

Bus bar system

Unternehmung

Wendelstein 7-X

- Superconducting bus bar system provide the connection
 - between the 10 coils of the same type
 - between coils and current leads
 - between bus bar section at the module separation area
- Special challenges in W7-X:
 - Different thermal expansion between coil supports (steel) and bus bars (AI)
 - Displacement of coils under load (up to 24 mm)
 - Remount ability of the joints

In total 121 bus bar sections (1.2 km), ~400 supports, ~700 clamps and 184 joints

Co-operation between IPP and the Research Centre Jülich (FZJ), Germany and the INP in Krakow (Poland) IPP

Electrical insulation:

•Thin (space)

•Flexible (movements)

•Result: Kapton reinforced glass tape with epoxy resin

Max-Planck-Institut für Plasmaphysik

- 184 joints
- soldering of the strands of the two cables
- insert the bundle in a clamp
- Insulation made of glass tape and epoxy resin
- achieved resistance < $1n\Omega$

Thomas Rummel

Bus bar system

Summary

- All bus bar sections installed
- All supports and clamps installed
- 140 joints made (44 have to be made in the next months)
- The work progress is according to schedule

Current leads

- Provide the transfer of the electrical current from the room temperature bus bar system outside the cryostat to the superconducting parts inside the cryostat.
- Good electrical conductivity
- Bad thermal conductivity
- In W7-X seven pairs
- Current up to 18.2 kA

Special feature in W7-X:

- Upside-down orientation (cold end at the top)
- The upside-down orientation would allow:
 - to save a lot of space in the vicinity of the machine, because no separate current lead cryostat is necessary and
 - shorter distances to the power supplies underneath the W7-X (reduced steady state power loss)
- But problems were expected for optimal and stable operation due to the occurrence of free convection inside the heat exchanger
 - \Rightarrow Development program at the

Karlsruhe Institute of Technology (KIT):

- Karlsruhe Institute of Technology
- HTS current lead using Bi-2223/AgAu tapes
- optimized heat exchanger

Max-Planck-Institut für Plasmaphysik

Current lead test campaign:

- Measurement of the heat load at different currents,
- Steady state operation at currents up to 20 kA,
- Long time test with 18.2 kA,
- Ramp test (simulating W7-X operation),
- Quench tests,
- Loss of mass flow (LOFA) tests.

Result:

Everything works as expected !

Summary

- Two prototypes successfully tested
- First CL pair delivered in 2011
- Last CL pair delivered end of 2012
- Upside down orientation !

Assembly of the Current leads:

- Strategy developed by PPPL and ORNL
- Trials at a mock-up successfully running
- First assembly into W7-X expected for January 2012

- The procurement and assembly of a superconducting magnet system has been running over nearly the whole construction period from 1998 until 2013.
- Coils:
 - Three dimensional superconducting coils can be successfully build.
 - The achieved accuracy is nearly independent from the coil's shape.
 - Traditional working processes need also special care (welds, el. insulation).
- Bus bar system:
 - Challenging because of the space constraints, movements during operation and
 3 D routing
 - Requires manual work at the machine and intensive tests
- Current leads:
 - Upside down orientation of HTS current leads successfully developed and tested

Unternehmung Wendelstein 7-X The Superconducting Magnet System

Thank you