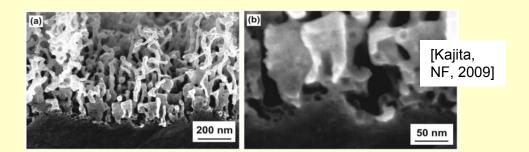
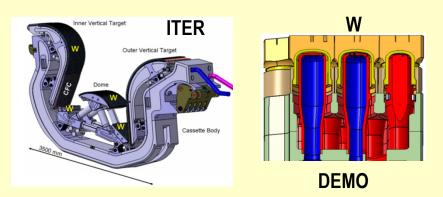
Fusion Nuclear Science Facility (FNSF) – Motivation and Required Capabilities

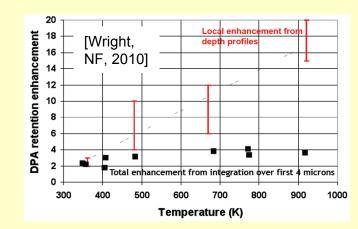
Martin Peng, with contributions from

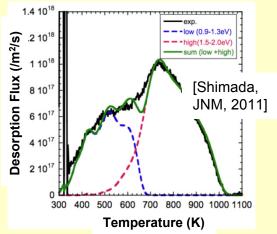
JM Park, JM Canik, SJ Diem, SL Milora, AC Sontag, A Lumsdaine, M. Murakami, Y Katoh, TW Burgess, MJ Cole, K Korsah, BD Patton, JC Wagner, GL Yoder (ORNL); PJ Fogarty (IDC); M. Sawan (U Wisc.);

38th IEEE International Conference on Plasma Science, and 24th IEEE Symposium on Fusion Engineering June 26 – 30, 2011 Chicago, IL, USA

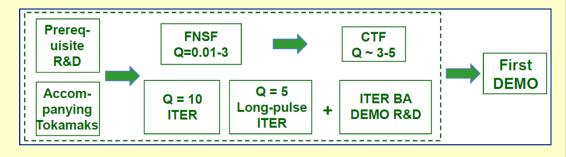





Example: fusion nuclear-nonnuclear coupling effects involving plasma facing material and tritium retention


- W, a promising Plasma Facing Material
 - Low H permeation / retention
 - Low plasma erosion
 - **DEMO-relevant temperatures**
- Worldwide R&D: Nano-composites; Nano-structure alloy; PFC designs, etc.
- Nuclear-nonnuclear coupling in PFC:
 - Plasma ion flux induces T retention
 - Up 10x @ 2 dpa (W⁴⁺ beam) @ high temp
 - Up 40% @ 0.025 dpa (HFIR neutrons) ⇒ additional T trapping sites near surface
 - He induced "fuzz" with He bubbles can trap T
 ⇒ retention in W dust created by ELMs?

Test in fusion environment for solutions.

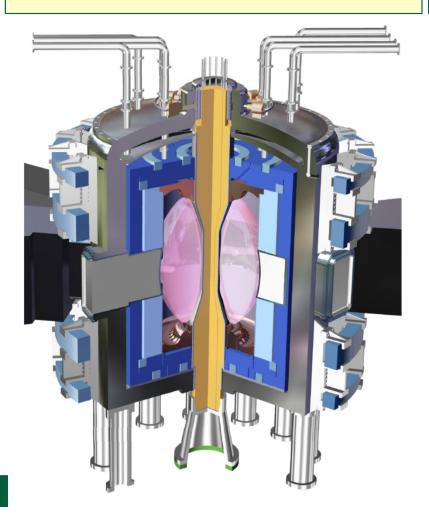


Fusion Nuclear Science Facility (FNSF) is to address this need of experimental database

- <u>FNSF mission</u>: Provide a continuous fusion nuclear environment of copious neutrons, to develop experimental database on nuclear-nonnuclear coupling phenomena in materials in components for plasma-material interactions, tritium fuel cycle, and power extraction.
- <u>Span wide scales of synergistic phenomena</u>: *ps to year, nm to meter, involving all phases of matter.*
- <u>Enable R&D cycle</u>: Test, discover, understand, improve / innovate solutions, and retest, until experimental database for DEMO-capable components are developed.
- Complement ITER, prepare for CTF:
 - Low Q (≤ 3): 0.3 x ITER
 - Neutron flux $\leq 2 MW/m^2$: 3 x
 - Fluence = 1 MW-yr/m²: 5 x
 - $t_{pulse} \le 2$ wks: 1000 x
 - Duty factor =10%: 3 x

Capabilities required to fulfill this mission

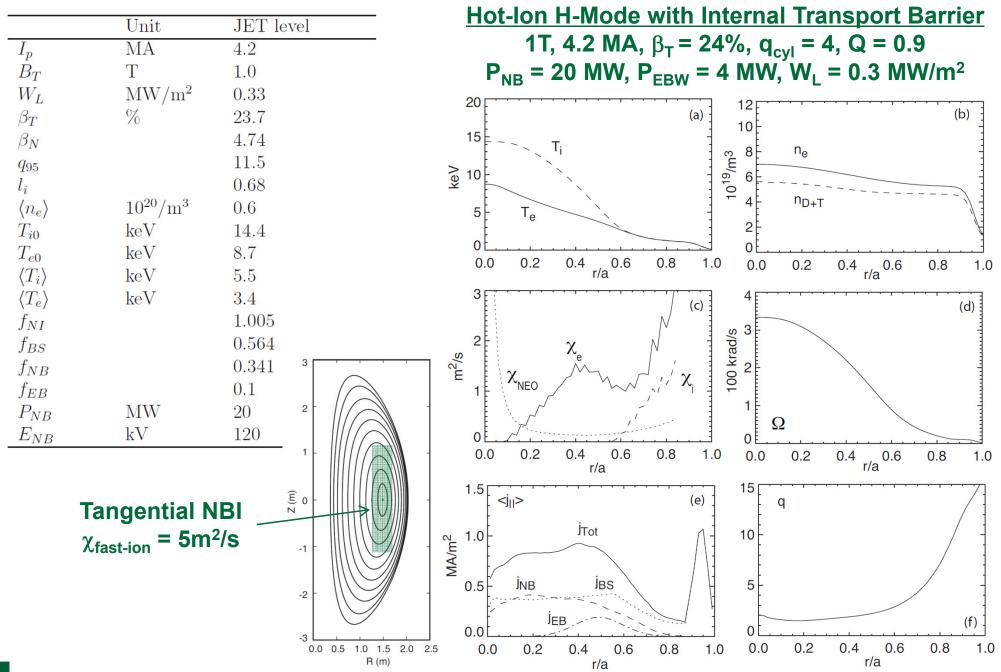
<u>Accompanying R&D: to increase Mean Time Between Failure (MTBF)</u> of test components

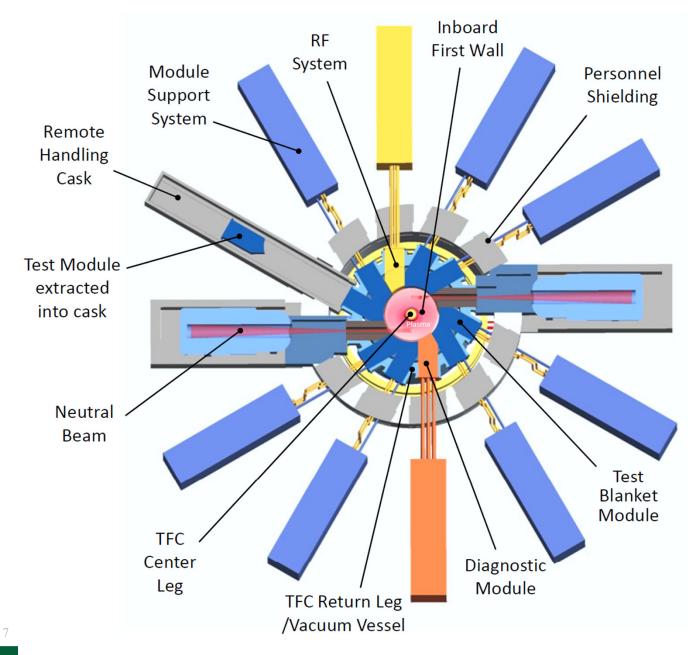

- Development of qualified internal component options, including material choices, e.g., RAFM steel used in Water-Cooled Solid Breeder (WCSB, JN) blanket.
- Instrumentation for test divertors, blankets, T breeders, FW, NBI, RF launchers, diagnostic systems, TF center post (for ST)
- Components to control plasma dynamics, H&CD, fueling, I&C

FNSF Capabilities: to increase duty factor and fluence, reduce Mean Time to Replace or Repair (MTTR)

- Reliable plasma with limited disruption and small ELM operation
- Remote handling (RH) for modularized test components.
- Hot cell facilities and laboratories, pre- and post-test analysis systems and tools.
- Device support structure and systems behind test modules and shielding long facility life and upgradability to CTF mission.

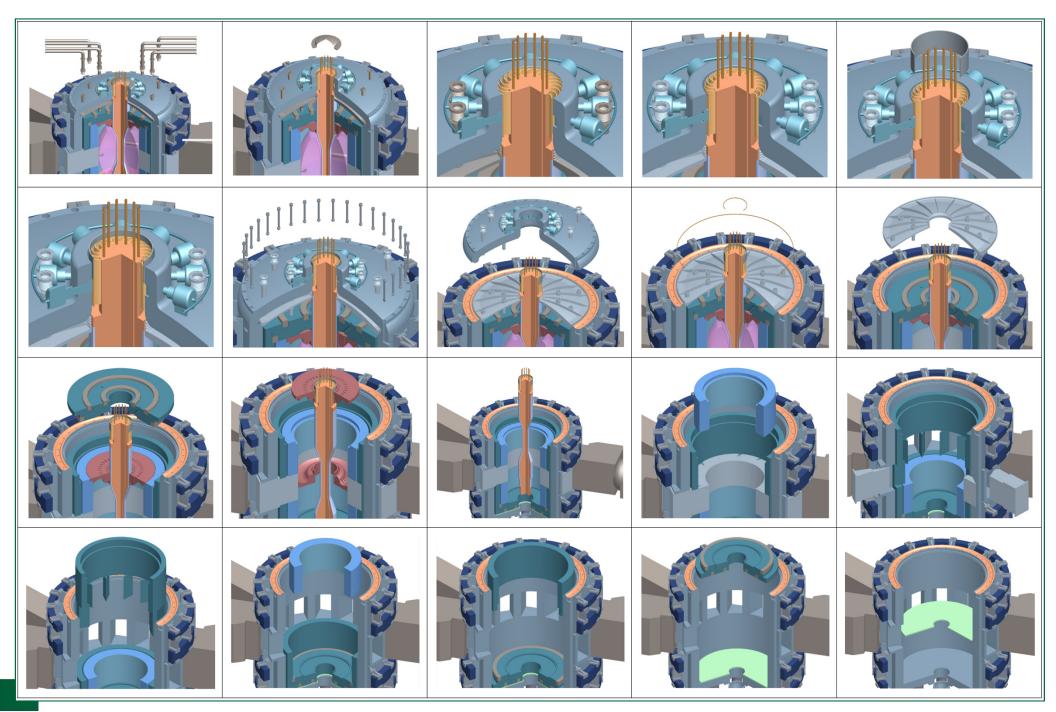
FNSF-ST, assessed to have good potential to provide the facility capability required in progressive stages


- $R_0 = 1.3m$, A = 1.6
- $H_H \leq 1.25, \ \beta/\beta_N \leq 0.75, \ q_{cyl} \geq 4$
- J_{TF-avg} ≤ 4kA/cm²
- Mid-plane test area ≥ 10m²
- Outboard T breeder ~ 50m²

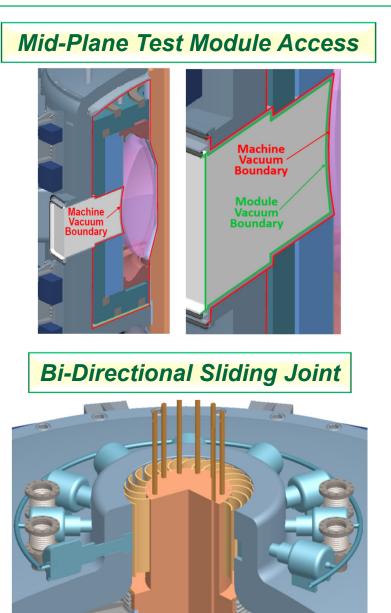

- I-DD: 1xJET, verify plasma operation, PMI/PFC, neutronics, shielding, safety, RH system
- II-DT: 1xJET, verify FNS research capability: PMI/PFC, tritium cycle, power extraction
- III-DT: 2xJET, full FNS research, basis for CTF
- IV-DT: 3xJET, "stretch" FNS & CTF research

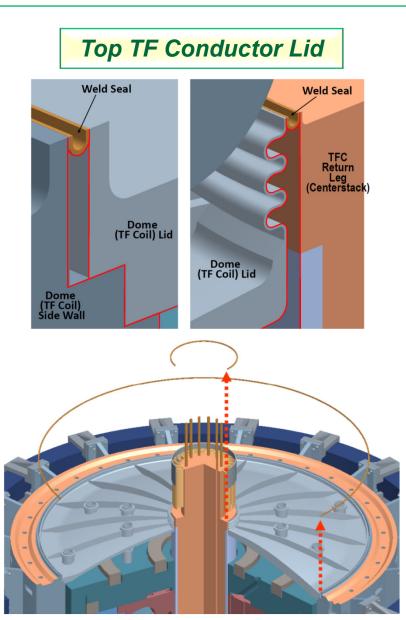
Stage-Fuel	I-DD	II-DT	III-DT	IV-DT
Current, I _p (MA)	4.2	4.2	6.7	8.4
Plasma pressure (MPa)	0.16	0.16	0.43	0.70
W _L (MW/m ²)	0.005	0.25	1.0	2.0
Fusion gain Q	0.01	0.86	1.7	2.5
Fusion power (MW)	0.2	19	76	152
Tritium burn rate (g/yr)	0	≤105	≤420	≤840
Field, B _T (T)	2.7	2.7	2.9	3.6
Safety factor, q _{cyl}	6.0	6.0	4.1	4.1
Toroidal beta, β_T (%)	4.4	4.4	10.1	10.8
Normal beta, β_N	2.1	2.1	3.3	3.5
Avg density, n _e (10 ²⁰ /m ³)	0.54	0.54	1.1	1.5
Avg ion T _i (keV)	7.7	7.6	10.2	11.8
Avg electron T _e (keV)	4.2	4.3	5.7	7.2
BS current fraction	0.45	0.47	0.50	0.53
NBI H&CD power (MW)	26	22	44	61
NBI energy to core (kV)	120	120	235	330

<u>Steady state plasma operation at JET DT level is simulated</u> <u>using benchmarked TGLF (GA), awaiting ST-upgrade data</u>


Mid-plane test modules, NBI systems, RF launchers, diagnostics are arranged for ready RH replacement

Mid-plane ports


- Minimize interference during remote handling (RH) operation
- Minimize MTTR for test modules
- Allow parallel operation among test modules and with vertical RH
- Allow flexible use & number of mid-plane ports for test blankets, NBI, RF and diagnostics


FNSF internal components assembly/disassembly concept support structure lifetime dose < 0.1 dpa enables staging

To enable ready replacements, shielded vacuum weld seals and bi-directional sliding joint are proposed

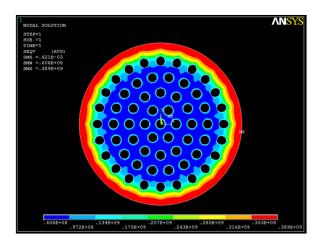
To reduce Mean Time to Replace (MTTR) and achieve 10% Duty Cycle

<u>Structural analysis of optimally designed centerpost</u> (Arnie Lumsdaine, SP1-17)

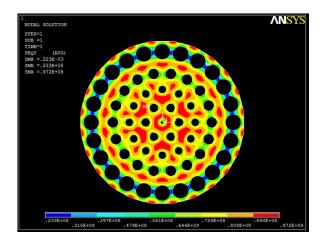
Objective: minimize peak Von Mises stress by varying radius and positions of cooling channels

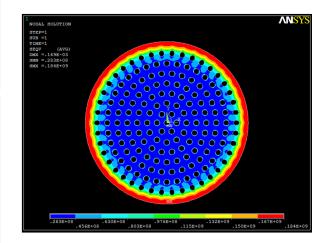
Assumptions:

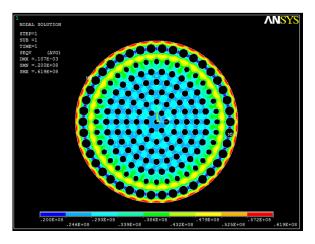
- Nuclear and Joule heating
- Constant water flow
- Constant Copper thermal & electrical conductivities
- ≥5 mm between channels and to surface

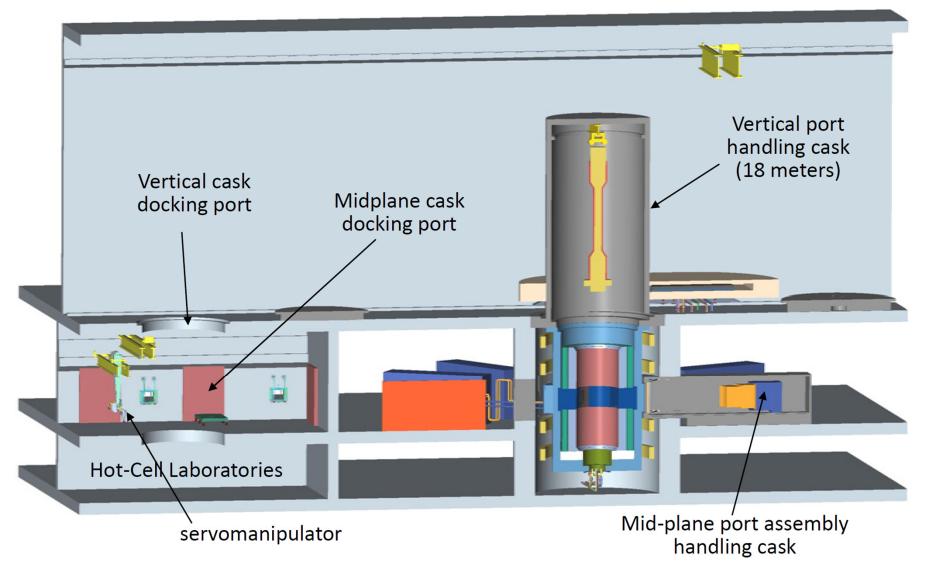

Optimization approaches:

- Sequential quadratic
- Particle swarm
- Broyden, Fletcher, Goldfarb, Shanno algarithm
- VisualDOC linked to ANSYS


<u>Better with 8 roles of channels:</u> For W_L=2MW/m²

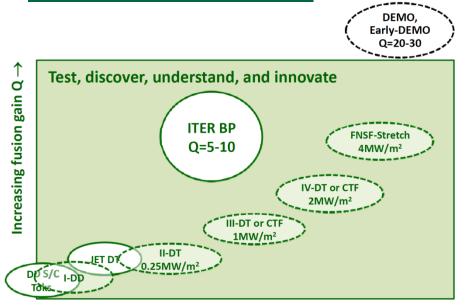

- Peak stress reduced to 1/3 to ~100 MPa
- Peak *∆* temp reduced to 60C


Initial

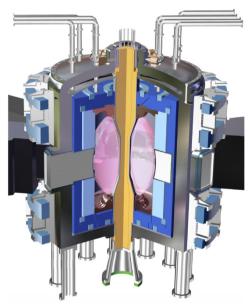


Extensive remote handling systems, including hot-cell laboratories, will be required

Remote handling equipment for hot cell laboratories to enable fusion nuclear sciences R&D



To manage the risks, requisite R&D can be defined addressing the FNSF design features


- Solenoid-free plasma start up, using ECW/EBW, Helicity Injection (FNSF-ST).
- Hot-Ion H-Mode operational scenarios with strong tokamak database.
- SOL-Divertor with improved configurations to limit heat fluxes ≤10 MW/m², and control fuel and impurities.
- Continuous, disruption-minimized, non-inductive plasma operation in regimes removed from stability boundaries.
- Single-turn TF coil center post engineering and fabrication (FNSF-ST).
- Remote handling (RH) systems and modular internal components, to minimize MTTR to achieve a duty factor of 10%.
- RH-enabled maintenance and research hot-cells.
- Low dissipation, low voltage, high current, dc power supply with stiff control of current.

Accompanying FNS R&D Program to develop, design and instrument all internal test component & options, in concert with FNSF.

FNSF aims to carry out <u>fusion nuclear science</u> <u>R&D in cost and time</u> effective manner

Increasing fusion neutron flux \rightarrow

- Tests and understands multi-scale nuclear-nonnuclear coupling, to innovate solutions and, with CTF, develop experimental database for DEMO.
- R&D cycle: test, discover, understand, improve / innovate solutions, and retest.
- Complements & parallels ITER, and accelerates DEMO R&D in concert with accompanying R&D to increase MTBF.
- Saves time & cost: compact, low P_{fusion}, moderate Q, high W_L, low tritium usage.
- Starts with conservative plasma physics (JET-level Q<1 plasma and moderate W_L~0.3MW/m²) & enabling technologies.
- Uses remote handling, hot cells, shielded vacuum seals, bi-directional sliding joint, etc. to reduce MTTR.
- Advances Q and W_L in stages , from DD to DT & from FNS to CTF, ending with possible electricity generation.