The Electra KrF Laser Program: A Viable Path Towards an Efficient and Durable IFE Driver

F. Hegeler¹, M. C. Myers, M. F. Wolford, J. D. Sethian, A. Mangassarian², J. L. Giuliani, and S. P. Obenschain

> Naval Research Laboratory Plasma Physics Division Washington, DC

¹ Commonwealth Technology, Inc., Alexandria, VA
² Science Applications International Corporation, McLean, VA

24th Symposium on Fusion Engineering Chicago, IL, June 30, 2011

Work was supported by DOE/NNSA/DP

Why KrF Lasers for IFE?

Short wavelength (248 nm) maximizes target gain and stability

Demonstrated outstanding spatial uniformity and large bandwidth (2 THz) on NIKE laser

Straightforward zooming

High laser system efficiency (estimated wall plug: 6-7%)

2D simulations show power plant gains with KrF-driven targets

Gains >150 @ 500 kJ (shock ignition) Gains >140 @ 1 MJ (conventional direct drive)

Shock Ignition Concept Betti et al, Phys. Rev. Lett. 98, 155001 (2007) (LLE, University of Rochester)

2-D simulations by A. Schmitt, NRL

The Electra KrF Laser System

NRL Progress in KrF Laser Development

	2001	2011	IFE
Repetition rate (pulses/second)	.00056	2.5 to 5	5
System efficiency based on experiments on main components (%)	1.9	6 to 7%	> 6.0
Durability (continuous shots)	200	90,000	300 M
Shots in eight days	50	350,000	4,000,000

These advances have been made through understanding and controlling the relevant physics Electra's Main Oscillator Uses a First Generation Pulsed Power System Utilizing a High Voltage Transformer and Gas Switches

Capacitor charges up to +/- 43 kV (>160 ms)

Better Understanding of Electron Beam Diode was Key to Increase Durability by a Factor of 10

Voltage reflection leads to cathode spots on foil and cause failures

Pinhole detection system prevented catastrophic foil failures

Carbon fiber cathode with >500,000 shots

One Key to KrF Durability (aka long foil lifetime): Minimize Residual Current in the E-Beam Diode

Voltage reflections allow the electrically grounded 25 μ m thick pressure foil to explosively emit electrons, which leads to cathode spots on foil and cause failures. Increasing the e-beam diode impedance removed these voltage reflections and improved the foil durability by a factor of 10.

Cathode Spots on Foil Eliminated and Diode Durability Greatly Extended By Suppressing Reversals

90,000 laser shots (10 hrs) continuous @ 2.5 Hz 150,000 laser shots on same foils @ 2.5 Hz 50,000 laser shots on same foils @ 5 Hz 300,000 laser shots in 8 days of operation

Electra cell after 30,000 shot, 2.5 Hz continuous laser run

Rib Emission Captured by Gated Camera 6 µs After Main Pulse

The First Generation Pulsed Power System Also Shows a Voltage Reversal About 6 μs After the Main Pulse

This secondary voltage reversal correspond to ~ 0.1% of the main pulse energy

Imperfect Coupling Across HV Transformer Generates the Late Time Voltage Reversals, Which are Removed with Diode Clamping Circuits

Diode array on prime power caps

Efficient and Durable Pulsed Power System for IFE Requires Solid State Switches

Advantages:

- Flat-top pulsed power efficiency is 80-85% compared to < 40% of first generation pulsed power system
- Misfire (pre- or late fire) rate of gas based switches is eliminated with solid state switches

Solid State System is Constructed with 48 kV, 7 kA Thyristor Switches

Each switch has 12 x 4 kV Thyristors

Only the first two Thyristor stages are command triggered, the remaining stages are auto-triggered.

Switch parameters: Hold-off voltage: 48 kV Switch current: 7 kA Max. fault current: 14 kA Rated current rise: 30 kA/μs Max. current reversal: 80%

Lifetime exceeds 300 M shots for 4kV Thyristors

Model S38 Quality Control Testing 500nF Charged To 4kV Into 0.20hm Serial Number 1926 5 10 -Voltage - Current 8 3 6 /oltage (kV) current (kA 2 -2 250 500 750 1000 1250 1500 0 time (ns)

Tested @ 20 Hz: Hold-off voltage: 4.1 kV Switch current: 6.8 kA Peak current rise: 36 kA/µs Thyristors operated for 200-300 M shots No failure

Single test stand

Lifetime station with 10 stands

Lifetime of Capacitors exceeds 300 M shots

- 2.0 x 10⁸ shots on GA capacitors (~0.015 J/cm³)

Compact 200 kV, 4.5 kA Solid State Pulse Generator Integrated Test of Components

This system has run for 11,500,000 shots continuously at 10 Hz (319 hours)

Contraction of the second seco

The Solid State Generator has a Stable Performance

The voltage amplitude shows a variation of less than \pm 1% (a single digital step of the scope corresponded 1% of the signal amplitude).

The time jitter for the initial 125k shots is \pm 0.4 ns, \pm 0.9 ns, and \pm 1.4 ns at 1 σ , 2 σ , and 3 σ standard deviation

Three Foil Cooling Techniques are Evaluated: Bulk Flow, Forced Convective Cooling with Airfoils, and Jet Cooling

Cooling by bulk flow:

Laser gas flows along the hibachi foils with velocities of ~ 9 m/s.

It does not provide adequate foil cooling at 5 Hz high efficiency operation.

Forced Convection With Airfoils Cools the Foils But Causes Focal Profile Perturbations

Cooling with Airfoils:

Laser gas flows along the hibachi foils with velocities of 20-30 m/s.

It provides adequate foil cooling at 5 Hz operation (T~400 C), but will not produce a smooth wavefront.

Jet Cooling Technique Developed by Georgia Tech Adequately Cools Foil and Minimizes Focal Profile Perturbations

It provides adequate foil cooling at 5 Hz operation (T~370 C).

Georgia Institute of Technology & Matt Wolford

Interferometry Data Shows that Jet Cooling Provides Recovery of Wavefront

Heated gas by e-beam with nonuniform _____ density distribution

Interferogram signal lost (HeNe laser is deflected) Expect high gas temp gradients

Cool "new" gas with more uniform density distribution

Recovered after 200 ms:

KrF Development Goals for the Next Few Years

Million Shot class operation

- Improve the durability of first generation pulsed power system
- High performance cathode
- Jet cooling
- Design an all solid state pulsed power system for Electra (500 kV, 100 kA, 150 ns)
- Full size e-beam components on Nike

- Companion target physics program on Nike:
 - Develop science and technology underpinnings for high gain direct drive fusion target concepts