Plasma Power Station (PPS) v0.6

Keep it simple. Meier-Moir Model for Cost of Electricity guides decisions.

J. P. VanDevender^{1,2},

M. E. Cuneo², S. A. Slutz², M. Herrmann², R. A. Vesey², D. B. Sinars²,
D. B. Seidel², C. A. Jennings², R. D. McBride², L. X. Schneider²,
K. A. Mikkelson², V. J. Harper-Slaboszewicz², B. P. Peyton³,
A. B. Sefkow², and M. K. Matzen²

¹VanDevender Enterprises, ²Sandia National Laboratories, ³Ktech Corp.

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

PPS provides technology insertion opportunities for Sandia's Baseline Design.

Subsystem	Baseline	Plasma Power Station
Target Chamber	Thick Li or FLiBe	Thick LiXY
	Wetted Wall	Wetted Wall
	Gas Fill	Vacuum Fill
Fusion Capsule	MagLiF wt Laser & B _z	QSDD
	~15 GJ Yield	~600 MJ Yield
Driver-Capsule Coupling	Stamped Steel Vacuum RTL	Cast LiXY Cylinders
	Post Hole Convolute	Inverse Diode
	Long MITL	Short MITL
	0.1 per second	3 per second
Pulsed Power Driver	250 MJ H ₂ O Dielectric LTD	85 MJ MITL LTD
	H ₂ O Dielectric Transformer	Long MITL
	20 MV vacuum stack	0.1 MV vacuum stack
	65 to 100 MA	45 MA
	dl/dt ~ 0.8 MA/ns	dl/dt ~1.6 MA/ns

Tackle hardest part first—coupling driver to target.

80% of the problem is overcoming the fallacy of the familiar.

•

Tackle hardest part first—coupling driver to target.

80% of the problem is overcoming the fallacy of the familiar.

Tackle hardest part first—coupling driver to target.

80% of the problem is overcoming the fallacy of the familiar.

RTL design effectively enables moving the required mass.

- P_e ~ 10⁹ J/s
- $P_{th} \sim 2.5 \times 10^9 \text{ J/s} = C_p \delta T dM/dt$
- C_p ~ 10³ J/kg/°C
- δT ~ 500 °C
- dM/dt~5000 kg/s
- Put it close to the capsule.
 - E. P. Velikov (1974)
 - Grant Logan (1993)
 - Dmitri Ryutov (2005, 2007)
 - VanDevender (2008)

Cylindrical RTL and Inverse Diode couple the driver to the capsule.

Space charge prevents secondary electrons from neutralizing injected current.

Red: Injected electrons Blue: Electrons emitted from cathode Potential distribution across AK gap at r=0.05 m shows E-field reversal at cathode.

40 MA at 4 MeV injected and 33 MA at 2 MV at load without optimization

First Inverse Diode had ~70+/-10% collection efficiency.

 Saturn
 PPS

 2.2,2.8 MeV
 7.5 MeV

 2 kA/cm²
 0.5 kA/cm²

 2.5 MA
 45 MA

Inverse Diode integrates QSDD Capsule and Magnetically Insulated LTDs in PPS.

Magnetic pressure substitutes for ablation pressure in a hohlraum.

LASNEX Simulations show MRT Instability is benign for $R_o/\delta_o = 21$ and 40 ns drive.

t=41.6 ns

•1 MJ yield in 1D and 2D •38 MA Z-Class Driver • $R_o/\delta_o = 21$

Simulations reveal seven features that motivate QSDD.

- 1. Quantum Molecular Dynamics make design less uncertain than laser plasma interaction, wire initiation, and opacities make x-ray drive.
- 2. >6 times more fuel energy than x-ray drive.
- 3. Peak magnetic pressure >10 times ablation pressure of xray drive.
- **4. Internal pulse shaping** automatically provides hot spot heating and adiabatic compression of main fuel.
- 5. Metal conductor tamps expansion during burn.
- >4.5 MA current penetration into fuel gives alpha trapping and reduce ρr_{ignition} by a factor of 5—without applied B or laser.
- 7. Possibility of MJ yields on a 40-ns, Z-class driver.

QSDD needs~ 38 MA for ignition and ~45 MA for high-gain on PPS.

Producing dI/dt=1.5 MA/ns in a 2.5 mm radius capsule requires Inverse Diode.

Magnetically Insulated, Linear Transformer Driver (MI-LTD) provides the modular e-beams.

PBFA-I, 2 MV, 12 MA

Hermes III, 18 MV, 0.7 MA RHEPP II, 120 HZ

45 MA at 1.5 MA/ns in QSDD capsule drives the design of the rest of the PPS.

- Direct Inverse Diode
 - 1 meter radius
 - 560 A/cm²
 - 7.5 MeV injected electrons
 - 1 mm minimum AK gap

LASNEX 1D simulation gives 630 MJ for 3.2 mm capsule.

PPS targets 3 Hz operation to produce power at Meir-Mohr Model COE of 7.6 cents/kW-hr.

First Units with 10% Cost of Capital and 1.85 MIT 2009 Study Factor to 2007\$ gives 14.9 cents/kw-hr.

Input: Nc=number of chambers	1.00
Input: RR=rep rate in shots per	
chamber per second	3.00
Input: Discount or Hurdle Rate for	
attracting capital	10.00%
MIT Escalation Factor	1.85
Approximation to Pe (MW)	866
Eta=thermal to electrical	0.44
\$/Joule for Bank Energy	2.00
Energy Store (MJ)	85.0
η G_bank	7.5
Net Electrical Power (MW)	651
Output: COE in \$/KWH	0.149
Y(E)=yield per chamber (MJ)	641
M=Energy multiplication factor	1.15
Net Electric Power (MW)	651

Proven Units with 7.8% Cost of Capital and 1.0 MIT 2009 Study Factor to 2007\$ gives 7.6 cents/kw-hr.

Input: Nc=number of chambers	1.00
Input: RR=rep rate in shots per	
chamber per second	3.00
Input: Discount or Hurdle Rate for	
attracting capital	7.80%
MIT Escalation Factor	1
Approximation to Pe (MW)	866
Eta=thermal to electrical	0.44
\$/Joule for Bank Energy	2.00
Energy Store (MJ)	85.0
η G_bank	7.5
Net Electrical Power (MW)	651
Output: COE in \$/KWH	0.076
Y(E)=yield per chamber (MJ)	641
M=Energy multiplication factor	1.15
Net Electric Power (MW)	651

QSDD Capsule, Cylindrical RTL, Survivable Inverse Diode, Magnetically Insulated LTD.

Saturn could prototype the PPS Inverse Diode, RTL, and QSDD Capsule.

QSDD baseline with 17.5 mg mass has 4 cm/ µs velocity. QSDD surrogate with 1.4 mg mass has 22 cm/µs velocity.

Sandia National Laboratories

PPS Version 0.6

has many issues and research opportunities.

- Better mitigation of wall instability
- Experimental demonstration of QSDD performance
- High-resolution Gorgon, LASNEX, or Hydra simulations at 500 MJ yield with dl/dt ~1.5 MA/ns
- Experimental demonstration of > 90% current efficiency with Direct Inverse Diode (DID)
- Survivable anode at 560 A/cm² electron injection
- 2D simulations of blast and radius for survivability
- Simulation of chamber recovery for 3 Hz operation
- LiXY working fluid with <3x10⁻⁵ Torr vapor pressure at 400 °C
- Liquid metal MITL anode
- Ignition on short pulse modification of Z

Backup Slides

PPS provides technology insertion opportunities for Sandia's Baseline Design.

Subsystem	Baseline	Plasma Power Station
Target Chamber	Thick Li or FLiBe	Thick LiXY
	Wetted Wall	Wetted Wall
	Gas Fill	Vacuum Fill
Fusion Capsule	MagLiF wt Laser & B _z	QSDD
	~15 GJ Yield	~600 MJ Yield
Driver-Capsule Coupling	Stamped Steel Vacuum RTL	Cast LiXY Cylinders
	Post Hole Convolute	Inverse Diode
	Long MITL	Short MITL
	0.1 per second	3 per second
Pulsed Power Driver	250 MJ H ₂ O Dielectric LTD	85 MJ MITL LTD
	H ₂ O Dielectric Transformer	Long MITL
	20 MV vacuum stack	0.1 MV vacuum stack
	65 to 100 MA	45 MA
	dI/dt ~ 0.8 MA/ns	dl/dt ~1.6 MA/ns

Quasi Spherical Direct Drive capsule offers 500 MJ yields with 85 MJ energy store.

Many issues are mitigated with a higher dl/dt.

- Uniform Initiation
- Less growth of Magnetic Rayleigh Taylor instability
- Lower driver energy
- Higher ηG
- Lower Cost of Electricity

2D yield is currently limited by a wall instability. Three possible solutions are being examined with LASNEX.

つ

