

Upgrade of Converter Units of EAST Poloidal Field Power Supply

Ge Gao for EAST PFPS Team

The Institute of Plasma Physics, Chinese Academy of Sciences

2011-06-30 SOFE

Content

- Introduction and background
- Analysis and simulation on the upgraded converter unit
- New converter units in EAST campaign

EAST Power Supply

EAST PFPS

• EAST Poloidal Field Power Supply (2006~now)

EAST PF Coil Distribution

Circuit of each set of PFPS

No.	Voltage	Current
PS11,PS12	200 V	15 kA
PS7,PS8	700 V	15 kA
PF1~PF6,PF9,PF10	350 V	15 kA

EAST PFPS Converter Units

More PS power Requirement

- Bz can't catch up with the fast Ip growth rate
- Startup, elongation or X control requires higher voltage.

Plasma current and voltage requirement

✓ PS7,PS8 converter units to PS11,PS12

Solution

✓ New converter units for PS7 and PS8

Converter Unit Improvements

(PS7,PS8)

	Voltage	Time Delay	Converter Control
Former	700V	4.3 ms	analog controller
New	1100V	2.6 ms	digital compact-PCI
			based fast controller
		due to change on topology	Also can be used on ITER PF main
			converter

New PS7, PS8 Converter Unit

Function of Local Controller

Components: Fast Controller+ thyristor firing module

+PLC+interlock

8

Fast controller

Alpha controller

- Special for 6-pulse converter control
- Trans alpha into firing pulse
- Optical fiber output, safe application

Thyristor firing module

OPTICAL FIRING:

- High EMC immunity
- Good shape of firing pulse
- Safe for controller

MONITORING of:

- Presence of firing pulse
- Presence of TFM board power

Simulation and analysis

• *Software:* PSCAD/EMTDC

The complete circuit contains:

- *Control scheme:* voltage regulator, circulating current regulator and the parallel branch unbalance current regulator
- *Converter sub-units*: each rated at 1.1 kV DC and 7.5 kA DC;
- DC reactors and Load

Converter Scheme

Region

I12) versus load current Idc

		mode
Ch	Head11, Head12	Parallel Connection
Bh	Head12	6-pulse
Ah,At	Head12, Tail11	Circulating- current
Bt	Tail11	6-pulse
Ct	Tail11, Tail12	Parallel Connection

Sub-units

Operation

Circulating current mode

To check that the switching off of one of both, head or tail sub-units, does not occur during steady state and during transient operation.

Sub-unit currents when the triggering angle of the head converter is 75°

Circulating current when the output voltage changes

Time (sec)

1.014

The mean value of the circulating current can be set as 10% of Idc0, providing a minimum instantaneous circulating current of 4.5% of Idc0.

-1.25

0.996

Parallel operation simulation

To check the peak unbalance current and duration is less than the threshold of the over-current protection to distinguish it from the fault

Sub-unit currents with triggering angle of 90°

Sub-unit currents in transient case

15

Steady state: ≻maximum unbalance current is 7.5% of Idc0 (15% of In)

Transient:

The maximum unbalance current is 20% of Idc0 (40% of In).

Mode Transition

To check Normal operation on mode transition works properly including: > the process of current transfer from 1 to 2 branches and vice-versa;
> Turn-on and off the circulating current

Current transfer from two to one converter

Turn-off the circulation current

Conclusion on the simulation

The results show that the process properly works.

A whole cycle of the current change

Operation Result

Current, Voltage of each 6-pulse bridge

Black: 21143 (before upgrade) Blue: 35300 (after upgrade)

Six faults (among 8548 shots) during the new converter unit's first EAST campaign, all at the beginning.

Conclusion

- Four converter units of EAST PFPS has been upgraded and operated in the autumn campaign of EAST Tokamak in 2010.
- The compact-PCI bus based converter local controller which could be used to ITER PF main converter has been tested in the new EAST PF7&PF8 Converter module.

Thank you for your attention