Low Loss and Compact Power Supply for Superconducting Magnet Using MERS Soft-Switching Converter

Takanori Isobe, Kazuyuki Ito, Tatsuya Matsukawa and Ryuichi Shimada

Tokyo Institute of Technology, Research Laboratory for Nuclear Reactors, MERS Research Laboratory

Background

Current Source Converter widely used for magnet power supply.

- ✓ Good for large scale system construction
- ✓ Suitable for magnet load (Bi-directional voltage in DC side)
- Voltage Source Converter is widely used in industries.
 - ✓ Much progress in development of IGBT, IEGT...
 - ✓ Good controllability, reactive power profile (unity power factor)
 - XTwo stage conversion needed. (AC/DC+DC/DC chopper)
 - Bulky smoothing capacitor, lifetime problem

Propose a low loss and compact magnet power supply circuit with reverse conductive switches (IGBT, IEGT, MOSFET...)

Advantages:

- Direct conversion of 3-phase AC to DC current source (Magnet) without smoothing capacitor.
- Soft-switching in all semi-conductor switches,
 - ✓ Low semi-conductor loss due to reduced switching losses
 - High power rating device can be used with high switching frequency
- Bi-directional power flow, expected application is superconducting magnet including SMES.

MERS (Magnetic Energy Recovery Switch)

Characteristics

- Small sized dc-capacitor
- Line frequency switching
- Transformerless
- Simple control

Advantages

- Simple design principles
- Low losses
- Compact size
- Low EMI
- High Robustness

2. Soft-switching Power Conversion by MERS

Extended MERS concept for high frequency power conversion.

Applying "Simple" Reactive Compensation

Power Systems

Copyright © 2011Tokyo Institute of Technology Shimada Research Laboratory

Tokyo Institute of Technology, Shimada Research Laboratory

Power Generation

Soft-switching by MERS

1. AC MERS Applications

Series compensation as an adjustable capacitor

What is Soft-Switching?

Copyright © 2011Tokyo Institute of Technology Shimada Research Laboratory

Multi-Pulse Operation for More General Applications

9

MERS Pulse Link Concept

- Two converters are connected via pulse DC voltage.
- First stage generates the pulse.
- Both converters operate with soft-switching.
- No large smoothing capacitor

DC/DC step-up + DC/AC

- Motor drive by DC source
 - (c.f. Electric vehicle ...)
- Grid connecting inverter (c.f. PV and fuel cell ...)

AC/DC + DC/AC = direct AC/AC

Grid connecting of generator

Improved P.F. and harmonics

Copyright © 2011Tokyo Institute of Technology Shimada Research Laboratory

Tokyo Institute of Technology, Shimada Research Laboratory

General motor drive

MERS Pulse-Link for Magnet Power Supply

AC/DC converter and DC voltage/current converter are connected directly.

- The DC converter based on MERS generates pulse voltage in capacitor.
- Bi-directional power flow, bipolar DC voltage output. Can be applied to superconducting magnet.

Advantages:

- No bulky smoothing capacitor (Good for power density)
- Both converter operates with soft-switching (High efficiency), higher switching frequency can be used.(Good for power density.)

Operation Principle of MERS DC converter

Operation Principle of AC/DC converter

Phase angle control based on AC grid voltage.

- Lag gate signals results in AC to DC (Increasing magnet current)
- Lead gate signals results in DC to AC (Decreasing magnet current)
- Both of active and reactive power can be controlled.
- Modulation can be applied to improve input current distortion.

Small Scale Experiment

Experimental Waveforms

Link voltage and output current were almost same as expected.
Input current was distorted, but can be improved by further control.

Conclusions

- A new power supply circuit topology for superconducting magnet was proposed.
- Small scale experiments demonstrates the concept.
- Control principle should be established.
 - Eliminating energy storage results in link voltage fluctuation.
 - Poor voltage utilization of semi-conductors will cause low efficiency.
- Design principle should be shown.
 - At the rated operation, voltage and current rating utilization of semiconductor switches should be maximum.
 - Design procedure to select circuit parameters for given specifications (rated magnet current, power...)

Laboratory Members with Prof. Shimada

Copyright © 2011Tokyo Institute of Technology Shimada Research Laboratory

