Recent Experimental Results of

National Fusion Research Institute KSTAR Research Center

M. KWON on behalf of KSTAR Team

KSTAR Team and Collaborators

- National Fusion Research Institute : YK Oh, WC Kim, HL Yang, JH Kim, SW Yoon, YM Jeon, SH Hahn, HK Na, KR Park, JH Lee, SH Hong, A England, ZY Chen, Y Yaowei, JG Bak, SG Lee, SH Seo, DC Seo, WH Ko, YU Nam, JI Jeong, ST Oh, KD Lee, KI Yoo, BH Park, DK Lee, JC Seol, DS Lee, JW Yoo, H Lee, SW Kim, JG Lee, JS Hong, Y Chu, IS Woo, YO Kim, KP Kim, WS Han, Y Yonekawa , SH Park, MK Park, MK Kim, SI Lee, WL Lee, SH Baek, TG Lee, JS Park, KW Cho, DS Park, J Ju, KM Moon, JS Kim, HS Kim, HK Kim, KM Kim, EN Bang, KS Lee, HT Kim, YM Park, HJ Lee, SW Kwak, NH Song, YB Jang, HT Park, YS Bae, JS Kim, M Joung, SI P ark, HJ Do, YS Kim, JH Choi, JK Jin, DG Lee, CH Kim, JD Kong, SR Hong, YJ Kim, ST Kim, NY Jeong, DS Lim, JY Kim, JM Kwon, SS Kim, HG Jang, L Terzolo, SM Lee, S Tokunaga, K. Miki, JC Kim, DR Lee, S Sajjad, I Chavarovski, JH Sun, L Wang, M LeConte
- National Institute of Fusion Science : K Kawahata, Y Nagayama, K Ida, T Mutoh, B Patterson, N Narihara, T Seki, S Kubo
- Korea Atomic Energy Research Institute : JG Kwak, SH Jeong, SJ Wang, SH Kim, DH, Chang, BH Oh
- · General Atomics : A Hyatt, M Walker, D Humphrey, J Leur, N Eidietis, AS Welander, GL Jackson, J Lohr
- Japan Atomic Energy Agency : T Hatae, K Watanabe, M Dairaku, M Kikuchi, K Sakamoto
- Pohang University of Science and Technology : H Park, MH Cho, CM Ryu, W Namkung
- Korea Advanced Institute of Science and Technology : W Choe, CS Chang, SH Lee
- Princeton Plasma Physics Laboratory : D Mueller, L Grisham, JK Park, TS Hahm
- Oak Ridge National Laboratory : D Hillis, RJ Colchin (deceased), JW Ahn
- Seoul National University : YS Hwang, YS Na, HS Kim, KM Kim, DH Kim
- Hanyang University : KS Chung, YH Kim, HJ Woo, JH Sun
- National Cheng Kung University : F Cheng, K Shaing
- University of California at San Diego : P Diamond
- Columbia University : S Sabbagh, YS Park
- Australian National University : M Hole
- Kushu University : A Mase, N Yagi
- Kyungpook University : KW Kim
- Soongsil University : CB Kim
- Daegu University : OJ Kwon
- Ajou University : SG Oh
- Fartech : JS Kim, YK In
- ASIPP : B Wan, Y Shi

Mission and Achievements

S KSTAR Mission

- To achieve the superconducting tokamak construction and operation experiences, and
- To develop high performance steadystate operation physics and technologies that are essential for ITER and fusion reactor development

S KSTAR Parameters

PARAMETERS	Designed	Achieved
Major radius, <i>R</i> o	1.8 m	1.8 m
Minor radius, a	0.5 m	0.5 m
Elongation, κ	2.0	1.8
Triangularity, δ	0.8	0.8
Plasma volume	17.8 m ³	17.8 m ³
Bootstrap Current, f _{bs}	> 0.7	-
PFC Materials	C, CFC (W)	С
Plasma shape	DN, SN	DN
Plasma current, I _P	2.0 MA	1.0 MA
Toroidal field, B ₀	3.5 T	3.5 T
Pulse length	300 s	10 s
β_N	5.0	> 1.5
Plasma fuel	H, D	H, D
Superconductor	Nb ₃ Sn, NbTi	Nb₃Sn, NbTi
Auxiliary heating /CD	~ 28 MW	2.0 MW
Cryogenic	9 kW @4.5K	5 kW @4.5 K

•Black:achieved •Red:by2011

Long Pulse Operation

Advanced Tokamak

Standard

Iso-flux control (2011)

Shaping (2010)

Integrated and Optimized Operation

For steady-state operation,♪

- Heating & Current drive
- Enhanced Performance
- Stability and Control
- Plasma boundary
- Long pulse operation capability

As expanding the operational limit, an integration and opti mization will be pursued with long pulse capability.

From "Realizing Steady-state Tokamak Operation for Fusion Energy" by T. Luce in 2009 APS-DPP

KSTAR Device for 2011 Campaign

KSTAR Heating and Current Drive Systems

KSTAR	Specification	Role	in 2011
NBI	 14 MW, 300 s D0/H0 Two beam lines Three ion sources per each beam line Positive based ion source at 120 keV 	- Ion heating & CD - H-mode in initial phase	 1.5 MW D0 One beam lines One ion source Beam energy : max. 100 keV Beam pulse : less than 10 s
ICRF	30–60 MHz, 8 MW(source), 300 s - Sources: Four 2MW transmitter	 Ion & electron heating in high density On- and off-axis CD Wall cleaning by RF discharge between shot 	Frequency : 30 MHz Source power : < 1.5 MW Pulse : > 10 s Use 4 straps in the antenna
LHCD	5 GHz, 2 MW(source), 300 s - 4 x 500 kW CW klystrons	 Electron heating Off-axis CD for plasma current profile control RS-mode 	
ECH/CD	84/110 GHz, 0.5 MW(source), 2 s - 84 GHz, 0.5 MW gyrotron 170 GHz, 3 MW(source), 300 s - 3 x 1 MW CW gyrotrons	 84 (or 110) GHz ECH Startup system Assisted startup using pre-ionization 170 GHz ECCD system 2nd harmonic heating & CD NTM stabilization leading to high beta Sawteeth mode control (heating around q=1 surface) 	ECH-assisted start up with 110 (and 84) GHz, 0.5 MW (5 s) Gyrotron ECH and CD with 170 GHz, 1 MW (10 s)

ASTRA Simulation of KSTAR Non-inductive Scenario

- Full non-inductive scenario possible with balanced-NBI & LHCD in RS q-profile plasmas
 - $I_P = 0.8MA$ obtained with $f_{NI} = 100\%$ at $P_{tot} = 8.4MW$

NBI Heating & CD Modeling for KSTAR

- Radial profiles of NBI heating & CD for KSTAR model equilibrium calculated using NUBEAM
- comparison made of three possible NBI configurations for the 2nd KSTAR NBI system
- more off-axis heating & CD with the variation of type A \rightarrow B1 \rightarrow B2

5 GHz, 500 kW CW Klystron Prototype & Launcher

Test at KSTAR: 20 s @460 kW, 800 s @300 kW
Utilization of this test-bed for ITER LH launche r window high power test.

- Prototype of one chann el has been fabricated a nd validated with 4-way RF power splitting
- Un-cooled 8-channel la uncher grill will be fabric ated for 2012 KSTAR ca mpaign with grill dimens ions
- → width, b = 5.5 mm, septum thickness, d = 1.5 mm, height, h = 55 mm

 Design of 8-channel fully active waveguide launcher (no. of waveguide = 32)

5 GHz LH CD Simulation Results in KSTAR

r_{RF} (MA/MW) Dashed line

■RF driven current of the order of ~200 kA/MW with efficiency larger than 0.25×10^{20} AW⁻¹m⁻² when peak $n_e \sim 0.6 \times 10^{20}$ m⁻³ or higher, peak $T_e \sim 10$ keV, $B_T = 3.0$ T and $N_{||} \sim 1.90$ with deposition position is $r/a \ge 0.3$. with current density ~4×10⁴ A cm⁻²

 N_{II}=1.9 is optimized for consist ent with good coupling, good a ccessibility, good current profil e control and efficient current drive for KSTAR 5 GHz LHCD launcher.

First 170 GHz, 1 MW ECCD Launcher

Plan of 170 GHz, 3 MW ECCD Launcher

- 1st 1-beam, 1 MW launcher (front-end two mirror syste m which is same as existing 84/110 GHz EC launcher except the curved surface of the focusing mirror for th e beam focusing
- 2nd 2-beam, 2 MW launcher for the upgrade phase

 First 1 MW 1-beam launcher i nstalled at KSTAR equatorial port (Bay Em)

Fixed Mirror

Copper

- Passively cooled mirrors (inla id Cu bars on back of steerin g mirror diffuse heat; SS use d to reduce eddy current)
- Steering mirror pivoted at -30 cm from the equatorial plane

170 GHz EC CD Simulation Results in KSTAR

20

70 ₇

Current drive efficiency, $\eta = \langle n_e \rangle R_0 I_{CD} / P_{CD}$

- •Antenna pivot, z = +30 cm (or -30 cm)
- Beam divergence, FWHM = 1.7 de g
- Maximum driven current is 53.2 kA /MW for ϕ = -25 deg and θ = -15 d eg (or +15 deg).
- •The current drive efficiency η inc reases as the plasma density an d the electron temperature incre ases, but the peak value of the c urrent density decreases as the plasma density increases.
- •For the electron temperature de pendence; both the current drive efficiency and the peak value of the current density increases as the electron temperature increas es.

ECH-assisted Startup

Successful pre-ionization with 2nd harmonic ECH

- 2nd harmonic ECH pre-ionization : 1.5 T with 84 GHz and 2.0 T with 110 GHz
- Loop voltage for startup was lowered to 2 V (~15% decrease).
- Pre-ionization was characterized by scanning the injection angle, gas pressure and ECH power. Power threshold was about 250 kW.
- 2nd harmonic ECH pre-ionization could be applicable to ITER startup.

First H-modes in KSTAR

- Typical ELMy H-mode discharges achieved in KSTAR with NB I and ECRH
 - One year earlier than our plan (last days in the campaign)
- Total 30 shots obtained for non-adjacent 5 days
 - Ip=0.6 MA at B_T =2.0 T with DN diverted shape (kappa>1.7)
 - Relatively low density regime ($n_e < 4.0 \times 10^{19} \text{ m}^{-3}$)
 - With ~1.5 MW available power (NBI+ECRH)
 - After boronization with carborane
- Marginal powers for L/H transition
 - Slow L/H transitions and dithering
 - Often synchronized with sawtooth crashes
- Under limited controllability of plasma shape and vertical stability
 - H-mode phase lasted for ~1.0 sec

Typical H-mode Shot in KSTAR

n

10/11/19

~30 shots observed in 5 days $B_T=2 T$, $I_p \sim 0.6 MA$, $N_e \sim 2e19 m^{-3}$ $P_{NBI} \sim 1.3 MW$ (80 keV, co-NBI) $P_{ECH} \sim 0.25 MW$ (cntr-injection to Ip) $P_{OH} \sim 0.2 MW$ Double null, $\kappa \sim 1.8$, $R \sim 1.8 m$, $a \sim 0.5 m$ Boronization with carborane $P_{thres} \sim 1.1 MW$ (ITER physics basis, 1999)

Slow L/H Transition and Synchronization with ST Crash

Threshold Power for L/H Transition Was Rolled Over In Low Density Regime

- Most of H-modes were obtained in the range
 - 0.14 ≤n_{e,line} ≤0.31x10²⁰m⁻³ (13% ≤ n_e/n_{GW} ≤40%) with ext. power of 1.1≤P_{in}≤1.5MW
 - Corresponding to n_{e.min} for L/H threshold (ITER physics basis, 1999)
- In the low density below 0.2x10²⁰m⁻³, the threshold power increased (rolled over) as the density decreased like as previous reports from JT-60U¹ and ASDEX-U²

 ¹ Fukuda T. et al 2000 Plasma Phys. Control. Fusion 42 A289
 ² Ryter F. et al 2009 Nucl. Fusion 49 062003

Energy Confinement Time Is in Line with Multi-Machine Database for L- and H-mode

 τ_E estimated using measured stored energy and ASTRA simulation with some assumptions

$$\tau_{\rm E,exp} \equiv (W_{\rm tot} - W_{f \, ast}) / P_{\rm loss}$$
$$P_{\rm loss} = P_{\rm Ohm} + P_{\rm aux} - P_{\rm rad} - P_{\rm fastion} - dW_{\rm tot} / dt$$

- Assuming 20% (due to low density regime) fast ion fraction in the stored energy, the experimental τ_E was estimated
 - L-mode: τ_E= ~86ms, H_{L96}=1.3
 - H-mode: τ_E=~130ms, H_{H98}=1.1

Variety of ELM phenomena found: mixing EC heating changes ELM characteristics

Large/isolated bursts (#4356)

1.5 MW of NB injections makes a dithering/small ELM first, and isolated, large bursts appear after a long ELM-free period (>0.2 s)

Small/grassy or mixed

(#4333,4362):

- Any deposition of EC heating eliminates first dithering
- Either small "grassy" ELMs or mix of small & large bursts appears after the ELM-free period

2D ECEI Observation: A Single Large ELM Crash Event Con sisted of A Series of Multiple Filament Bursts

- A single large ELM crash was consist ed of a series of multiple filament burs ts
- Similar observations on ion saturation currents measured from divertor prob es

Courtesy by G.S. Yun (Postech) and J.G. Bak(NFRI) Accepted for publication in PRL (2011)

38th IEEE International Conference on Plasma Science and 24th Symposium on Fusion Engineering

Filament Burst in A Large ELM Crash: Finger-Like Structure Formation and Its Evolution to A Burst

- Fast burst < 50 ms, localized burst zone
- Finger connection to LCFS initiates the ELM

Courtesy by G.S. Yun (Postech) Accepted for publication in PRL (2011)

N=2 RMP Applicable for KSTAR 2011 ELM Control

- n=2 magnetic perturbatio n applicable
- Poloidally three coils avail able for changes of even/o dd parity and phasing
- Note that these are all inn er coils close to plasma. A nd the middle coil is very u seful for variations of mag. perturbation.

KSTAR Picture-Frame RMP Coils

Preliminary Analysis of ELM Control by RMP for KSTAR 2011 : ELM Suppression May Possible

 Reducing B_T doesn't change much, but helpful due to reducing q₉₅

- ψ_N >0.83 can be met
- q_{95} =3.7 with B_T =1.7 T
- → ELM could be suppressed

- I_P can make large changes on
 - RMP penetration

- q₉₅

➔ I_p optimization with lowest B_T need ed for ELM suppression

ELM and its Control Simulation using M3D code etc.

Calculation of the growth rate and mode structure of unstable ELM using a linear ELM stability code, ELITE

Nonlinear simulation of ELM evolution using M3D code

 Simulation studies of ELM control mechanisms using RMP or Pellet pace-making method are also being performed using the M3D, XGC0 codes

Dust conversion from layers

- 1. Stable layers at far distance.
- 2. Flake formation at coupon #3, #6 is observed (several weeks after vent).
- 3. Connected to internal stress and adhesion.

Deposition in the gap in KSTAR

SIMS analysis

- 1. H/H+C ratio ~ 0.2-0.4 while D/D+C ratio ~0-0.3 at top and bottom.
- 2. H/H+C ratio ~ 0.1-0.6 while D/D+C ratio ~0-0.3 at midi-plane. H/H+C ratio ~ 0.02 at coupon #6.

Deposition in the gap in KSTAR

- (Average) total carbon flux towards outer wall in 2009 campaign is about ~2.94×10¹⁶ atoms/cm²/s.
- 2. KSTAR vacuum vessel has surface area of 80 m² with 11 m² covered by graphite P FC tiles in 2nd campaign.
- 3. Assuming that the erosion source of the carbon is only in-board PFCs (effective ero sion area 8.8 m²), an erosion flux of 2.32×10¹⁷ atoms/cm²/s.
- Total carbon atoms eroded from PFC during the campaign would be ~4.1×10²⁴ atom s (82 g).
- 5. (Average) hydrogen (deuterium) retention (inside layers) of $\sim 7.5 \times 10^{23}$ H (D) atoms (1.26g H + 2.51g D = 3.77g) in 2009.

Gross erosion (TPL) from spectroscopy (per campaign)	60 - 160 g $\Gamma_{C^0}^{\text{in}} = 1.5 - 3.5 \times 10^{20} \text{ C/m}^2/\text{s}$	
Estimated deposits mass (per campaign)	15 – 30 g	
Estimated distant redeposition	20 – 50 %	
Estimated local redeposition	80 - 50 %	
Integrated D quantity retained in the vessel	4.10 ²³ D	
Integrated D content in analysed deposits	5.10 ²² D	
D/C ratio in the deposits	0.01 - 0.10	

Tore Supra

Table 1 : Summary of carbon and deuterium balances for one campaign.

Divertor Transport Simulation for KSTAR

 Divertor heat fluxes calculated using B2 code for various operation powers an d C⁺ impurity condition for KSTAR divertor model

ITER High Priority Research Topics (IEA/ITPA)

Keywords of key issues : Shaping / H-mode / rotation / disruption ECRH breakdown / ICRF conditioning / runaway / dust

- TC-2 Power ratio Hysteresis and access to H-mode with H~1
- TC-3 Scaling of the Low-Density Limit of the H-mode threshold
- TC-9 Scaling of intrinsic plasma rotation with no external momentum input
- TC-14 RF rotation drive
- PEP-22 Controllability of pedestal and ELM characteristics by edge ECH/ECCD/LHCD
- PEP-28 Physics of H-mode access with different X-point height
- DSOL-8 ICRF conditioning
- DSOL-9 C injection experiments to understand C migration
- DSOL-13 Deuterium co-deposition with carbon in gaps of plasma facing components
- MDC-13 Vertical stability physics and performance limits in Tokamaks with highly elongated pla smas
- MDC-15 Disruption database development
- MDC-16 Runaway electron generation, confinement, and loss
- IOS-2.1 ECRH breakdown assist at 20-degree toroidal angle
- IOS-2.2 Ramp-down from q95=3
- IOS-5.2 Maintaining ICRH coupling in expected ITER Regime.
- IOS-6.2 li controller (Ip ramp) with primary voltage / additional heating
- DIAG-3 Resolving the discrepancy between ECE and TS at high Te
- DIAG-4 Field test of a Capacitance diaphragm Gauge as a dust monitor for ITER

5-Year Operation Plan (Phase I)

Campaign	2008	2009	2010	2011	2012
Operation Tim e	'08. 3 <i>~</i> '08. 8	'09. 8 <i>~</i> '09.12	'10.6 <i>~</i> '10. 12	'11.4 <i>~</i> '11.9	'12. 3 ~'12. 8
Experimental g oals	 First plasma startup 2nd Harmonic ECH pre -ionization 	 Startup stabilization ECH pre-ionization ICRF wall conditionin g 	 Shape control L-mode MHD study Wall conditioning 	 H-mode MHD ELM & Disruption Wall interaction 	 Profile control ITER shape ELM & disruption
Operation Para meters	• $B_T \sim 1.5 \text{ T}$ • $I_P > 0.1 \text{ MA}$ • $t_P > 0.1 \text{ s}$ • Te ~ 0.3 keV • Shape ~ Circular • Gas : H ₂	 B_T: 2 ~ 3.5 T I_P > 0.3 MA t_P > 2 s Te ~ 1 keV Shape ~ Circular Gas : D₂ 	 B_T: 2 ~ 3.5 T I_P > 0.5 MA t_P > 5 s Ti ~ 1 keV Shape ~ DN (κ2.0) Gas: D₂ 	 B_T: 2 ~ 3.5 T I_p > 1 MA t_p > 10 s Ti ~ 3 keV Shape ~ DN & SN Gas: D₂ 	 B_T: 2 ~ 3.5 T I_P > 1 MA t_P ~ 20 s Ti ~ 5 keV Shape ~ DN & SN Gas: D₂
Magnetic Contr ol	• TF : 15 kA [1.5T) • PF : 4 kA (~1 Wb) • Grid : 50 MVA	• TF : 35 kA [3.5 T] • PF : +/-4 kA (~2 Wb) • Grid : 50 MVA	• TF : 35 kA [3.5 T] • PF : +/-10 kA (~4 Wb) • IVCC : VS • Grid: 100 MVA	• TF : 35 kA [3.5 T] • PF : +/-15 kA (~6Wb) • IVCC : VS • Grid: 100 MVA	• TF : 35 kA [3.5 T] • PF : +/-20 kA (~8Wb) • IVCC : FEC,RMP,RWM • Grid: 100 MVA
Vacuum Conditi oning	 Inboard limiter (belt) Gas puff Glow DC 	 Inboard limiter + Boronization + ICRF DC 	+ Divertor + Passive stabilizer + In-vessel coil + PFC baking	+ PFC cooling	+ Cryopump operation
Heating & Curre nt Drive	• ECH(84G):0.3MW, 0.4s	• ECH(110G):0.2MW, 2s • ICRH: 0.3MW, 1s	• ECH(110G):0.5MW • ICRH: 1MW • NBI: 1MW	• ECH(84/110G):0.5MW • ECCD(170G): 1MW • ICRH : 1.5MW • NBI: 1.5MW	 ECH(84/110G):0.5MW ECCD(170G): 1MW ICRH : 1.5MW NBI : 3MW LHCD : 0.3MW
Diagnostics	 Magnetic Diagnostics / MMWI / ECE / Hα / V S / filterscope / TV / Hall probe array 	 + XICS / Soft X-ray / Hard X-ray/ Resistive Bolometer / Probe / R eflectometer e-beam 	+ Thomson (5ch)/ ECEI / IRTV / Image Bolomet er / CES / neutron / XI CS-2 / Ellipsometry /	+ FIR / Div. bolometer /X -ray pinhole / Cohere nce imaging/ fast-ion / etc	+ MSE / MIR / BES / VUV / CX-NPA /etc

Long-term Operation Plan

KSTAR will be operated as an international collaboratory to exploit the key scientifi c and technological issues for the ITER and attractive fusion reactor.

Summary: Toward Steady-State Operations

SC magnet system for steady-state :

Reliable operations of SC magnet & cryogenic facility for long pulse operation
 n

Divertor & PFC :

- Active-cooling on PFC & divertor will be prepared for long pulse operation
- Particle and flow control (fueling, wall conditioning, pumping)
- Dust characterization as a ITER safety issue

Heating & Current drive optimization :

- Simulation study with ASTRA, ONETWO, TSC/TRANSP predicts possible ste ady-state operation scenarios
- Long-pulse, non-inductive NBCD, LHCD, ECCD being installed

Advanced confinement by active plasma control:

- ELMy H-modes were achieved in the 2010 campaign, although the controllability of plasma shape and vertical stability was limited.
- Extensive experimental program will be done for advanced confinement phys ics using profile diagnostics, heating and current drive systems and IVCC

KSTAR Presentations in SOFE 2011

- SO1B-2 (invited) Key Features in the Operation of KSTAR J.G. Kwak
- SO4C-2 (invited) The Construction of ITER, Viewed from Lessons Learn ed from KSTAR Project <u>H. Y. Yang</u>
- SP3-39 Current Control Method of Thyristor Converter for PF Supercond ucting Coil in KSTAR, <u>H. -S. Ahn</u>
- SP3-40 Development of in-Vessel Vertical Coil (ivc) Power Supply <u>J. K. Jin</u>
- SP1-15 Design Feature & Operation Results of Kstar PFC GN2 Baking System <u>S. -T. Kim</u>
- SP1-32 Temporal and Spatial PFC Temperature Profiles in KSTAR 2010 Campaign <u>E. N. Bang</u>