

ASDEX Upgrade results and future plans

Arne Kallenbach, V. Bobkov, F. Braun, A.Herrmann, H. Höhnle*, R.M. McDermott, R. Neu, J.-M. Noterdaeme, T. Pütterich, J. Schweinzer, J. Stober, E. Strumberger, W.Suttrop, D. Wagner, H. Zohm, the ASDEX Upgrade Team

Max-Planck-Institut f. Plasmaphysik, D-85748 Garching, Germany IPF, Universität Stuttgart, D-70569 Stuttgart, Germany

Basic properties of the ASDEX Upgrade (AUG) tokamak

machine parameters, heating and CD systems, plasma facing components what makes AUG different from other mid-size tokamaks ?

Recent achievements and planned extensions

- divertor development
- improved ICRF antenna design
- ECRH extension and physics studies
- ELM mitigation by magnetic perturbations

Future ASDEX Upgrade planning

AUG cross section and poloidal field coil system

The PF coils are situated outside the toroidal field coils (like in ITER, and probably in DEMO)

DD

Actual heating and current drive systems

2 neutral beam injectors (60+90 kV), 4 sources each á 2.5 MW

4 ICRF generators á 2 MW, 4 antennas

4 ECRH I gyrotrons 0.5 MW, 2 s (140 GHz) 3 ECRH II gyrotrons 1 MW, 10 s (140 GHZ, 0.8 MW 105 GHz)

4th step-tunable (105 GHz, 140 GHz) ECRH II gyrotron scheduled end 2011

Power to plasma	a Heated species
20 MW	ions+electrons
6 MW	electronstions
4 MW	electrons

20 MW used simultaneously with feedback controlled N seeding, so far

All plasma facing components are clad with tungsten

W PFCs require adaption of operating scenarios: W accumulation avoidance

Central tungsten accumulation

... occurs if central heating and/or ELM flushing not sufficient

Counter-measures:

- + increase central heating
- + increase ELM frequency by D puff

Implications of the tungsten PFCs on operation space

ASDEX Upgrade works with slightly higher densities compared to carbon tokamaks

- improved H-mode at slightly higher core collisionalities

+ power exhaust controlled and mitigated

- W does not produce wall pumping like C
- some D puff necessary for W accumulation control

Core W content depends on pedestal transport: neoclassical W inward drift and ELM flushing

Impurity ion transport in ETB is neoclassical – strong W inward flux

impurity peaking n_{pedesta}l/n_{sep}

ELM flushing required to limit pedestal peaking of high-Z impurities
deuterium puffing is the standard tool to ensure sufficiently high ELM frequency

Next topic:

Divertor development

- Over its 20 years of operation, several upgrades of the AUG divertor occured

Divertor evolution: several stages of improvement

DIV IIb (2000-2006)

DIV IIc (2007-2009)

Lessons learned: a divertor should be closed, but not too tight or complicated, and without leading edges

A W-C sandwich structure is used to reduce weight. The solid W will allow higher surface temperatures compared to a W coating

note that the AUG divertor is inertially cooled

ICRF physics and antenna optimization

- ICRF operation with tungsten antenna limiters leads to high W sputtering rates
- these cause enhanced radiative losses

ICRF physics and antenna optimization: HFSS code calculations of near fields

two 3-strap antennas as next step

- need to control phasing and amplitude
- allows scan of amplitude/phase balance

in collaboration with ENEA/PoliTo

Broad limiter ICRF antenna shows better W accumulation behaviour (code benchmark step)

Ζ

- W accumulation appears with new antenna at smaller gas injection rate
- new antenna has better balance central heating / W source
- \rightarrow proceed to 3-strap antenna

IDD

Next topic:

ECRH extension and transport studies

ECRH is a highly versatile tool for

- central heating
- MHD control
- current drive
- global and local transport studies $\ \leftarrow$

Several ECRH schemes developed and used in AUG: X2, O2, X3, O1 mode

Special measures required for low single path absorption of X3, O2 and O1 modes

\Rightarrow Further upgrade ECRH III: 4 gyrotrons 0.5 MW, 2 s \rightarrow 1 MW, 10 s, 2-f

Magnetic perturbation experiments for ELM mitigation

- ELM mitigation achieved above a critical density with n=2, resonant+non-resonant

First ELM mitigation experiments with B-coils

900 A \otimes 5 windings

Magnetic pertubation coils are mounted close to the plasma

B-coil mounting, summer 2010

Comparison of type-I ELMy and ELM mitigated phases

DΠ

Power load from IR thermograpy (at one toroidal location)

IPP

- strongly reduced ELM load
- moderately increased inter-ELM load in outer divertor

Combination of MP ELM mitigation and nitrogen seeding

- very small ELMs, and benign divertor heat load
- confinement improvement due to nitrogen reverted by MP operation (still H₉₈=0.9)

effect of MPs on (seeded) plasma not yet understood \rightarrow

Future extension of magnetic perturbation coils

finally, further 8 'A-coils' will be mounted in the midplane (2014/15)

Aug-Dec 2011: adding another 8 B-coils

AC power supplies will allow to **rotate** the magnetic perturbations (e.g., for RWM stab.) B-coils ~ 800 Hz, A-coils ~ 3 kHz

Final mid-term extension: a conductiong wall

- integrates improved ICRF antennas
- facilitates improved j(r) control capabilities

with active control, RWM stability increased by 50 % in advanced scenarios

	2011	2012	2013	2014	2015	2016	2017	2018	2019	
Consolidation of ITER Baseline Operation	Broad Limiter: 3-Strap Antenna: Compatibility of ICRH with tungsten wall									
	ECRH-II: Feedback controlled NTM stabilisation									
	Divertor Manipulator:									
Preparation of ITER / DEMO Advanced Operation	Internal Co	nils:	Static RA	IPs	Rotating	RMPs				
	Internet ex		Conducting	Shell	rotating	RWM cont	rol			
		ECRH-III.	- COLIGICAL S			TWWW CON	Current	Profile Tailo	ring	
	DIV			High P/R 8	low v* ope	ration				
		Design		Constr	uction / Inst	allation]	Operation		

Schedule also determined by financial resources

- ASDEX Upgrade extensions allow to proceed the development of improved operating scenarios for ITER and DEMO
 - + full W divertor, ICRF compatible to high-Z, ECRH upgrade, MP coils
- Full tungsten wall coverage ensures favourable exhaust conditions (while hampering use of internal barriers and very low v^* in the core)
- diagnostic extensions ongoing for physics studies an strong theory support
- real-time diagnostics and active control are steadily increasing

Reserve slides

ECRH used for intrinsic rotation studies w/o external momentum input

Intrinsic AUG rotation counter-current in center, co-current in the edge

- goes more negative with heating power in L-mode

- H-mode brings positive offset velocity

slight rise of pedestal density after coils are switched on main effect on T_e is absence of large ELM drops

Mechanism of ELM mitigation so far not understood – extension of coils system

DΠ

Chirikov parameter ("vacuum approximation") - Large values obtained, but does not predict ELM mitigation

pρ