DIII-D Results and Plans For Research In Support of ITER and Future Steady-State Fusion Tokmaks

by D.N. Hill Lawrence Livermore National Laboratory

Presented at the 24th Symposium on Fusion Engineering Chicago, IL

June 30, 2011

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-PRES-489137

DIII-D Mission: To Establish the Scientific Basis for the Optimization of the Tokamak Approach to Fusion Energy Production

ITER: Establish the viability of burning plasma operation

- Design/Planning/Operation Issues:
 - Avoidance/Mitigation of transients (ELMs, Disruptions)
 - Established operating scenarios
 - Effect of tritium breeding modules

DIII-D

FNSF & DEMO: Fusion Power production

1 GW, steady-state

• Physics Needs Beyond ITER:

- Operation near theoretical stability limits
- Full current profile sustainment
- Closed fuel cycle
- Materials in extreme conditions
- Common Elements:

_

- Transport in Burning Plasma regime (T_e = T_i, Low Torque Input)
- Real-Time Stability Control

D.N. Hill/SOFE/June 2011

Effect of Energetic Particles

- Simulation Capability

2011 Experimental Plan Utilizes Significant New Capabilities Provided by 2010 Long Torus Opening

D.N. Hill/SOFE/June 2011

DIII-D Major System Capabilities for 2011 Experiments

Heating and Current Drive (injected power/pulse)

- NB: 8 sources; 15 MW co, 5 MW counter (3 s); 5 MW off-axis
- EC: 6 gyrotrons; 3.8 MW (5 s); six steerable launchers
- FW: 2 MW (10 s), 1 MW (2 s)

Coils

- 18 Poloidal field shaping coils
- 6 external coils, 12 internal coils
 - Error field control, RWM feedback
 - RMP (ELM control)

Divertor/First wall/Conditioning

- 3 cryopumps; 15-20,000 l/s
- ATJ graphite 90% coverage; Reduced edge heating
- 350° C bake, boronization, He glow between shots

Support for ITER is the Major Focus of DIII-D Research

ITER Timeline

Design & Construction

Initial Operation 2019

Burning Plasma

World Fusion Community Prepares for ITER Operation

Resolve short-term design issues for ITER

ELM control Disruption mitigation Startup, shape and position control

Resolve medium-term design issues for ITER

H-mode access in H₂ and He Magnetic field asymmetries & 3D effects Heating & current drive requirements

Address operational issues for commissioning and high-gain operation Fast-ion instabilities 3D field effects Operational scenarios

Integrated plasma dynamics and control

Strong electron heating $T_e \sim T_i$ Low external torque operation Profile control, Divertor control

Control of Edge Localized Modes (ELMs) is Urgent ITER Issue: DIII-D is Developing Physics Basis For Control

H-mode ELMS: ~20% of energy loss arrives in rapid repetitive bursts

Application of 3D fields can suppress ELMs

Flexible set of 3D coils

Plasma response modifies internal fields

DIII-D is Evaluating Multiple Techniques For ELM Control

Active Pacing: Induce more frequent, but smaller ELMs

ELM-free Operation: Low-torque QH-mode

4.0

5.0

High Priority Experiments Seek Robust Controls to Mitigate Consequences of Major Disruptions

Control Simulation Experiments Demonstrate Improved Scenarios for ITER Startup and Rampdown

- Reliability of ramp-up improved Buby EC assist during breakdown and burn-through
- New ITER rampdown scenario developed to avoid additional flux consumption
- Reliably ramped down without disruption until current below 1.4 MA (equivalent) ITER target
 - -Vertical stability limit quantitatively predicted by theory

DIII-D Hydrogen/Helium Experiments Inform Plans for Initial Non-Nuclear ITER Operation

- ITER plans to commission many control systems during non-nuclear operations
- Experiments in hydrogen and helium
 - L-H transition power: H/He/D: 2.0/1.5/1.0
 - Reduced confinement in H/He (> 50%)

Future work

- Assess various ELM control techniques in He plasmas
- Develop scenarios with improved confinement in H and He

SOL Studies Focused on Identifying Key Processes Determining Divertor Heat Flux Width Scaling to ITER

Data from 2010 joint experiments (DIII-D, C-Mod, and NSTX) points to underlying physics (width $\propto 1/B_{pol}$)

082-11/DNH/rs

DIII-D Experiments Simulating ITER TBM Field Perturbations Showed Minimal Impact on Performance

- Little effect on confinement, but some reduction in plasma rotation, possibly from response to n=1 component
- 2011-2013 Plan: Reassess effect on rotation/confinement with TBM n=1 error field compensation

Feedback-controlled Error Field Correction Experiments Are Developing the Knowledge Base For ITER

Feedback control of plasma response to applied 3D fields is key

12

Experiments Are Developing Techniques to Suppress Disruption Precursors: ECCD Locked Mode Control

- Locked n=1 tearing mode begins to grow
- n=1 RMP aligns mode's toroidal phase with ECCD
- ECCD suppresses mode and avoids disruption

D.N. Hill/SOFE/June 2011

Measured Alfvén Eigenmode Activity Agrees With Simulation and is Correlated with Measured Losses

D.N. Hill/SOFE/June 2011

Future Steady State Tokamaks Have Common Research Needs

Burning Plasma Conditions

- Dominantly electron heated
- Low torque
- Low fuelling and collisionality
- Energetic ions

Steady State Plasma Operation

- Fully non-inductive
- Self driven well aligned currents
- High confinement
- Configuration control

Stable Operation at High β

- Good passive stability
- Effect of energetic ions
- Active control through heating and 3D tools
- Event prediction, detection and control

- High Fluence Boundary Solution
- Spread heat
- Cool exhaust to avoid erosion
- Compatible with high performance core

Plasma Behavior is Fundamentally Different in the Burning Plasma Regime

- Transport processes change with dominant α heating of electrons:
 - Nature & scale of turbulence change →
 - Because heat, momentum and particle throughput are very different cf NB heating
 - ITER likely different optimization to current devices
- New stability, transport and current dynamics in high β steady state
 - Off axis currents change the physics
 - Need to develop self-consistent and self-sustaining solution

Vital to prepare for this with present devices – avoid surprises or lengthy re-optimizations at the reactor scale

Fully Non-Inductive Operation Has Been Sustained for Approximately a Resistive Time (~1 s)

 Scenario based on separate studies of optimal ECCD location and plasma shape
 133103

Performance consistent with that required for FNSF-AT

Adding New Heating and Current Drive Technologies To DIII-D To Address Burning Plasma Physics

<u>Upgrades</u>

- 12 MW Microwave Heating
 - 1.8MW 117.5GHz gyrotrons - Steerable launchers

• 5+5=10 MW off axis Neutral Beams

- Relevant current distributions

Heating like fusion α' s
Current distributions like a power plant

Provides unique capability to address important issues for ITER, FNSF and Power Plant

D.N. Hill/SOFE/June 2011

Successful Installation of Off-axis Beamline Provides 5 MW of Off-Axis Neutral Beam Current Drive

- Beamline and all support systems were removed, modified, reinstalled, and ready for operation within 1 year.
- Continuous adjustment of injection angle (0-16.5°)
- Two modified NB ion sources were built and tested in FY10. First new source fabrication in US in over 25 years.
- Decision to proceed with 2nd OANB (to 10 MW) will be made in 2012

Successful Operation of Off-axis Beamline Provides 5 MW of Off-Axis Neutral Beam Current Drive

D.N. Hill/SOFE/June 2011

Clear Path to Dominant Electron Heating Relies On Deployment of 1.5 MW Gyrotrons

PATH FROM 5 MW (6 GYROTRONS @ ~1MW each) to 15 MW (10 GYROTRONS @ 1.5MW each)

DIII-D Well Positioned to Address Research Needs Common to Future Steady State Tokamaks

Burning Plasma Conditions Dominantly electron heated Low torque

- Low fuelling and collisionality
- Energetic ions

Steady State Plasma Operation

- Fully non-inductive
- Self driven well aligned currents
- High confinement
- Configuration control

DIII-D Current drive tools • Pulse lengths > τ_{R} Electron heating Variable torque Refined diagnostics Divertor flexibility 3D fields

Stable Operation at High β

- Good passive stability
- Effect of energetic ions
- Active control through heating and 3D tools
- Event prediction, detection and control

High Fluence Boundary Solution

- Spread heat
- Cool exhaust to avoid erosion
- Compatible with high performance core