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DIlI-D Mission: To Establish the Scientific Basis for the Optimization

of the Tokamak Approach to Fusion Energy Production

ITER: Establish the viability of FNSF & DEMO:
burning plasma operation Fusion Power production

500 MW, 400 s DIlI-D 1 GW, steady-state

* Design/Planning/Operation Issues: * Physics Needs Beyond ITER:

— Avoidance/Mitigation of transients — Operation near theoretical

(ELMs, Disruptions) stability limits
— Established operating scenarios — Full current profile sustainment
— Effect of tritium breeding modules — Closed fuel cycle

— Materials in extreme conditions
e Common Elements:

— Transport in Burning Plasma — Effect of Energetic Particles

regime (T, =T, Low Torque Input) — Simulation Capability

— Real-Time Stability Control
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2011 Experimental Plan Utilizes Significant New
Capabilities Provided by 2010 Long Torus Opening
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DIlI-D Major System Capabilities for 2011 Experiments

Heating and Current Drive (injected power/pulse)

e NB: 8 sources; 15 MW co, 5 MW counter (3 s); 5 MW off-axis
e EC: 6 gyrotrons; 3.8 MW (5 s); six steerable launchers
 FW: 2MW (10s), 1 MW (2 s)

Coils

* 18 Poloidal field shaping coils

e 4 external coils, 12 internal coils
— Error field control, RWM feedback
— RMP (ELM confrol)

Divertor/First wall/Conditioning

e 3 cryopumps; 15-20,000 I/s

* ATJ graphite - 90% coverage; Reduced edge heating
 350° C bake, boronization, He glow between shots
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Support for ITER is the Major Focus of DIlII-D Research

ITER Timeline
—————————————————————————————

Design & Construction Initial Operation 2019 Burning Plasma

World Fusion Community Prepares for ITER Operation

Resolve : ELM control
short-term design | Disruption mitigation
issues for ITER Startup, shape and position conftrol

: Resolve : H-mode access in H, and He
medium-term design Magnetic field asymmetries & 3D effects
issues for ITER Heating & current drive requirements

Fast-ion instabilities
3D field effects
Operational scenarios

Address operational issues for
commissioning and high-gain operation

Strong electron heating T, ~ T,

Integrated plasma dynamics and control Low external torque operation
Profile control, Divertor conftrol
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Control of Edge Localized Modes (ELMs) is Urgent ITER

Issue: DIII-D is Developing Physics Basis For Control
H-mode ELMS: ~20% of Application of 3D fields

energy loss arrives in
rapid repetitive bursts
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DIlI-D is Evaluating Multiple Techniques For ELM Control

Active Pacing: Induce more frequent,
but smaller ELMs

Multiple launch
locations (ORNL)
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High Priority Experiments Seek Robust Controls to

Mitigate Consequences of Major Disruptions

Massive Gas Injection to reduce Active control of Runaway Electrons
localized heating and vessel currents in DIII-D points to safe dissipation
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Contirol Simulation Experiments Demonsirate Improved

Scenarios for ITER Startup and Rampdown

Breakdown/ Ramp-

e Reliability of ramp-up improved Burnthrough up F"?*"°'°_ Bampdowp _
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DIlI-D Hydrogen/Helium Experiments Inform Plans for

Initial Non-Nuclear ITER Operation

H-mode power

e |ITER plans to commission many control threshold comparison
systems during non-nuclear operations 4
Helium %
 Experiments in hydrogen and helium

— L-H transition power: H/He/D: 2.0/1.5/1.0
— Reduced confinement in H/He (> 50%)

e Future work

— Assess various ELM control techniques in
He plasmas 0 1 2 3 4 E 6

— Develop scenarios with improved Ne (x101° m=3)
confinement in H and He
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SOL Studies Focused on Identifying Key Processes

Determining Divertor Heat Flux Width Scaling to ITER
Divertor Heat Flux Width

Mapped to Outer Midplane
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DIlI-D Experiments Simulating ITER TBM Field Perturbations

Showed Minimal Impact on Perfformance

ITER TBM Fields

e Liltle effect on confinement, but some

‘I 1 1 | | 1 1 | | 1 |
reduction in plasma rotation, possibly
from response to n=1 component £ or oraoe o TEM moekup (PEC)... -
Iy
o
e 2011-2013 Plan: Reassess effect on 5 00TV .
rotation/confinement with TBM n=1 @ ...can be attenuated via optimized
error field compensation oo

1 2 3 4 5 6 7 8 9 10
Toroidal harmonic @ ™
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Feedback-controlled Error Field Correction Experiments

Are Developing the Knowledge Base For ITER

[Feedbock control of plasma response to applied 3D fields is key]
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Experiments Are Developing Techniques to Suppress

Disruption Precursors: ECCD Locked Mode Conirol

Locked 2/1 mode * Locked n=1 tearing mode begins to grow
 n=1 RMP aligns mode’ s toroidal phase with ECCD

e ECCD suppresses mode and avoids disruption
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Measured Alfvéen Eigenmode Activity Agrees With

Simulation and is Correlated with Measured Losses

ECEI
f = 65.92 kHz

1 02 2D ECE Imaging
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Future Steady State Tokamaks Have Common

Research Needs

Burning Plasma Conditions Stable Operation
« Dominantly electron at High B

heated . Good passive stability
* Low torque - Effect of energetic ions

* Low [uellir]g and  Active control through
collisionality heating and 3D tools

* Energetic ions - Event prediction,
detection and control

Steady State
Plasma Operation

* Fully non-inductive

* Self driven well
aligned currents

High Fluence
Boundary Solution

Power plant » Spread heat

* Cool exhaust to
avoid erosion

* High confinement - Compatible with high
- Configuration control performance core

' L ) D.N. HI”/SOFE/JUI’]G 2011 082-11/DNH/rs

NATIONAL FUSION FACILITY 1 5




Plasma Behavior is Fundamentally Different in the

Burning Plasma Regime

100%

* Transport processes change with
dominant o heating of electrons:

— Nature & scale of turbulence change =

— Because heat, momentum and particle
throughput are very different cf NB heating

Xerc/ Xe

— ITER likely different optimization to current devices
0%

* New stability, tfransport and current
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Fully Non-Inductive Operation Has Been Sustained

for Approximately a Resistive Time (~1 s)

e Scenario based on separate studies of optimal ECCD

location and plasma shape 133103
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Adding New Heating and Current Drive Technologies
To DIII-D To Address Burning Plasma Physics

Upgrades

* 12 MW Microwave Heating
- 1.8MW 117.5GHz gyrotrons
- Steerable launchers

* 5+5=10 MW off axis Neutral Beams
- Relevant current distributions
& » |

* Heating like fusion o’ s
» Current distributions
like a power plant
rZ® SN

Provides unique capability t6 c:ddress
important issues for ITER, FNSF and Power Plant
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Successful Installation of Off-axis Beamline Provides

5 MW of Off-Axis Neuiral Beam Current Drive

Comparison of Off-Axis

8 A a.nd On-Alxis. CD Elfficiencyl .

}/ \k g:::::i.:; gg I;:I/'I\\nll\\llvv — ] e Beamline and c.1I.I supp9r’r systems were
6| N ] removed, modified, reinstalled, and

[ Left Beam Low e case | ready for operation within 1 year.

e Continuous adjustment of injection

00 02 04 06 08 10 angle (0-16.5°)
Radius, p

e Two modified NB ion sources were built
and tested in FY10. First new source
fabrication in US in over 25 years.

 Decision to proceed with 2nd OANB
(to 10 MW) will be made in 2012
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Successful Operation of Off-axis Beamline Provides

5 MW of Off-Axis Neuiral Beam Current Drive

Measured Fast-lon CXR Emission

D-alpha images of beam
interaction with plasma
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Clear Path to Dominant Electron Heating Relies

On Deployment of 1.5 MW Gyrotrons

PATH FROM 5 MW (6 GYROTRONS @ ~IMW each) to 15 MW (10 GYROTRONS @ 1.5MW each)

1.5 MW Conceptuc
Design

o

Install 1.2 MW gyro

‘.‘tl»=
- a e W

R

Fabricate 1.5 MW gyro
GA/PPPL collabora

Install 15t 1.5 MW gyrotron (#8)
Order 1.5 MW gyrofrons #9, 10
2 new 1.5 MW gyroftron lines

Order six 1.5 MW Gyroftrons

-
-
P ~¢

Replace two 1 MW gyrotrons with 1.5 MW

Replace four remaining 1 MW gyrotrons with 1.5 MW

5 10
Microwave power (MW)
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DIlI-D Well Positioned to Address Research Needs

Common to Future Steady State Tokamaks

Burning Plasma Conditions Stable Operation

- Energetic ions ," - Pulse lengths > T,  Event prediction,
/_ = detection and control

« Dominantly electron at High g
heated » Good passive stability
- Low torque - Effect of energetic ions
* Low fuelling and DIll-D - Active control through
collisionality — - - Current drive tools | heating and 3D tools

* Electron heating
» Variable torque
 Refined diagnostics

* Divertor flexibility

Steady State * 3D fields High Fluence
Plasma Operation Boundary Solution
* Fully non-inductive - Spread heat
« Self driven well « Cool exhaust to

aligned currents avoid erosion
* High confinement - Compatible with high
» Configuration control performance core
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