
ITER PROJECT

J. FARINEAU ITER ORGANIZATION

June 27th, 2011

iten china eu india japan korea russia usa

Contents

- ITER Context and Background
- ITER Technical Systems
- ITER: Organization & Contractual Rules
- New ITER Project Baseline
- ITER Key Technologies and next CFT's
- ITER Progress and PA'S Status

ITER CONTEXT AND BACKGROUND

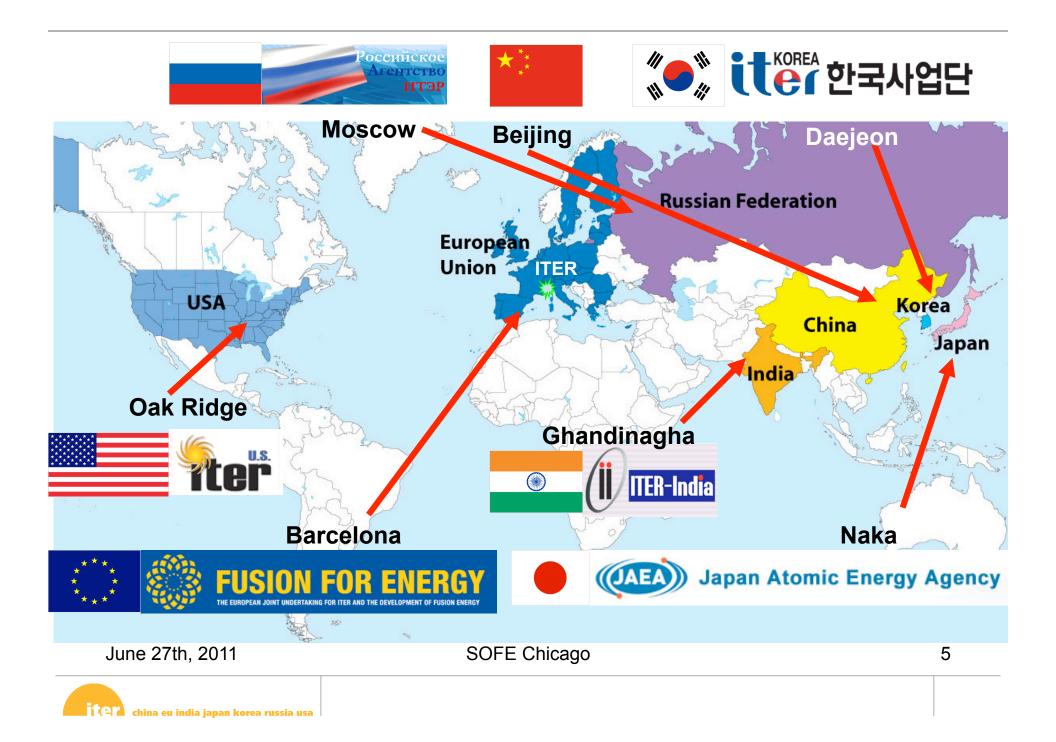
June 27th, 2011

iten china eu india japan korea russia usa

Why Fusion ?

• Fuel: abundant, world-wide distributed:

- sufficient deuterium in seawater for millions of years
- *tritium* is produced from *lithium*
 - conservative lithium ore recovery estimates indicate sufficient supplies for thousands of years
 - sufficient lithium in seawater for millions of years

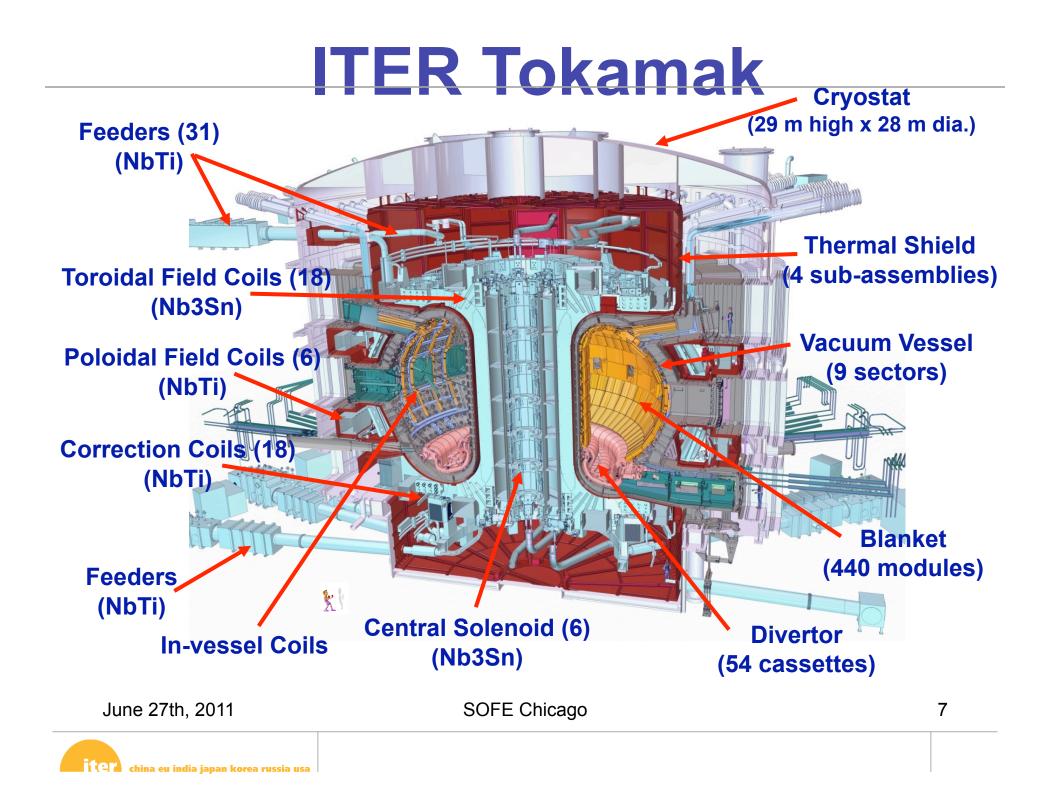

• Safety: no risk of major accidents:

• reactor contains fuel for only a few seconds burn

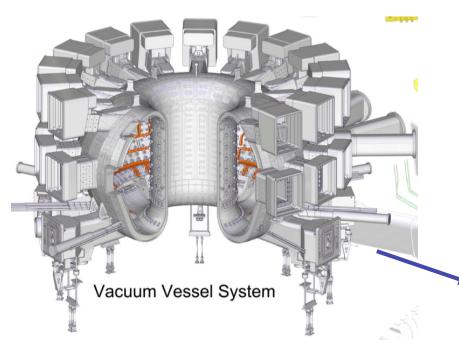
• Waste: no long-term burden:

low radio-toxicity after < 100 years

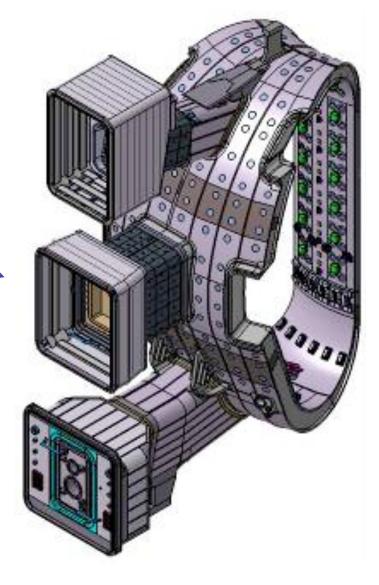
June 27th, 2011

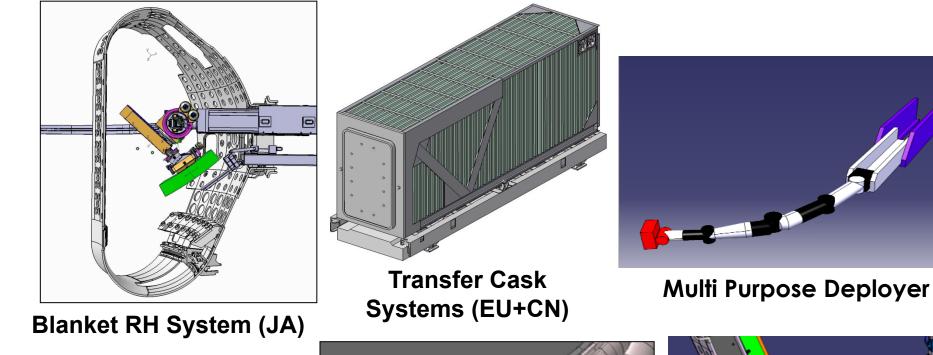

ITER TECHNICAL SYSTEMS

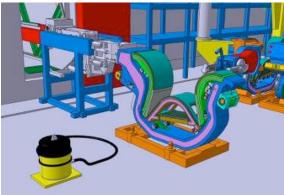
June 27th, 2011


SOFE Chicago

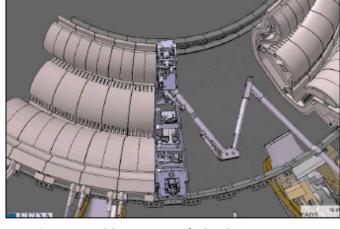
6


Vacuum Vessel

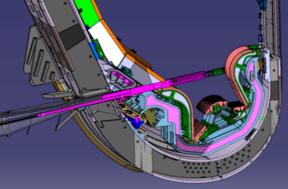

Facts


- First safety barrier for ITER
- SS 316 LN-IG
- ~5300 tons (VV, ports, shielding only)
- 19.4 m (63 ft) torus outer diameter
- 11.3 m (37 ft) torus height
- 9 Sectors assembled in triplets

June 27th, 2011



Remote Handling Systems



Hot Cell RH Equipment June 27th, 2011



In-Vessel Viewing System 9

ITER Project Site Layout: 3-D graphics view

ITER Buildings and Facilities

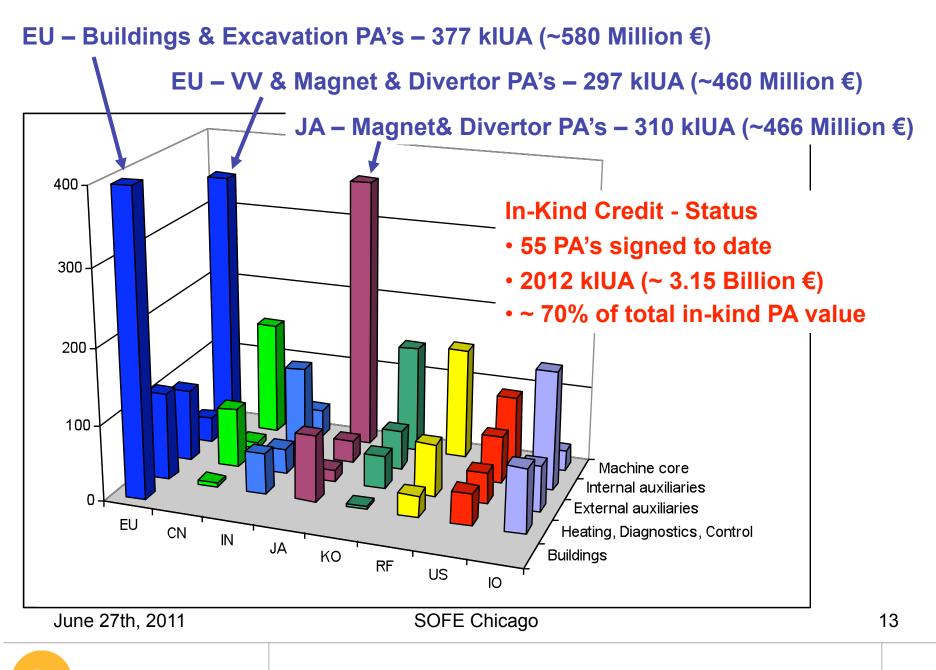
PF Winding Building – ~250 m (820 ft) x 45 m (148 ft)

Tokamak & Assy building – 6 levels @ 166 m x 81 m x 57 m high (~36000 m²) Cryoplant – 65 kW at 4.5 K & 1300 kW at 80 K Second largest in world

> Magnet power convertors buildings (~1000 MW output power)

Tritium building – 7 levels @ 25 m x 80 m (~14000 m²) Largest throughput in world (~300 kg/yr). Hot cell – 60 m x 70 m

Area - 60 hectares (~150 acres)


June 27th, 2011

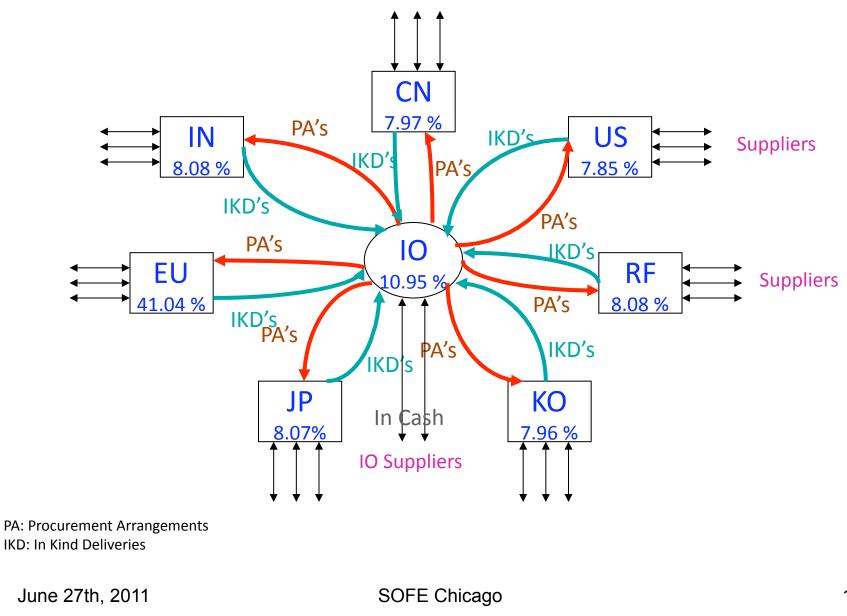
china eu india japan korea russia usa

ITER Organization & Contractual Rules

June 27th, 2011

In-Kind Contributions (Credit Values)

Integration between IO and DAs


- Basic Roles and Responsibilities -

ITER Organization	Seven Members (Domestic Agencies, DA)
 Planning / Design* Integration / QA / Safety / Licensing / Schedule Installation Testing + Commissioning Operation 	 Detailing / Designing* Procuring / Manufacturing Delivering Supporting installation Conformance

- * Depending on type of specification
 - Functional: Functional requirements by IO and design by DAs
 - Detail Design: Conceptual design by IO and detailed design by DAs
 - Build-to-print: Detailed design by IO and fabrication/shop design by DAs

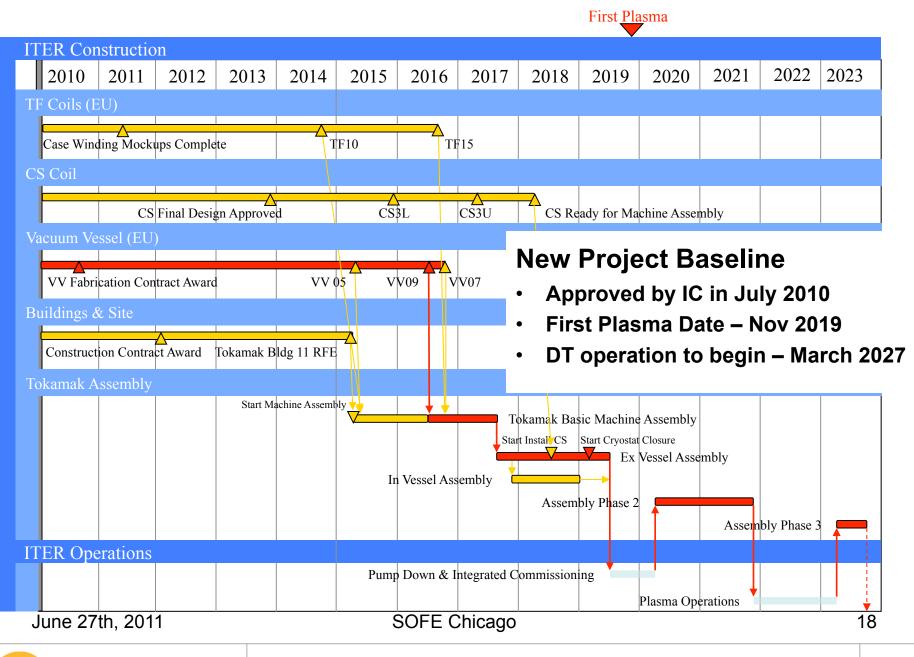
June 27th, 2011

Relationship IO-DA's-Suppliers (1)

iter china eu india japan korea russia usa

15

Relationship IO-DA's-Suppliers (2)


- ITER strictly sticking to Public Market Rules
- Possibility to work for ITER only through Call For Tender
- Bigger part of Business for European suppliers in F4E
- Different kinds of Contracts:
 - Support Engineering, services
 - R&D
 - Parts Procurements
- For European Industry, could make sense to build partnership with other companies
- For IO contracts with a competition worldwide, ITER could be the opportunity to build international partnership
- Collaboration can be extended beyond ITER scope

NEW ITER PROJECT BASELINE

June 27th, 2011

New Baseline Schedule for 2019 First Plasma

ITER Key Technologies and next CFT's

June 27th, 2011

china eu india japan korea russia usa

Key Technologies

Superconductive Coils (Nb₃Sn and NbTi)

Welded steel structures (TIG, NG-TIG, MIG, EB, Laser,...)

High-Vacuum technologies

High heat flux technologies

Insulating coatings

Neutral Beam Power Supplies and High Voltage Components (of the order of 1 MV)

High Power, High Frequency Transmission Lines and Sources (in the ranges 5-8 GHz and 120-180 GHz)

Electrical Power Supplies

June 27th, 2011

Key Technologies

Remote Handling Tools

Vacuum Cryopumps

Mechanical Pumps and Cooling Water Systems

Tritium Handling and Atmosphere Detritiation and

Tritium Compatible Valves

Materials for tritium breeding blankets including ceramic breeder and beryllium pebbles and permeation barriers

Buildings and Infrastructure

June 27th, 2011

1 🖓 🗋 china eu india japan korea russia usa

Next Call For Tender's up to end 2011 (1)

- Development Equipments and Design activities for CODACS
- HCD IC & EC: R&D and Design activities
- Many types of activities for Diagnostics Systems
- IT activities: Maintenance, SAP Assistance, general support and consultancy
- Tokamak: Materials & Welding qualification testings
- Tokamak: Heat Flux testing
- Component mechanical testing
- Welding performance under irradiation
- Mechanical test Magnet support
- In Vessel Coils interface trial
- Thermo-Mechanical tests on Blanket
- Quench Detection Instrumentation Studies
- Blanket & Divertor R. H. activities
- Hot Cell remote Handling Technology

June 27th, 2011

Next Call For Tender's up to end 2011 (2)

•Remote Handling R&D

•Remote Handling Procedures Validation

•Framework Contract on Access Control, Security Design and Procurement Support

•Framework Contract on Human factors

•Software System for Support of Assembly & Installation work Package Engineering & Planning

•Cryogenic Plant (Liquid Helium, 65 kW)

•Final Design of Detritiation System

•Cable Engineering

•Tritium Plant (elements of)

•Support to the owner for Electrical Engineer

•Leak localization: Water or Helium leaks in Cryostat or in Torus

•HTWP Design

•Proof of Design for DS Scrubber columns to replace molecular sieves

June 27th, 2011

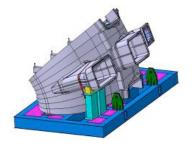
ITER Progress and PA's Status

June 27th, 2011

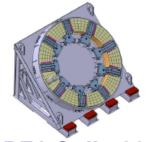
Jacketing Lines Status

• CN, JA and RF have set up their jacketing lines; EU and Us are starting; KO is negotiating with JA.

JA Jacketing Line at NSE SOFE Chicago



RF Jacketing Line at UNK


iter china eu india japan korea russia usa

25

TF Coil ~360 t 16 m Tall x 9 m Wide

VV Sector ~400 t 12 m Tall x 9 m Wide

PF1 Coil ~200 t 9.4 m Dia June 27th, 2011

iter china eu india japan korea russia usa

Roads Upgrades Complete

Heavy Component on Road (TF Coils, VV Sectors, & PF1 Coil)

ITER Construction Site

PF Coil Winding Building (first building on site)

- Main platform-leveling work is complete (~40 acres)
- Handover of the ITER site from CEA to the IO in June 2010;
- Tokamak Excavation started in July 2010
- Construction of the PF Coil Winding Building & ITER
 Office building began in July 2010

June 27th, 2011

SOFE Chicago

ITER Tokamak

June 27th, 2011

iter china eu india japan korea russia usa

	PA REFERENCE	PROJECTION DATE
1	5.3.P6.JA.01 NB H&CD Power Supply for Heating Neutral Beam	May 2011 (float under review)
2	2.4.P1A.IN.01 Cryostat	May 2011 (float under review)
3	3.4.P1.EU.01 Cryoplant	May 2011 (float under review)
4	3.4.P2.IN.02 Cryolines Late Delivery	May 2011 (float under review)
5	2.3.P1.JA.01 In-Vessel remote Handling Blanket	June 2011 (362 days)

	PA REFERENCE	PROJECTION DATE
6	5.5.P1.US.01 Diagnostics	May 2011 (float under review)
7	5.5.P1.CN.01 Diagnostics	May 2011 (float under review)
8	5.5.P1.RF.01 Diagnostics	May 2011 (float under review)
9	5.5.P1.KO.01 Diagnostics	May 2011 (float under review)
10	5.5.P1.IN.01 Diagnostics	May 2011 (float under review)

June 27th, 2011

	PA REFERENCE	PROJECTION DATE
11	3.2.P5.EU.01 Water Detritiation Systems Tanks	May 2011 (float under review)
12	5.3.P2.JA.01 HV Bushing for NBTF	May 2011 (float under review)
13	4.1.P8C.US.01 SSEN Components	Dec 2011 (float under review)
14	5.5.P1.JA.01 Diagnostics	June 2011 (float under review)
15	2.3.P2.EU.01 In- vessel remote Handling Divertor	July 2011 (187 days)

<u> </u>		
	PA REFERENCE	PROJECTION DATE
16	2.4.P1B.IN.01 Vacuum Vessel Pressure Suppression System	July 2011 (318 days)
17	4.1.P1B.CN.01 Pulsed Power Electrical Network (PPEN)	Dec 2011 (float under review)
18	1.1.P4A-B.US.01 Additional Central Solenoid conductor and materials (AMENDMENT)	July 2011 (float under review)
19	2.3.P3.EU.01 Ex- Vessel Remote Handling Transfer Cask System	July 2011 (float under review)
20	5.5.P1.EU.01 Diagnostics	Aug 2011 (float under review)

June 27th, 2011

	PA REFERENCE	PROJECTION DATE
21	5.2.P3.RF EC Gyrotrons	Sept 2011 (float under review)
22	5.5.P1.US.02 Diagnostics 2 nd PA	Sept 2011 (float under review)
23	5.5.P1.CN.02 Diagnostics 1 st Amendment	Oct 2011 (float under review)
24	5.5.P1.KO.02 Diagnostics 1 st Amendment	Oct 2011 (float under review)
25	5.5.P1.IN.02 Diagnostics 1 st Amendment	Oct 2011 (float under review)

	PA REFERENCE	PROJECTION DATE
26	5.2.P3.IN.01 EC RF Gyrotrons	Oct 2011 (float under review)
27	5.2.P3.EU.01 EC RF Gyrotrons	Oct 2011 (float under review)
28	4.1.P8C.EU.01 SSEN Components	Dec 2011 (float under review)
29	5.8.P1.RF.01 Port Plug Test Facility	Oct 2011 (float under review)
30	5.2.P4.IN.01 EC HV Power Supply	Oct 2011 (float under review)
31	3.1.P6.CN.01 Gas Injection System & GDC (Glow Discharge Cleaning System)	Nov 2011 (float under review)
		04

SOFE Chicago

June 27th, 2011

	PA REFERENCE	PROJECTION DATE
32	5.2.P4.EU.01 EC HV Power Supply	Dec 2011 (float under review)
33	2.3.P4.EU.01 In- Vessel Remote Handling Viewing & Metrology System	Dec 2011 (160 days)
34	3.4.P3.IN.01 Cryodistribution Components	Dec 2011 (float under review)
35	1.7.P1.EU.01 Cassette Body and Assembly	Dec 2011 (float under review)

June 27th, 2011

THANK YOU FOR YOUR ATTENTION

June 27th, 2011

china eu india japan korea russia usa

SOFE Chicago

34

BACK-UP SLIDES

June 27th, 2011

	REFERENCE	Signature date
1	1.1.P6A.JA.01 TF Conductors	28 November 2007
2	1.1.P6A.EU.01 TF Conductors	18 December 2007
3	1.1.P6A.RF.01 TF Conductors	12 February 2008
4	1.1.P6A.KO.01 TF Conductors	07 May 2008
5	1.1.P6A.CN.01 TF Conductors	16 June 2008
6	1.1.P1A.EU.01 TF Magnet Windings	20 June 2008
7	1.1.P6C.CN.01 PF Conductors	10 October 2008
8	1.1.P1B.JA.01 TF Magnet Windings	19 November 2008
9	1.1.P2B.JA.01 TF Magnet Structures	19 November 2008
10	6.2.P2.EU.01 PF Coil Winding Facility	19 November 2008
11	1.5.P1A.KO.01 Main Vessel	19 November 2008
12	1.5.P2A.KO.01 Equatorial and Lower Ports	19 November 2008
ne 27th,	2011 SOFE Chicago	

	REFERENCE	Signature date
13	6.2.P2.EU.02 Architect Engineering Services	4 May 2009
14	6.2.P2.EU.03 Tokamak Pit Excavation and Drainage	4 May 2009
15	6.2.P2.EU.04 Seismic Isolation Pads	4 May 2009
16	5.3.P7A.IN.01 Diagnostic neutral Beam Power Supply	19 April 2009
17	1.1.P6C.EU.01 PF Conductors	4 May 2009
18	1.7.P2C.RF.01 Divertor Dome	9 June 2009
19	1.5.P2B.RF.01 Upper Ports	9 June 2009
20	1.7.P2A. JA.01 Divertor Outer Vertical Target	17 June 2009
21	1.1.P6A.US.01 TF Conductors	18 June 2009
22	2.6.P1A-1B.US.01 Tokamak Cooling Water System	18 June 2009
23	1.1.P3A-B.EU.01 PF Magnets 2,3,4,5,6 (EU)	19 June 2009
24	5.3.P6.EU.01 Power Supply for Heating Neutral Beam (Low Voltage)	13 July 2009
ne 27th,	2011 SOFE Chicago	

	REFERENCE	Signature date
25	2.2.P2A.KO.01 Machine Assembly Tooling	3 August 2009
26	1.5.P1B.IN.01.0 VV In-Wall Shielding Block Assemblies	24 September 2009
27	1.1.P6C.RF.01 PF Conductors	2 October 2009
28	4.1.P1A-P8B.EU.01 SSEPN and PPEN Detailed System Engineering Design	26 October 2009
29	1.5.P1A.EU.01.0 VV Main Vessel 7 sectors	19 November 2009
30	1.1.P6B.JA.01 Central Solenoid Conductor	8 December 2009
31	5.1.P3.IN.01.0 IC H&CD RF Power Sources	5 February 2010
32	1.7.P2D.RF.01 PFC HHF Tests	23 February 2010
33	1.1.P4A-B.US.01 Central Solenoid Magnet	12 March 2010
34	1.7.P2B.EU.01.0 Divertor Inner Vertical Targets	12 March 2010
35	5.3.P7B.IN.01 Diagnostic Neutral Beam Line	22 March 2010

June 27th, 2011

	REFERENCE	Signature date
36	2.6.P2A.IN.01 Component Cooling Water System (CCWS) Chilled Water System (CHWS) and Heat Rejection System (HRS)	22 March 2010
37	5.1.P2.US.01 IC Transmission Lines	30 April 2010
38	1.1.P3C.CN.01 Corrections Coils	11 May 2010
39	1.1.P2C.CN.01 Magnet Supports	11 May 2010
40	1.1.P6C.CN.02 Conductors for CC and Feeders	11 May 2010
41	5.2.P2.US.01 Electron Cyclotron Main Transmission Lines	12 May 2010
42	1.1.P2A.EU.01 Pre compression rings	12 May 2010
43	6.2.P2.EU.05 Buildings Construction	14 May 2010
44	2.7.P1.KO.01.0 Thermal Shield	17 May 2010
45	3.4.P2.IN.01 Lower Pipe Chase Cryolines	10 June 2010
46	5.3.P9.EU.01.0 Neutral Beam Test Facility Components	27 October 2010
une 27th, 20	11 SOFE Chicago	L

	REFERENCE
47	5.3.P9.IN.01 Neutral Beam Test Facility Components (Spider and Calorimeter)
48	1.1.P5A.CN.01 Magnet Feeders
49	1.1.P3.RF.01 Poloidal Field Magnet 1
50	4.1.P3.RF.01 Switching Network, Fast Discharge Units, DC Busbar & Instrumentation
51	4.1.P2.KO.01 AC/DC Converters
52	5.1.P4.IN.01 IC H&CD Radio Frequency Power Supply
53	3.1.P4.US.01 Vacuum Auxiliary Systems Early Delivery
54	4.1.P2.CN.01 AC/DC Converters
55	4.1.P2.CN.02 RPC-HF

June 27th, 2011

iter china eu india japan korea russia usa