FUSION SIMULATION PROGRAM (FSP)

SCIENCE DRIVER CONSIDERATIONS

W. Tang (PPPL), M. Greenwald (MIT), D. Kothe (ORNL)

FSP MISSION & VISION

VISION: The Fusion Simulation Program (FSP) will enable scientific discovery of important new plasma phenomena with associated understanding that emerges only upon integration. It will provide a predictive integrated simulation capability for magnetically-confined fusion plasmas that are properly validated against experiments in regimes relevant for producing practical fusion energy.

MISSION: The Fusion Simulation Program (FSP) will provide the capability to confidently predict toroidal magnetic confinement fusion device behavior with comprehensive and targeted science-based simulations of nonlinearly-coupled phenomena in the core plasma, edge plasma, and wall region on time and space scales required for fusion energy production.

Provisional Science Drivers (1)

Detection, Avoidance, and Mitigation of Disruptions

- Macroscopic instabilities, rapidly terminating plasma confinement in tokamaks.
- Very large heat loads and forces on wall
- Can accelerate high energy electron beams

- Need reliable predictions of:

- Triggering conditions leading to disruption
- Nonlinear evolution of disruptions including rapid evolution of temperature, plasma density, and current density profiles, relativistic electron production
- Interaction with plasma facing wall
- Requires integration of MHD instability modeling, atomic and radiation physics, plasma wall interactions, and relativistic electron physics – all with *realistic* boundary conditions

ITER will provide an important test of the ability to reduce the frequency of allowable disruptions ("disruptivity") in high-performance discharges, compared to that in current facilities. SSTR is a conceptual design for a steady-state tokamak reactor. (Figure from J. Wesley / ReNeW)

Provisional Science Drivers (2)

Wave-Particle Interactions (esp. for Burning Plasmas/ITER)

- Nonlinear interaction of alphas and energetic particles with "sea of Alfven modes" and other instabilities
- External RF heating systems launch and damp waves

- Need reliable predictions of:

- Transport of fast ions due to many unstable modes
- RF antenna coupling; wave propagation and damping; RF sheaths
- Plasma response heating, current drive; flow drive; loss or redistribution of fast particles;
- Effects of background turbulence from thermal plasma
- Requires integrated analysis of wave coupling and propagation, nonlinear wave-particle interactions and plasma responses, generation of waves from non-Maxwellian distributions

Figure 4. Radial structure of toroidal Alfvén eigenmodes measured in DIII-D with electron cyclotron emission diagnostic and compared to NOVA-K synthetic diagnostic simulation predictions. (Figure reproduced from M.A. Van Zeeland et al., Phys. Rev. Lett. 97 [2006] 135001.)

Provisional Science Drivers (3)

Plasma Scrape-off Layer, Divertor, Plasma Wall Interactions

- Need reliable predictions of:
 - Power and particle loads on divertor and wall
 - Impurity generation, erosion, transport, & redeposition;
 - Dust generation and migration; tritium uptake & retention
 - Fuel recycling and pumping; and density limit;
 - Effect of material & temperature choices for wall;
 - Effects of high transient heat loads (disruptions, instabilities)
 - Boundary conditions for temperatures, density, turbulence, and flow at last closed flux surface
- Requires integrating turbulent perpendicular transport, parallel transport physics, atomic physics, and plasmamaterial interactions

Provisional Science Drivers (4)

Integrated Whole-Device Modeling

- Nonlinear interactions of turbulence, plasma-wall-dynamics, external sources, fusion reactivity, & macroscopic instabilities
- Need reliable predictions of:
- Discharge evolution in burning plasmas and experiments; e.g. for ITER
- Effect of feedback & control strategies
- Theoretical expectations for comparison with experiment
- Diagnostic interpretation

Requires integration of all relevant physical models across spatial and temporal scales.

"ROADMAPS"

outline plan for each provisional science driver (*including path of development for science in each topic – not implementation details*)

Scope: starting with current status, extending over 5 yr – periods to 15 yrs.

- Open physics questions requiring new theory development
- Tool requirements including code components development
- Strategy for physics/code coupling/integration with associated requirements
- Science questions to be addressed at each stage of development
- FSP deliverables/capabilities to be produced at each stage of development
- Potential customers for the FSP tools produced at each stage of development
- Opportunities for experimental validation at each stage of development
- Estimates of resources (FTE's. \$\$\$, computing support,)