Severe Flattening of Fast-ion Profile Measured

during Alfven Eigenmodes
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The first (crude) comparison showed theory was

an order of magnitude too small
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<The normalized change in the distribution function in the co-

passing part of phase space is shown for ORBIT runs of varying
duration.

eThe red curve is the change observed in the TRANSP runs with
ad hoc Dgin ~ 8 ms. (This was a rough estimate.)

<Now that theory is the right order of magnitude, how do we
make a more accurate comparison?




Recent Evidence that Microturbulence

causes Fast-ion Transport
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eSpectral shape deviates from classical theory when temperature is
large, Doppler shift is small; more pronounced at larger minor radius

-Steady-state transport; measure fully-evolved distribution function

Heidbrink PRL 102 (2009) submitted.



Theoretical Explanation for Small

Diffusion: Large Orbits Phase Averaqge
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FIG. 3 (color). Diffusivity 0D=D; as a function of particle
energy E=T . and pitch angleg.

W. Zhang, Phys. Rev. Lett. 101 (2008) 095001.



Use TRANSP D; for quantitative estimate of expected

effect
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magnitude of transport, then
multiply by x;
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particular T;, multiply by y;
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e Both give right magnitude
but neither reproduce FIDA
spectra or profile




The predicted transport is the right order of

magnitude but the details are wrong
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«This example from first
modeling attempt

«The second approach
yields something similar

«TRANSP produces a
fully-evolved f
->suitable input for
forward modeling

Current NUBEAM can’t
get phase-space
detalls right




Why Is quasi-steady transport hard to model?

eTheory computes a flux (Af)

eExperiment requires the evolved f

Important simplification: Although the forward modeling to
simulate the diagnostic signals is complicated, it is linear = can
concentrate on finding f




Combine TRANSP with physics-based

Instability transport

eSource: S
eCollisions: C
\Waves: Q

e| 0sses: L

f(V,F,1)
Thermal
=
=
Energetic
\
ENERGY

of lot=S+C+Q+L

«TRANSP accurately treats source, collisions, and losses

=Derive Dy (and convective flux) from simulations -> insert into

TRANSP




Bottom Line

eNeed to decide required form of Dg
and I'; to describe relevant wave-
particle interactions

This capability needs to be
Incorporated into TRANSP

- enables guantitative validation of
theory



Backup Slide



How do the diagnostic measurements relate to

the fast-ion distribution function?
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