Progress in determining ac coil – sensor couplings for 2012

By J. M. Hanson

Acknowledgements M. J. Lanctot, J. King, H. Reimerdes, E. Strait

Presented at DIII-D Stability and Disruption Avoidance Group meeting 25 June 2012

Ac coil—sensor couplings used to calculate plasma response to applied perturbations

- Vacuum couplings between DIII-D coils and magnetic sensors have non-trivial frequency dependencies
 - Caused by induced eddy currents in passive conducing structures (*ie* DIII-D wall)
 - Couplings tend to have significant variation on RWM time-scales: 10 – 500 Hz.
- Vacuum couplings measured yearly with applied ac coil waveforms
- Knowing the couplings allows computation of ac plasma response

 $\delta B_s^{\text{plas}}(\omega) = B_s(\omega) - B_{sc}^{\text{vac}}(\omega)$

 Used for driven plasma response measurements, tested with RWM feedback [L. Piron, et al, PPCF 2011]

Outline

- **1.** Review transfer function model, ac compensation
- 2. Summary of 2012 measurements
- 3. Comparisons with 2009 and 2011
- 4. Accessing transfer function data

Frequency domain model used to fit ac coupling measurements

• Fit Fourier-analyzed data to rational function model

$$\frac{B^{\rm sc}(\omega)}{I^{\rm c}(\omega)} = \frac{(i\omega - z_1)(i\omega - z_2) \times \dots}{(i\omega - p_1)(i\omega - p_2) \times \dots}$$

 For a given coil waveform, coupling must be a convolution of the transfer function with the frequency content of the coil signal

$$B^{\rm sc}(\omega) = \frac{B^{\rm sc}(\omega)}{I^{\rm c}(\omega)} \int_{-\infty}^{\infty} I^{\rm c}(t) \exp(-i\omega t) dt$$
$$B^{\rm sc}(t) = \int_{-\infty}^{\infty} B^{\rm sc}(\omega) \exp(i\omega t) d\omega$$
$$B^{\rm plas}(t) = B^{\rm s}(t) - B^{\rm sc}(t)$$

• **Problem:** must know the full time-series to Fourier transform. Not suitable for real-time analysis.

Bi-linear transform used to derive discrete, timedomain filters for ac compensation

 When working with discretely sampled data, can express the frequencydependent delay between samples as

$$Z(\omega) = \exp(i\omega\delta t)$$

• Can interpret Z as a shift operator on the Fourier transform of a sampled signal

$$Z^{-j}\mathcal{F}(x_k) = \mathcal{F}(x_{k-j})$$

• Can invert the relationship between Z and ω (inverse bilinear transform)

$$i\omega = \frac{1}{\delta t} \log Z \approx \frac{2}{\delta t} \frac{1 - Z^{-1}}{1 + Z^{-1}}$$

and substitute this into the transfer function expression to get a time-domain filter.

Time domain compensation is suitable for real-time and offline analysis

• We now have a representation of the transfer function in the discrete time domain

$$\mathbf{B}^{sc}(t_k) = \sum_{j=0}^{N_{zeros}} a_j I^c(t_{k-j}) - \sum_{j=1}^{N_{poles}} b_j B^{sc}(t_{k-j})$$

• Advantages:

- Only need a few prior time-steps good for real-time.
- In offline analysis, scales like *N*, rather than *N* log *N* as with the FFT.
- Approximation breaks down close to the Nyquist frequency, but we are normally concerned with much lower frequencies. Agreement is excellent for these.

Extensive set of ac coupling measurements made in April 2012.

- In previous years, measured couplings between odd-*n* coil pairs and odd-*n* sensor pairs
 - 9 coil pairs, 22 pair sensors -> 198 transfer functions
 - Adequate for n = 1 and n = 3 analysis, but useless for n = 2
- Starting in 2011, started measuring single-coil couplings as well and analyzing unpaired sensors
- In 2012: paired, unpaired C-coils, unpaired I-coils, analyzing 72 sensors
 This gives 1512 transfer functions.
- Attempting to make analysis semi-automatic
 - Fourier analysis now fully-automatic. Added considerations of sensor bit-depth and sampling rates. Experimenting with controlling for linear drifts
 - Transfer function fit step now loops over number of free parameters to minimize χ^2 and rejects data that is too small to fit
 - All fits still checked individually

New measurement technique enables couplings to three coils to be obtained in one shot

Coils energized simultaneously, but at different frequencies

- Thanks to Ted for coming up with this idea!
- Fourier analysis does a good job of untangling the couplings, as long as you keep track of what frequencies were applied when.

Compensation check shows multi-coil coupling measurements and analysis successful

 Caveat: some filters have stability issues and should NOT be used yet (see list on final slide).

Comparisons with previous years shows minor deviations

Mean transfer function differences

Comparisons with previous years shows minor deviations

- Note: 2009-2011 and 2009-2012 differences seem correlated.
- Largest 2009-2011 differences:
 - ISLD199U/C199
 - ISLD139U/C139
 - ISLD079U/IU150
- Largest 2009-2012 differences:
 - ISLD199U/C199
 - UMPID157/IL30
 - UMPID097/IU150
- Important: coil-pair "equivalents" transfers not as accurate for small couplings.

Transfer function data accessible by several means

IDL routines

- /u/hansonjm/idl/lib/rwm_compensation3.pro
 - Returns either transfer function or time-domain data for 2009 2012
 - Extensive documentation header
- /u/hansonjm/idl/lib/plot_xfer.pro
 - Quick transfer function plotting routine
- All required subroutines *should* be in /u/hansonjm/idl/lib/

HDF5 files

- Readable in IDL, Matlab, Python
- Tree-like data structure containing all fit coefficients and fitted data
- /u/hansonjm/var/data/transfers/tf2009.h5
- /u/hansonjm/var/data/transfers/tf2011.h5
- /u/hansonjm/var/data/transfers/tf2011_single.h5 (single coils)
- /u/hansonjm/var/data/transfers/tf2012.h5
- /u/hansonjm/var/data/transfers/tf2012_single.h5 (single coils)

Future work

• Most 2012 couplings available, but some fits still need work

- See list on final slide
- Coupling data recalculated with improved error bars and control for linear drifts
- Next step is to recalculate transfer functions with improved technique:
 - Skip datasets with large errors (> 100%)
 - Minimize reduced χ^2 instead of χ^2

New strategy needed for dramatic increase in number of sensors in 2013

- Matlab frequency-domain fit algorithm still requires some human intervention.
 - Suspect some issues due to low measurement resolution
 - However, each fit is still inspected individually
- Might be better to fit a dynamical time-domain model:

$$B^{sc}(t) = \sum_{j=0}^{\infty} a_j \frac{d^j}{dt^j} I^c(t) - \sum_{j=1}^{\infty} b_j \frac{d^j}{dt^j} B^{sc}(t)$$

 Advantages: Linear model easier to fit with standard techniques. Generalizes to nonsinusoidal data. Can be mapped to transfer functions and discrete filters.

Extra slides

2012 ac vacuum shots

- Odd-*n* C-coil pairs, April 12, 2012:
 - 148121 C139
 - 148123 C79
 - 148124 C199

• Unpaired I-coils, April 13, 2012:

- 148140 IL210, IL270, IL330
- 148145 IU30, IU150, IU270
- 148147 IU90, IU210, IU330
- 148148 IL30, IL90, IL150

• Unpaired C-coils, April 13, 2012:

- 148150 C79, C139, C199
- 148152 C259, C19, C319 (only SPA currents available)

• SPA currents used for all analysis. Pointnames available upon request.

List of BAD 2012 fits/filters (do NOT use – yet)

• All reconstructions of 2012 ac vacuum data checked. These were BAD:

LMPID097/C139 pair (chaotic) LISLD199/C139 pair (unstable) MPI67B6/C139 pair MPI67A4/C79 pair MPI67B4/C79 pair ESL199/C79 pair LISL5/C199 pair MISL4/IL330 **UISL3/IU150 UISL6/IU210** MPI67B6/IL90 MISL4/IL30 MISL5/IL90 MISL6/IL150,IL90 LISL5/IL90 LISL6/IL150,IL30 ESL199/IL30 ESL259/IL90 ESL319/IL150 MPI66M157/C79,C139,C199 single (unstable, not clear which C-coil) MPI66M340/C139 single LISL1/C199 single

• Let me know if any of these fits are urgently needed

