
10/10/2000 PARALLELIZED VERSION OF ORBIT

================================

CONTENT:

1. INTRODUCTION

2. HOW TO BUILD (COMPILE+LINK) ORBIT AND EQS

3. HOW TO RUN EQS/ORBIT

4. THINGS TO KNOW TO CHANGE ORBIT

5. MORE INFORMATION ABOUT THE CODE

1. INTRODUCTION

As of October 2000, the Orbit code can be compiled and run on a parallel

computer that provides a working MPI (Message Passing Interface) library.

All the platform-specific options and informations on how the code is

compiled are found in the file "Makefile". You may have to change the

location of the libraries to reflect your system.

2. HOW TO BUILD (COMPILE+LINK) ORBIT AND EQS

Single processor Orbit, NO MPI (default)

% gmake orbit or just % gmake

Single processor debugging version of Orbit, NO MPI

% gmake DEBUG=y orbit

Multiprocessor version of Orbit

% gmake MPI=y orbit

Multiprocessor debugging version of Orbit

% gmake MPI=y DEBUG=y orbit

Building Eqs, single processor only:

% gmake eqs

Debugging version of eqs

% gmake DEBUG=y eqs

3. HOW TO RUN MEX2EQS/EQS/ORBIT

MEX2EQS allows you to load a toroidal MHD equilibrium from a variety of

sources including from TRANSP data stored on the MDSPlus tree. Because

MEX2EQS uses a shared library of MDSPlus calls, make sure that your

LD_LIBRARY_PATH contains /usr/local/mdsplus/lib. Put the following in

your .cshrc or .bashrc file:

% setenv LD_LIBRARY_PATH ${LD_LIBRARY_PATH}:/usr/local/mdsplus/lib

under csh, or equivalently under bash

% export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:/usr/local/mdsplus/lib

To run MEX2EQS type

% mex2eqs

and answer the various questions regarding the input equilibrium format,

the MDSPlus tree/node/server and time slice information if applicable.

Mex2eqs also supports the EFIT-EQDSK (or geqdsk) file format (select

option 3). A geqdsk file, gbeta8.8, is provided in the distribution.

MEX2EQS will create a file map01.cdf that mimics the old file produced

by MAPMC, except that it is much lighter. You can plot its content from

within MATLAB (type matlab) by loading the script map01.m at the MATLAB

prompt:

>> map01

This will display the mesh packing (which should be linear), various

profiles and the Jacobian projected on the grid (the colours should align

on the grid for Boozer coordinates). To plot |B| as a function on the

poloidal plane, you could type

>> figure, pcolor(x,z,b)

>> shading(’interp’), axis(’image’), colorbar(’vert’)

>> title(’|B|’)

Next you probably need to produce the cubic spline coefficients of

the equilibrium (file spdata), by typing

% eqs

This will produce the file spdata needed by ORBIT. To view the result type

% idt emeta &

or to send the result to the printer

% ctrans -d ps.mono emeta | lpr -h -Pb143-dup

If compiled for single processor runs, which is the default when you do

simply gmake, Orbit is launched the same way as before:

% orbit

If compiled for multiprocessor runs, the easiest way to launch the code is

to use the provided script "runorbit":

% runorbit or runorbit 1 --> single processor run

% runorbit num_proc --> multiprocessor run if num_proc > 1

This script will take care of running the Perl script "orbout.pl", if

needed, to merge all the results into the one familiar file "orbout".

If the script does not recognize your system, you will have to explicitly

call the "mpirun" command:

% mpirun -np num_proc [-machinefile file] orbit

where "num_proc" is the number of processors that you want to use for

the run. The "-machinefile" option may be useful on a PC cluster of

type "beowulf" to pick the hosts on which you want the code to run (see

your local mpirun man page for more details).

By running "mpirun" explicitly, you will also have to run the Perl script

"orbout.pl" if you want to merge all the results into one "orbout" file.

See the beginning of the file "orbout.pl" for details about the script.

% orbout.pl num_proc

4. THINGS TO KNOW TO CHANGE ORBIT

- DO NOT use write(6,...) or write(*,...) anymore. You need to use:

write(myfile,...) ...

- In subroutine "bootrec" (record.f), nprt0 has been changed to nprt in loop 40

to handle the multiprocess calculation. A few source lines after, nprt is

changed to nprt0 in the calculation of zv(kplt).

- Added variable "savenprt" in subroutine "pdist" (orbplot.f) to save the

value of nprt. Also write out value of time(nob) instead of time(1)

after the call to field.

- time(nob) is again used instead of time(1) in subroutine "plost", "wrt",

and "wrt" (all in orbplot.f).

- replaced g(k) by gfun(px) in subroutine momf() (orbplot.f) in loop 483.

- orbit.f is now orbit.F since it includes some preprocessor statements.

The same is true for ranff.f which is now ranff.F.

5. MORE INFORMATION

===========

All the codes for Orbit and Orbit3d in directories

pub/white/Orbit and pub/white/Orbit3d which are public.

to get file, type

ftp ftp.pppl.gov

user: anonymous

pass: email address

cd /pub/white/dir

ls - to see all files in dir

get file

get README.orbit

Files for the tokamak version orbit.f from Orbit

Makefile eqs.f math.f record.f

bzio.f eqsub.f o.cln step.f

bzio_dummy.f ezcdf.f90 orbcom stochastic.f

collisions.f fshell.c orbit.F torsup.f

deposit.f functions.f orbplot.f tv80_wrappers.f

diagnostic.f icrfrot.f perturb.f

dispersion.f initial.f ranff.f

dskinCDF.f90

Files for the Stellarator (or Tokamak) version orbit3d.f from Orbit3d

Makefile eq3d eqspline o.cln ranff_f90.f

allplot.f eq3d.f m0tok orbit3d.f sub3d.f

bzio.f eqstell m1tok ranff.f

For a Stellarator or Tokamak

2.1 You can produce analytic second order Shafranov

equilibria with eqs.f by selecting numeric = 0 at the beginning.

See subroutine tok0 for analytic equilibria input.

2.2 Set the major radius (magnetic axis!) in centimeters at the

beginning of eqs.f and the ripple choice krip. I have ripple

models for ITER, Tore Supra, TFTR, and NSTX in eqs.f. Sorry, you will

have to make your own for other machines. If no ripple is desired krip=0

skips it. The stellarator version eq3d.f does not have ripple, but

the field input is in terms of harmonics, so it can be added.

The magnetic axis location is essential since the code units

are defined by the major axis and the gyro radius. The gyro radius is

calculated later in orbit from the value of z, energy, B, and proton mass.

2.3 Type "gmake" to build both eqs (or eq3d) and orbit (or orbit3d), or

"gmake eqs" (or "gmake eq3d") to build only eqs (eq3d).

Now run eqs by simply typing "eqs" to produce the spline data set spdata.

For Orbit3d, simply type "eq3d" to produce the file eqspline. It also

produces an output file and, in the case of an analytic Shafranov

equilibrium, a plot file gmeta, giving equilibria

characteristics. Copy and store spdata or eqspline as eqs1001,

or whatever, because otherwise it will be written over the next time

you run produce an equilibrium spline file.

3. Guiding center analysis

3.1 Orbit.f takes as input spdata. Orbit3d takes eqspline. In the main

of orbit.f there are many options, for single particle run, the

addition of perturbations, different particle distributions,

collisions, drag, subsidary options such as stochastic loss

calculations, ripple contours, the trapped passing boundary, etc.

The guiding center equations used are given in

White, Phys Fluids 2, 845 1990. Begin by plotting the equilibrium and

a sample single particle orbit. Set nploteq = 1 (equilibrium plot)

and nplot = 1 (single particle orbit).

3.2 Examine the equilibrium plot in gmeta. If the outside surface

of the equilibrium is not well represented,

the spline dimension is too small. At the beginning of eqs.f,

the parameters lsp and lst are respectively the poloidal flux and

poloidal angle spline dimensions.

Increase lst. Limits on these dimensions are governed by the common

blocks spline, used by both orbit.f and eqs.f. Likewise, if

the magnetic axis location or plasma position are poor, increase

lsp. The accuracy of the representation depends on the plasma shape.

3.3. Output from orbit is a plot file,

gmeta, a data file orbout, and other data files for lost particle

distributions, etc., which can be constructed and set as desired,

usually in the routine pdist (particle distribution) or plost

(lost particle distribution).

3.4 There are all kinds of working switches in the code, for example

in the alpha particle distribution routine alphdep, ntrap = 1 can be

used to produce only a trapped distribution. These switches have

not been moved into an input file because I modify them all the time,

and produce new ones constantly. I try to put write statements

with them, so always check orbout to be sure you are doing what you

want to do, i.e. that the switches are set the way you want. A good

expedient is to always do a short run with few particles to check

what you are doing before starting a long run.

cc r. b. white princeton, jan 1982

cc files needed:common blocks spline, equilibrium spdata written by spline.f

cc shell sho will run and make plots

cc nplot =1 gives single particle orbit data,

cc data recorded at intervals dt1

cc nplot=2 banana tip precession plot

cc nplot =3 gives poincare map

cc nplot =4 gives precession and loss plot

cc nplot=5 gives particle loss data, file data, write statement in reduce

cc nplot=6 ripple loss calculation

ccc nplot=7 boosted collisional ripple loss

ccc , more analysis with lost.f after changing data to losdata

ccc loss condition adjustable, see loss condition

cc col = the collision frequency

cc ekev is particle energy in kev,

cc bkg is b at the magnetic axis in kgauss

ccc field is b(pol,thet) + rpl(pol,thet)sin(N*zeta), rpl not usual ripple!

cc zprt is the charge, and prot the mass in proton units

cc rmaj is the major axis in cm- given in equilibrium file

cc dele is the allowed fractional energy change per step

cc the time step dt is adjusted accordingly,

cc to run at dt0 set dele > 1.

cc nprt is the number of particles.

cc trun is total run time. need ten steps per transit time, tran

cc nploteq=1 plots some equilibrium functions, 2 more, 0 none

ccc

ccc--computing time(Cray A): alpha particles in 272cm 50kg TFTR equilibrium

ccc --A run with 1000 particles 100 transits

ccc--with-ripple takes 38 sec

ccc--time-is 53% field, 31% onestep

2.5 Single particle orbits (nplot = 1)

nplot = 1 runs single particle orbits, giving plots of time history.

The first plot shows the accuracy of energy conservation.

The time step is controlled by the energy conservation, using the

limiter dele, normally set to about 5.e-8.

If time dependent MHD modes are used (set npert = 1, and set the

amplitudes and frequencies in subroutine amp1) energy is not conserved,

and a fixed time step must be used. dele > 1 accomplishes this, the

time step is dt0, which can be adjusted.

A typical output file (orbout) produced by nplot=1:

#################

orbits.f, read eqdata -lsp,lst,lq,le,lr

31 61 4 8

plasma volume,bax 1.5554E+03 9.9881E-01

Last flux surface is wall

equilibrium plotted, sub plotf

1 deposit pol,thet,ptch 3.89E-01 0.00E+00 3.50E-01

ended 1.00E+03 steps 0 lost 1 at time=trun

code orbit.f nplot= 1

equilibrium m0iter1

pq1,p1,polo,p2 1.37E-03 1.30E-03 3.89E-01 1.30E+00

rq1,rw,eps,xc 3.92E-02 1.47E+00 1.55E-01 9.48E+00

q0,qed,qw,bax 4.70E+00 5.52E+00 5.52E+00 8.82E-01

ped,pw,pvol 1.30E+00 1.30E+00 1.56E+03

shafranov shift/xc 8.32E-02

ITER ripple d0,n= 3.75E-06 20

xrip,wrip,brip 6.75E+02 5.35E+01 2.68E-01

particles

uniform dist p1,p2 1.296E-03 1.296E+00

engn,nprt,ftrap 6.66E-04 1 0.00E+00

col,drag 0.00E+00 0.00E+00

times

dt(nob),tran,dt0 4.8E+01 1.6E+03 3.3E+01

time,ntor,dele 3.27E+04 20 5.00E-08

dt1,nstep 1.63E-03 1003

cgs units

equilibrium m0iter1

energy=1.50E+03 kev, mass=4.00E+00 proton

charge z= 2.00E+00

b on axis = 4.86E+01 KG

lft,cent,axis,rt 6.44E+02 8.70E+02 9.49E+02 1.10E+03 cm

gyro=3.66E+00 cm, gyro/raxis 3.85E-03

gyro=2.33E+08 rad per sec, tran=7.00E-06 sec

velocity=8.51E+08 cm/sec, beta axis=1.26E-01

#################

Most output lines are self explanatory.

The first line is the reading of the spline data, with spline

dimensions given. The plasma volume, bax are the volume in the

units of the numerical equilibrium and the magnetic field on axis

in the same units.

"Last flux surface is wall" refers to the criterion for particle loss,

it can be changed, see subroutine wallset.

"1 deposit pol,thet,ptch ..." gives initial particle data

"ended 1.00E+03 steps 0 lost 1 at time=trun" end of time step

pq1,p1,polo,p2 - poloidal flux values

rq1,rw,eps,xc - minor radius at q=1, last flux surface, aspect ratio, axis

q0,qed,qw,bax - q on axis, plasma edge, last flux surface, B on axis

ped,pw,pvol - poloidal flux at plasma edge, last flux surface, volume

engn,nprt,ftrap - normalized particle energy, number, fraction trapped

col,drag - collisions and drag

dt(nob),tran,dt0 - time step, transit time, initial time step

time,ntor,dele - final time, number of toroidal transits, energy conservation

dt1,nstep - recording interval, number of steps

2.6 Particle loss analysis (nplot = 5)

nplot = 5 is for doing particle loss analysis. There are several

subroutines for loading different types of Monte-Carlo distributions.

The subroutine pdist will give plots of particle distributions.

It can be called at any time during

a run, but normally only at the beginning and end. Inside the subroutine

eject, near the beginning, there is a write statement which

writes out individual particle loss data, including the particle number.

To observe a particular loss orbit leave the initial nplot =5 load

parameters the way they were, and activate runone using this particle

number, using the call in the main, just before the time step loop.

The routine runone loads the particle

you have selected into position 1, and then switches to nplot =1,

giving a plot of that particular orbit.

Inside plot5 there are several optional calls

call sigma - gives a statistical error analysis of particle loss

call pdist - plots the particle distribution functions

call plost - plots the lost particle distribution functions

call mupzeta(1) initial particle positions, pzeta, mu plane

call mupzeta(0) final particle positions, pzeta, mu plane

call dump0 - writes out a file for lost particle analysis, to be

used with lost.f

A typical output file (orbout) produced by nplot = 5:

orbits.f, read eqdata -lsp,lst,lq,le,lr

31 61 4 8

plasma volume,bax 1.5554E+03 8.8181E-01

Last flux surface is wall

alphdep, pitch < 1 100 times

alphas deposited (1-(r/a)**2)**p, p= 3.0000E+00

500 nprt -loss 225 ptch,thet,x,t 3.48E-01 -2.18E-01 1.00E+03 4.96E+00

499 nprt -loss 112 ptch,thet,x,t -1.17E-02 -6.39E-02 1.08E+03 2.00E+01

497 nprt -loss 412 ptch,thet,x,t 5.00E-01 -3.95E-01 9.14E+02 2.54E+01

482 nprt -loss 119 ptch,thet,x,t 4.81E-01 -4.22E-02 1.09E+03 1.77E+01

465 nprt -loss 251 ptch,thet,x,t 5.65E-02 -5.25E-02 1.09E+03 4.64E+01

ended 1.13E+04 steps 5 lost 495 at time=trun

sigma- mean, deviation 1.0000E-02 4.4274E-03

pdist called time(1) = 5.3392E+04

<pol/pw>, <(pol/pw)**2> 1.6372E-01 5.5420E-02

500 part. 117 trap 3 trap-lost asym= 1.02E-01

plost called time(1) = 5.3392E+04

time of last loss 4.9598E+04

plost, |thet|<pi confined,lost 111 5

plost, |thet|>pi confined,lost 384 0

mupzeta called time(1) = 5.3392E+04 init= 1

mupplane called points 495

mupplane called points 5

code orbits.f nplot= 5

equilibrium m0iter1

pq1,p1,polo,p2 1.37E-03 1.30E-03 3.89E-01 1.30E+00

rq1,rw,eps,xc 3.92E-02 1.47E+00 1.55E-01 9.48E+00

q0,qed,qw,bax 4.70E+00 5.52E+00 5.52E+00 8.82E-01

ped,pw,pvol 1.30E+00 1.30E+00 1.56E+03

shafranov shift/xc 8.32E-02

ITER ripple d0,n= 3.75E-06 20

xrip,wrip,brip 6.75E+02 5.35E+01 2.68E-01

particles

alpha dist

engn,nprt,ftrap 1.55E-03 500 2.34E-01

col,drag 0.00E+00 0.00E+00

times

dt(nob),tran,dt0 5.3E+00 1.1E+03 2.1E+01

time,ntor,dele 5.34E+04 50 5.00E-08

dt1,nstep 1.07E-03 11306

cgs units

equilibrium m0iter1

energy=3.50E+03 kev, mass=4.00E+00 proton

charge z= 2.00E+00

b on axis = 4.86E+01 KG

lft,cent,axis,rt 6.44E+02 8.70E+02 9.49E+02 1.10E+03 cm

gyro=5.58E+00 cm, gyro/raxis 5.88E-03

gyro=2.33E+08 rad per sec, tran=4.58E-06 sec

velocity=1.30E+09 cm/sec, beta axis=1.26E-01

alphdep, pitch < 1 100 times

alphas deposited (1-(r/a)**2)**p, p= 3.0000E+00

This is the particle deposition record, see alphdep and other

Monte-Carlo deposition routines.

500 nprt -loss 225 ptch,thet,x,t 3.48E-01 -2.18E-01 1.00E+03 4.96E+00

499 nprt -loss 112 ptch,thet,x,t -1.17E-02 -6.39E-02 1.08E+03 2.00E+01

497 nprt -loss 412 ptch,thet,x,t 5.00E-01 -3.95E-01 9.14E+02 2.54E+01

482 nprt -loss 119 ptch,thet,x,t 4.81E-01 -4.22E-02 1.09E+03 1.77E+01

465 nprt -loss 251 ptch,thet,x,t 5.65E-02 -5.25E-02 1.09E+03 4.64E+01

ended 1.13E+04 steps 5 lost 495 at time=trun

This is the particle loss record, giving the total particles, the particle

lost, and its pitch, theta, major radius position and time in transit times.

To observe a particular loss orbit, activated runone (see call in main)

using the particle number.

sigma- mean, deviation 1.0000E-02 4.4274E-03

This is the fraction lost and statictical error, see routine sigma

pdist called time(1) = 5.3392E+04

<pol/pw>, <(pol/pw)**2> 1.6372E-01 5.5420E-02

500 part. 117 trap 3 trap-lost asym= 1.02E-01

This is a call to pdist, the plot of the particle distribution, with

loss estimate and distribution asymmetry parameter.

plost called time(1) = 5.3392E+04

time of last loss 4.9598E+04

plost, |thet|<pi confined,lost 111 5

plost, |thet|>pi confined,lost 384 0

Lost particle plot and analysis

mupzeta called time(1) = 5.3392E+04 init= 1

mupplane called points 495

mupplane called points 5

This is the call to the plot of the space of canonical toroidal

momentum and magnetic moment, showing domains and the distribution of

confined particles (495) and lost particles (5). init=1 shows the

initial distribution, ionit=0 shows the final distribution. See

subroutine plot5 for calls.

See White et. al. Physics of Plasmas 3, 3043, 1996, for a description

of the plots.

